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ABSTRACT 

Reactive oxygen species (ROS) are produced by myeloid cells as a mechanism 
of defense against infection, but also to resolve inflammation, as ROS can 
induce cell death in T cells and NK cells. ROS production may also be 
deployed as a mechanism by which myeloid cells suppress anti-leukemic 
lymphocytes to promote malignant progression. The aim of this thesis was to 
define the role of myeloid cell-derived ROS in chronic leukemias as a putative 
target of immunotherapy. In paper I, the transductional pathways leading to 
ROS-induced lymphocyte death were investigated and found to involve the 
ERK1/2 mitogen-activated protein kinase (MAPK). These results challenge the 
view of ROS-induced cell death being a direct consequence of ROS-inflicted 
DNA damage. Papers II and III demonstrate that anti-CD20 monoclonal 
antibodies (mAbs) triggered ROS production by monocytes and neutrophils, 
which translated into reduced NK cell-mediated antibody-dependent 
cytotoxicity (ADCC) towards autologous leukemic cells derived from patients 
with chronic lymphocytic leukemia (CLL). The anti-oxidative agent histamine 
dihydrochloride (HDC) was found to restore ADCC by preventing ROS 
formation from adjacent monocytes, suggesting that anti-oxidative therapy 
might increase the efficacy of therapeutic mAbs. In paper IV, monocytic 
leukemic cells obtained from patients with chronic myelomonocytic leukemia 
(CMML) were shown to suppress T cells and NK cells by producing ROS. 
HDC counter-acted the suppression of lymphocytes by preventing ROS 
formation, and augmented the anti-leukemic activity of NK cells. Collectively, 
these results suggest that myeloid cell-derived ROS may be operational in CLL 
and in CMML as a mechanism of immune escape and that immunotherapy by 
anti-oxidative intervention should be further investigated in these forms of 
chronic leukemia.  
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Sammanfattning på svenska 
Immunsystemet är utrustat med kraftfulla mekanismer för att kunna bekämpa 
mikroorganismer och infekterade celler, men står under noggrann kontroll för 
att angrepp på frisk vävnad ska undvikas. Immunsystemet kan ofta uppfatta 
cancerceller som avvikande, men misslyckas trots det vanligen med att 
eliminera dem. En bakomliggande orsak är kroppens olika system för att 
hämma immunsystemet. Cancersjukdomar kan också förvärras genom att 
förstärka immunhämmande mekanismer. Immunterapi syftar till att öka 
immunologisk eliminering av cancerceller genom ökad aktivering eller minskad 
hämning av immunsystemet.  

Fria syreradikaler kan produceras och frisättas av vissa immunceller, däribland 
monocyter och neutrofila granulocyter. Syreradikaler bidrar till nedbrytning av 
mikroorganismer, men utgör också signalämnen vid kommunikation mellan 
olika celler samt har en viktig roll i att dämpa inflammation. T-lymfocyter och 
NK-celler är lymfocyter som är viktiga vid infektioner och som har förmåga att 
känna igen och avdöda cancerceller. T-lymfocyter och NK-celler är känsliga för 
syreradikaler och dör genom reglerad celldöd vid nära kontakt med radikal-
producerande celler. Således kan syreradikaler minska immunsystemets förmåga 
att eliminera cancerceller.  

Syftet med denna avhandling har varit att studera betydelsen av syreradikalers 
immunhämmande effekter vid två olika typer av kronisk leukemi, samt hur 
läkemedel som minskar radikalfrisättning skulle kunna användas som 
immunterapi vid dessa sjukdomar.  

Delarbete I syftade till att undersöka signalvägarna som leder till 
radikalorsakad celldöd. Enzymet PARP-1 finns i cellkärnan och kan aktiveras 
av DNA-skador. Vid normal aktivitet bidrar PARP-1 till att reparera DNA, 
men det har tidigare visats att radikalorsakad celldöd sker genom att PARP-1 
överaktiveras. Eftersom syreradikaler kan orsaka DNA-skador har man 
misstänkt att överaktivering av PARP-1 varit en direkt följd av radikalorsakade 
DNA-skador. Det är dock inte helt kartlagt hur radikaler aktiverar PARP-1. I 
delarbete I visas att syreradikaler orsakade aktivering av det intracellulära 
enzymet ERK1/2 som i sin tur bidrog till att aktivera PARP-1. Genom att 
förhindra aktivering av ERK1/2 fann vi att lymfocyter blev mer 
motståndskraftiga mot radikaler. Dessa resultat tyder på ett samband mellan 
syreradikaler, ERK1/2 och PARP-1, vilket kan ha betydelse för immunterapier 
som syftar till att skydda lymfocyter från radikaler. 
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Patienter med kronisk lymfatisk leukemi (KLL) behandlas ofta med 
monoklonala antikroppar. Dessa läkemedel kan binda till leukemicellernas yta 
och därmed underlätta för immunceller att avdöda leukemicellerna. NK-celler 
bär receptorer för antikroppar (Fc-receptorer) som gör det möjligt för dem att 
binda till leukemiceller. Även icke-maligna radikalproducerande celler, såsom 
monocyter och granulocyter, uttrycker Fc-receptorer och kan således också 
binda till antikroppar. Inför delarbete II och III undersöktes hur 
radikalproducerande celler påverkar NK-cellers förmåga att avdöda 
leukemiceller från patienter med KLL med hjälp av antikroppar. Vi fann att 
antikroppar orsakade kraftig radikalfrisättning från monocyter och neutrofila 
granulocyter samt att monocyter minskade NK-cellers antikroppsmedierade 
avdödning av leukemiceller genom att frisätta radikaler. Antikroppar ökade 
också benägenheten hos monocyter och neutrofila granulocyter att hämma 
NK-celler genom radikalorsakad avdödning. Genom att tillsätta 
histamindihydroklorid (HDC), ett läkemedel som hämmar radikalproduktion, 
kunde NK-cellers viabilitet och förmåga att eliminera leukemiceller bevaras. 
Resultaten tyder på att behandling med monoklonala antikroppar skulle kunna 
leda till att NK-celler hämmas genom ökad radikalfrisättning, samt att 
läkemedel som minskar radikalfrisättning skulle kunna öka behandlingseffekten 
av monoklonala antikroppar vid KLL. 

Kronisk myelomonocytär leukemi (KMML) är en ovanlig och allvarlig form av 
leukemi vid vilken en del av leukemicellerna liknar normala monocyter. I 
delarbete IV undersöktes leukemiceller från patienter med KMML med 
avseende på förmåga att producera immunhämmande syreradikaler. Vi fann att 
leukemiceller från patienter med KMML hade en hämmande effekt på NK-
celler och T-lymfocyter genom att frisätta syreradikaler och därmed avdöda 
lymfocyterna. Vi observerade att HDC bevarade NK-cellers viabilitet och 
ökade deras avdödande aktivitet mot leukemiceller. Vi undersökte dessutom 
NK-cellers uttryck av aktiverande receptorer vid KMML och fann ett lägre 
uttryck av flera receptorer hos patienter än hos friska personer. Sammantaget 
tyder resultaten på att radikalfrisättning skulle kunna bidra till att 
immunsystemet förhindras att angripa leukemicellerna, samt att immunterapi 
med HDC bör studeras ytterligare vid KMML. 
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1 Preface and aim 
The immune system is essential to human life. During evolution, multiple 
mechanisms of recognition and elimination of invading microorganisms have 
accumulated to form a comprehensive and efficient defense system that 
protects us from infection and enables our co-existence with a plethora of 
potential pathogens. Although the immune system is primarily developed to 
overcoming infection, an increasing body of evidence supports the role of 
immunity in preventing and eliminating cancer cells (1, 2).  

The expanding field of cancer immunotherapy aims at directing and 
augmenting immunologic forces against malignantly transformed cells. The 
efficacy of allogeneic stem cell transplantation (allo-SCT), whereby the anti-
leukemic allo-reactivity of T cells and NK cells is employed, serves as an 
illustration of the potency of immune effector functions and remains the single 
treatment option with curative potential for several hematopoietic malignancies 
(3-5). However, the occurrence of graft-versus-host disease (GvHD), a 
common adverse effect of allo-SCT (6), equally clearly demonstrates the 
potentially devastating effects of a misdirected immune response and the need 
for less toxic and more specific immunotherapeutic strategies.  

During the last decade, several therapies have emerged that strive to enhance 
the inherent anti-tumoral immune defense by targeting mechanisms of immune 
regulation and immunosuppression (7, 8) One such mechanism is the 
formation of reactive oxygen species (ROS; oxygen radicals) by myeloid cells 
(9) that can be targeted by histamine dihydrochloride (HDC) (10, 11), a 
synthetic derivative of histamine. Clinical and experimental evidence has 
demonstrated that HDC prevents ROS formation by healthy and malignant 
myeloid cells and thereby rescues lymphocytes from ROS-mediated death (9, 
12-14). HDC, in combination with interleukin-2 (IL-2), is currently approved as 
post-consolidation maintenance therapy of acute myeloid leukemia (AML).  

The main aim of this thesis was to contribute to the understanding of the role 
of myeloid-derived ROS for immunosuppression in two forms chronic 
leukemia, namely chronic lymphocytic leukemia (CLL) and chronic 
myelomonocytic leukemia (CMML), and to explore the rationale for counter-
suppressive immunotherapy in these diseases. We also studied the intracellular 
signaling events leading to ROS-mediated lymphocyte death and 
immunosuppression.  
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2 Introduction 
All blood cells and most cells of the immune system are formed by the bone 
marrow in the process of hematopoiesis. Hematopoietic cells originate from 
hematopoietic stem cells (HSC) with capacity of self-renewal and multipotent 
differentiation (15). Most blood cells have a high turnover rate, and their 
continuous renewal requires a highly efficient hematopoiesis throughout life. 
Thus, hematopoiesis is associated with a high rate of cell division, carrying a 
substantial risk of somatic mutations. With age, mutations are likely to 
accumulate in HSCs, which may result in malignant transformation and 
development of leukemia (16).  
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2.1 Innate and adaptive immunity 
The immune system is conventionally divided into innate and adaptive 
immunity. The basis for this dichotomy is the different mechanisms for antigen 
specificity inherent to the two divisions.  

Behind the physical and chemical barriers protecting our bodies, the innate 
immune system constitutes the first line of the immune defense. It is mature 
from birth and comprises an array of both myeloid and lymphoid cells, and also 
includes the complement system, a cluster of soluble proteases with 
microbicidal properties (17). Innate immunity responds swiftly to injury or 
microbial invasion. The instant recognition of foreign structures by innate 
immune cells is conveyed by a broad, yet limited, set of germ-line encoded 
receptors, collectively termed pattern recognition receptors (PRRs) (18, 19). 
PRRs correspond to, and recognize, microbial structures that are critical for the 
survival of the microorganisms, e.g. lipopolysaccharides (LPS), cell wall 
molecules or nucleic acids, which are thus unlikely to be altered or eliminated 
by mutation. Since many microbial patterns are shared by different classes of 
microorganisms, the innate mode of non-self recognition is highly sensitive 
despite the limited number of receptors and encoding genes (18). 

In contrast, adaptive immunity, represented by T and B cells, relies on the 
acquisition of highly specific receptors, unique to a particular antigen. During 
the development of T and B cells the genes encoding their antigen receptors are 
subjected to stochastic rearrangements resulting in a virtually infinite repertoire 
of minute clones of lymphocytes, each with a unique antigen affinity (20). 
During a primary infection, naive clones with specific affinity for the invading 
pathogen are selected, activated and clonally expanded by the activity of antigen 
presenting cells (APCs) (21). The resulting populations of effector T cells and 
antibody-producing B cells are thus tailor-made for a specific pathogen. 

The mounting of a primary adaptive immune response is time-consuming. 
Therefore, the initial phase of defense relies entirely on innate immune 
functions. However, once established, adaptive immunity is preserved by 
lingering subsets of memory T and B cells, which enable a much quicker 
immune response in the case of a second encounter (20). 
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As the understanding of the immune system has evolved, the border between 
innate and adaptive immunity has become less distinct (22). New roles for cell 
types traditionally assigned as typically innate or adaptive are frequently being 
described. For example, the role of neutrophils in shaping adaptive immunity is 
being increasingly appreciated (23, 24). Also, there is evidence to support the 
ability of adaptation and memory functions in NK cells (25, 26).  
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2.2 Myeloid cells 
The cells of the myeloid hematopoietic lineage are highly divergent and include 
the granulocytes, monocytes, macrophages and dendritic cells (DCs).  Together, 
these cells form the backbone of the innate immune system.  

2.2.1 Neutrophils 
Within the group of myeloid cells the neutrophilic granulocytes 
(polymorphonuclear neutrophils; PMNs) are the most abundant, comprising 
about half of all circulating leukocytes under healthy conditions. Neutrophils 
have an indispensible microbicidal role in the initial phase of an infectious 
challenge. In response to infection or stress their number can rapidly be 
multiplied due to mobilization of cells stored in bone marrow niches along with 
increased granulopoiesis (27). 

Neutrophils differentiate in the bone marrow, and enter the blood stream as 
mature inactive cells (28). In response to inflammation, pro-inflammatory 
substances, e.g. tumor necrosis factor (TNF) and IL-1β, released by tissue 
macrophages, trigger neutrophil extravasation which in turn induces their 
activation (27). In the tissue, gradients of chemoattractant substances guide the 
migration of neutrophils towards the focus of infection (24, 29). There, 
recognition of microbes is facilitated by various surface-bound receptors, 
including toll-like receptors (TLR) and Fc-receptors (FcR), a process further 
reinforced by complement (17) and antibodies (30). The neutrophils then 
engulf and degrade microbes via phagocytosis, which relies on endosomal 
microbicidal substances, such as oxygen radicals, proteases and hypochlorous 
acid. As degradation takes place intracellularly, excessive leakage of reactive 
substances is prevented and host tissues are largely spared. Even so, during 
septic infections or massive local inflammation, neutrophil responses can be 
overwhelming and result in life-threatening immunopathology (31). 
Mechanisms that mediate the timely abortion of neutrophil activity are 
therefore of vital importance. As inflammation resolves, neutrophils thus enter 
apoptosis, and are cleared from the site of infection by macrophages (32). Even 
under resting conditions, neutrophils are only allowed to circulate for a very 
short period of time before being replaced by newly formed cells (33). 

2.2.2 Mononuclear phagocytes  
Mononuclear phagocytes constitute a prominent and heterogeneous group of 
innate immune cells comprised by monocytes and macrophages. 
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Monocytes comprise approximately 10 percent of all circulating leukocytes (34). 
Morphologically, they are characterized by their large size, smoothly rounded 
shape and unilobar nuclei. Phenotypically, monocytes are distinguished by 
myeloid linage markers, such as CD33. Monocytes are further divided into 
subsets based on their expression of CD14 and CD16/FcγRIII; the classical 
monocytes, comprising 90 percent of circulating monocytes, display a 
CD14high/CD16- phenotype, while the non-classical subset is CD14-/CD16+ 

(35). 

As for neutrophils, the number of monocytes may be increased in response to 
infection or stress, which triggers their mobilization from marginal pools (36, 
37). In contrast to neutrophils, however, monocytes have maintained 
proliferative and differentiating capabilities after leaving the bone marrow (38). 
In response to inflammation, they enter the tissues where they may differentiate 
into macrophages or dendritic cells (34), and take part in phagocytosis, antigen-
presentation as well as the resolution of the inflammatory response. Until 
recently, monocytes were assumed to give rise to the majority of resident tissue 
macrophages. However, this view has been challenged by studies suggesting 
that tissue macrophages stem from embryonal yolk-sac precursors (34).  

Resident macrophages have a prominent role in the initiation the inflammatory 
response by serving as sentinels of infection and injury. Equipped with a range 
of PRRs they rapidly react to invading microbes, and swiftly recruit neutrophils, 
monocytes and other immune cells into the inflamed area by secretion of pro-
inflammatory substances (39).  

Moreover, monocytes, macrophages and dendritic cells (DC) posses the 
capability of antigen processing and presentation (33). Hence, in shaping the 
adaptive immune response they represent an interface between the innate and 
adaptive immune system. In addition, monocytes and their progeny are 
important sources of cytokines and chemokines with orchestrating functions in 
immunity, either in initiating or maintaining inflammation or contributing to its 
resolution (40).  

2.2.3 The NADPH oxidase 
A fundamental feature of myeloid cells, including neutrophils and monocytes, is 
the ability to produce and secrete reactive oxygen species (ROS) (41). The 
active production of ROS by phagocytic cells is facilitated by the leukocyte 
NADPH oxidase, an enzyme compiled by five subunits, of which two, 
gp91phox/NOX2 and p22phox (phox for phagocyte oxidase), make up the catalytic 
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core (42). This heterodimer, referred to as cytochrome b558, is bound to the 
phagocyte membranes.   

Under resting conditions, the enzyme is disassembled, and the remaining 
subunits, p40phox, p47phox and p67phox, are dissolved within the cytosol. Upon 
activation, kinase-mediated phosphorylation of the cytosolic subunits results in 
assembly of the enzyme complex with ensuing catalytic activity. The activated 
enzyme transfers electrons from cytosolic NADPH to the opposite side of the 
membrane where molecular oxygen is reduced into superoxide (O2-). 
Superoxide is an instable compound that serves as the initial substrate for the 
formation of several other oxidants with variable reactivity and toxicity, 
including hydrogen peroxide (H2O2) and the hydroxyl radical (OH-). These 
oxidants may be produced directly into the sealed compartment of the 
phagolysosome by NADPH oxidase located to the lysosomal membrane, where 
they participate in the controlled intracellular breakdown of microbes. 
Alternatively, the NADPH oxidase is assembled in the plasma membrane, 
giving rise to extracellular radicals, which, in addition to exerting microbicidal 
activity, also may participate in intercellular signaling and immune regulation 
(43-46).  

The physiologic role of ROS is illustrated by chronic granulomatous diseases 
(CGD), a group of disorders characterized by a genetically dysfunctional 
NADPH oxidase. The incapacity of ROS production by afflicted patients is 

Figure 1. The active NADPH oxidase.  
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manifested by severe immune deficiency with recurrent bacterial and fungal 
infections (47). In addition, CGD is accompanied by aseptic granulomas as one 
manifestation of dysregulated inflammation, underscoring the role of ROS in 
resolving immune responses (48-50).  

Notably, the NADPH oxidase is not the only inherent physiologic source of 
oxygen radicals. During mitochondrial cellular respiration, energy is obtained in 
the form of adenosine triphosphate (ATP) by a slow controlled reaction 
between nutrients and oxygen. This process is accompanied by a slight 
continuous generation of oxygen radicals (51). In addition, the constant 
exposure to background radiation continuously gives rise to small amounts of 
radicals, as when ionization of water molecules are converted into hydroxyl 
radicals (52).  

The reactive propensity of oxygen radicals makes them potentially hazardous, 
as they can inflict oxidative damage upon vital cellular components, including 
nucleic acids. Therefore, the integrity of intracellular and tissue structures 
depends on anti-oxidative mechanisms, which maintain redox homeostasis and 
render cells and tissues tolerant to a limited burden of oxidative stress. 
Examples of such traits, present either intra or extracellularly, are the enzymes 
superoxide dismutase (SOD) and catalase (52), which degrade superoxide and 
H2O2, respectively. Another important anti-oxidative mechanism is exerted by a 
group of scavenging substances collectively termed thiols. Thiols contain 
sulfhydryl groups (-SH) that may be reversibly oxidized by the formation of 
disulfide bonds (-S-S-) (53, 54). Thus, upon encountering oxygen radicals, thiols 
can limit oxidative stress by becoming oxidized without suffering permanent 
damage. Immune cells differ in their level of thiol expression, and hence also in 
their tolerance to radicals (55). As discussed further below, some lymphocyte 
subsets are highly sensitive to oxidants. 
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2.3 Lymphoid cells 
2.3.1 NK cells 
NK cells are cytotoxic lymphocytes that, unlike T cells, do not require previous 
sensitization to recognize and kill of foreign and transformed cells (26, 56). NK 
cells rely on germ-line encoded receptors and are accordingly attributed to the 
innate immune system. Morphologically, NK cells are relatively large 
lymphocytes displaying granules that are pre-loaded with cytolytic granules that 
can be released in response to a foreign encounter (57). Phenotypically, NK 
cells are commonly defined as devoid of the archetypical T cell antigen CD3 
and by their expression of CD56.  

The expression of CD56 varies within the NK cell population, as does 
CD16/FcγRIII, an activating low-affinity FcR. The levels of CD56 and CD16 
expression are used to define two distinct subsets of NK cells (58). Most 
circulating NK cells show a low (“dim”) expression of CD56 and also express 
CD16 (CD56dimCD16+). This subset is functionally characterized by a high 
cytotoxic propensity and a low secretion of cytokines (58). Also, the expression 
of Fc-receptors renders this cytotoxic population responsive to activation by 
target-bound antibodies and endows them the ability to exert antibody-
dependent cellular cytotoxicity (ADCC) (59). The smaller NK cell subset, with 
a CD56brightCD16- phenotype, is assumed to be an immature NK cell 
population. This subset has poor cytolytic capacity and cannot mediate ADCC 
(60, 61). However, they are assumed to contribute to shaping immune 
responses via production and secretion of proinflammatory cytokines, mainly 
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), either within the 
inflamed tissue or in secondary lymphoid organs (62).  

Regulation 
Since the discovery of NK cells, their regulation has been subjected to vigorous 
investigation. In the 1980s, using a murine model of lymphoma, Kärre and co-
workers, demonstrated that NK cells efficiently prevented growth of malignant 
cells devoid of MHC class I, whereas lymphoma cells with preserved expression 
of MHC class I were spared (63). These findings formed the basis for the 
missing-self hypothesis, which predicted that NK cells are kept in check by the 
interaction between inhibitory receptors interacting with MHC class I (64). 
Thus, upon confrontation with cells missing or with down-regulated MHC 
class I, inhibition is lifted and activation triggered. A few years later, the 
discovery of the major group of NK cell inhibitory receptors, the killer 
immunoglobulin-like receptor (KIR) family, contributed to the fulfillment of 
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the missing-self hypothesis (65). The KIRs correspond to human leukocyte 
antigen (HLA) class I, expressed by all nucleated cells, and contribute to NK 
cell tolerance of autologous tissues. 

While the missing-self hypothesis accounts for pivotal aspects of NK cell 
function it remained conceivable that NK cells, as is the case for T cells, utilize 
additional or supplemental mechanisms of relevance to activation and tumor 
cell recognition. This notion inspired the search for activating NK cell 
receptors, leading to the eventual discovery of the group of natural cytotoxicity 
receptors (NCRs) which comprise NKp46 (NCR1), NKp30 (NCR2) and 
NKp44 (NCR3) (66), and the activating NK cell receptors NKG2D (67), 
DNAM-1 (68). Some activating receptors are constitutively expressed while 
others are exclusively expressed upon activation (69). Moreover, a large array of 
additional, co-stimulatory receptors, TLRs, and cytokine receptors have been 
shown to contribute to the activation of NK cells (26).  

Importantly, interaction via FcRs and immunoglobulin G (IgG), which bind to 
target cells, provides a powerful activating signal that may overcome 
concomitant inhibitory signaling (68). Collectively, these receptors recognize a 
wide range of stress- and tumor-induced ligands of host cells in addition to 
structures of microorganisms. So, although the “missing-self” hypothesis 
essentially still holds true, the prevailing view of NK cell recognition has been 
broadened to also include the entities of “non-self” and “altered-self” (70). 

In conclusion, the cytotoxic activity of NK cells is determined by the overall 
concomitant input of activating and inhibitory signals. This complex 
arrangement of NK cell regulation reflects the biologic necessity of directing 
the cytotoxic action of NK cells with maximum precision, assuring efficacious 
attack of foreign and altered invaders while sparing the healthy cells of the host.  

Cytotoxic functions 
The main mode of NK cell killing is dependent on direct cell-to-cell contact. 
This is an active process that involves a series of sequential steps. First, contact 
is established between the NK cell and its target via adhesion molecules, such 
as lymphocyte function-associated antigen 1 (LFA-1) and intercellular adhesion 
molecule 1 (ICAM-1) (71). This creates a tight interface referred to as an 
immunological synapse (72), towards which surface molecules and intracellular 
granules are polarized to facilitate interactions. If the balance between activating 
and inhibitory signals is shifted in favor of activation, the NK cells will 
degranulate and release cytotoxic substances such as perforin and granzyme B, 
likely resulting in target cell lysis. Also, NK cells may express death receptor 
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ligands, e.g. Fas-ligand (Fas-L) and TNF-related apoptosis inducing ligand 
(TRAIL), which may induce an alternative, perforin-independent, pathway of 
apoptosis (73). 

2.3.2 T cells 
T cells are the key mediators of cellular adaptive immunity.  T cell progenitors 
leave the bone morrow and migrate to the thymus where differentiation, 
receptor gene rearrangement and education ensue.  During education, T cells 
are actively selected for further maturation on the basis of the affinity of their 
TCRs for HLA and their reluctance to bind self-antigens (74). The remaining 
cells, regarded as either inoperational or potentially self-reactive, are denied 
survival signals and enter apoptosis. Thereby, the vast majority of T cells are 
sacrificed, and a mere fraction allowed to leave the thymus as mature naive T 
cells. 

There are two main subsets of T cells; the CD4+ T helper cells (Th) and the 
CD8+ cytotoxic T cells (CTL). As their name implies, the T helper cells have 
assisting and orchestrating roles in immunity. The TCR of Th interacts with 
HLA class II and antigen peptides displayed by APCs. Depending on the type 
of infection specialized Th subgroups with different cytokine profiles help skew 
the immune response in a favorable direction (75). For instance, Th17 cells 
contribute in recruiting neutrophils to an infected tissue by initiating a cascade 
leading to the secretion of attracting cytokines. The Th2 subset are engaged in 
B cell development and the formation of antibody responses, while Th1 cells 
produce interferon-γ (IFN-γ), which, among other things, stimulates the 
activity of NK cells and enhances the killing capacity of phagocytes (76). 

The TCR of CTLs enables interaction with APCs and all nucleated cells via 
MHC class I. Upon antigen presentation by an APC, naive CD8+ T cell are 
activated and stimulated to proliferate, forming an expanded clone of antigen 
specific effector CTLs (77). Effector CTLs circulate in blood and tissues, 
monitoring cells for their cognate peptide in conjunction with HLA class I. 
Upon confrontation, the CTL will recognize the cell as potentially infected or 
altered. Cytotoxic activity ensues in a mode similar to NK cell killing, i.e. via 
release of perforin, granzyme B or by displaying death receptor ligands (72). 
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2.3.3 B cells 
B cells are dedicated to the formation of the humoral immune defense by 
producing and secreting antibodies. Antibodies are formed in response to an 
infectious encounter in a delayed process, similar to the mounting of the T cell 
response. Therefore, antibodies may contribute to finalize the defense of a 
primary infection, but have a more significant role in immunologic memory 
(78).  

B cell development commences in the bone marrow and involves the 
rearrangement of genes encoding the heavy and light immunoglobulin (Ig) 
chains, which subsequently assemble to form the B cell receptor (BCR) and, 
eventually, soluble antibodies (76). Antibody development is subjected to 
rigorous quality control, involving a series of checkpoints where functionality 
of individual Ig chains and the expression of the BCR are assessed. As the 
stochastic gene rearrangement may result in a virtually infinite number of Ig, 
most B cells fail in this process and are sorted out, analogous to the deletion of 
dysfunctional or self-reactive T cells. Immature B cells enter the circulation and 
undergo maturation in secondary lymphoid organs. Maturation renders the 
naive B cells responsive to an antigen encounter, upon which clonal expansion 
and differentiation into antibody secreting cells ensues. Following a process of 
affinity maturation, B cells with confirmed utility as producers of high-affinity 
Ig may further differentiate into memory B cells or antibody-producing plasma 
cells. Throughout the maturation of the B cell immune response, the antibodies 
formed are refined towards a more avid antigen affinity (76, 78). 
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Antibodies exert several effector mechanisms. Their role may be to neutralize a 
foreign structure, e.g. bacterial toxins or adhesion molecules of importance for 
microbial virulence, by concealing it. Also, antibodies provide a link between 
foreign cells and other mechanisms of immune elimination. By binding to 
antigens on target cells, antibodies serve as markers that facilitate the activation 
of immune cells and complement, thereby conveying various modes of target 
cell killing (79). Immunoglobulin G (IgG), the most abundant antibody isotope 
in the circulation, has potent capacity to interact with immune effector cell by 
ligation of FcRs, which may result in target cell elimination by ADCC or 
antibody-dependent cellular phagocytosis (ADCP) (68, 80, 81). 

Figure 2. IgG antibodies bound to a target cell via surface antigens. The antibody-binding region 
(Fab) is variable, while the Fc-region is constant. 
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2.4 Cell death and signaling 
The current notion of cell death stipulates two principal modes, accidental and 
regulated (82). Accidental cell death (ACD) refers to the uncontrolled death 
that that may occur in response to extreme physical or chemical insults such as 
direct trauma, burns or non-physiological pH levels. Although ACD may be 
operational in some infectious and malignant conditions, it is considered a 
physiologically and therapeutically rare event, and will not be further discussed 
here.  

Regulated cell death (RCD), where programmed cell death (PCD; apoptosis) 
constitutes one entity, is a controlled, genetically encoded process that concerns 
a multitude of physiologic aspects of multicellular organisms. Embryologic 
development, tissue homeostasis, formation and maturation of the immune 
system as well as inherent mechanisms preventing malignancy are examples of 
vital processes that rely on the ability of individual cells to die in a regulated 
way. Accordingly, an array of genes, molecular structures, and signaling 
pathways are involved in RCD, and several different entities of RCD have been 
described (83). As research has advanced, the taxonomic definitions of the 
different entities of cell death have changed. However, all modes of RCD result 
in the enzyme-regulated controlled degradation of the cell in a process that 
generally comprises chromatin condensation, nuclear fragmentation and 
membrane permeabilization with minimal concomitant effects on surrounding 
cells. 

2.4.1 Apoptosis 
Apoptosis is the dominant entity of RCD (83). Apoptosis can be induced either 
by the extrinsic or intrinsic pathway. Extrinsic apoptosis refers to externally 
initiated signaling, transferred via death receptors displayed on the cell surface. 
Examples of such ligand/receptor pairs are Fas-ligand (FasL)/Fas (73, 84), 
TNFα/TNFα receptor 1 (TNFR1) and TRAIL/TRAIL receptor (TRAILR) 
(85). Death receptors trigger the pro-apoptotic caspase protease cascade (86). 
When the net sum of apoptosis-initiating input overcomes balancing forces, the 
activation of downstream executioner caspases results in irreversible cell death.  

The intrinsic pathway of apoptosis is ignited by adverse events inside the cell, 
e.g. irreparable DNA damage or excessive intracellular ROS formation (83). 
Intrinsic pro-apoptotic signaling will converge in the mitochondria where they 
may add to cause mitochondrial outer membrane permeabilization (MOMP) 
and loss of mitochondrial transmembrane polarization (Δψm). These events 
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translate into mitochondrial leakage of various pro-apoptotic proteins that can 
either promote the caspase route to apoptosis, or enter the nucleus to induce 
DNA fragmentation and cell death in a caspase-independent fashion (83).  

2.4.2 Parthanatos 
DNA damage constitutes a threat to cell functionality and may lead to 
malignant transformation. As DNA replication is inevitably accompanied by 
faults, it is consistently under surveillance of a wide set of nuclear enzymes that 
sense DNA damage. However, as excessive damage may be irreparable, the 
survival of the host may require the cell to convert from striving to protect the 
integrity of the genome to instead surrender and die. This requirement is 
reflected by the versatility of the nuclear enzyme poly(ADP-ribose) polymerase-
1 (PARP-1). PARP-1 detects DNA-breaks and catalyzes the formation of 
poly(ADP-ribose) (PAR) and the activation of nuclear DNA repair enzymes by 
poly ADP-ribosylation (87). Under normal cellular conditions with low-grade 
DNA damage, the low levels of PAR produced are confined to the nucleus. 
However, during excessive DNA damage PARP-1 activity is accordingly 
increased. This leads to PAR accumulation, allowing PAR to leave the nucleus 
(88). In the cytosol, PAR will induce MOMP with ensuing mitochondrial 
release of apoptosis-inducing factor (AIF). In turn, AIF will translocate to the 
nucleus and cause DNA fragmentation (89) and thus induce RCD 
independently of caspases (90).  

Notably, the substrate for PARP-1 is NAD+, a co-enzyme necessary for 
upholding redox balance and for generation of ATP. Therefore, a rise in 
PARP-1 activity also contributes to depletion of the cellular supplies of NAD+ 
and ATP. Thus, cellular starvation and accumulation of intracellular ROS is 
accompanied by PARP-1 over-activity and was previously believed to be the 
mechanism responsible for PARP-induced cell death (91). However, later 
reports have revealed PARP-initiated cell death to be operational also in the 
absence of depletion of energy supplies (87). Furthermore, experiments in a 
system free of NAD+, in which AIF was blocked, the PARP-1 mediated death 
was abrogated, thus demonstrating AIF to be critical for PARP-1 induced cell 
death (88, 90). In conclusion, the prevailing concept of PARP-mediated, 
caspase-independent, AIF-dependent cell death is regarded as a specific entity 
of RCD, and has been termed parthanatos, from Thanatos, the personification of 
death in Greek mythology (87). 

Parthanatos has been shown to be involved in oxidant-mediated lymphocyte 
death (13, 90, 92). T cells and NK cells are sensitive to exposure of myeloid 
cells with capacity to produce extracellular oxygen radicals via NADPH-oxidase 
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(9, 93-95) (refer to section 2.2.3). Co-culture of lymphocytes with myeloid cells 
was shown to result in ROS-dependent lymphocyte death involving activation 
of PARP-1, mitochondrial release of AIF and DNA fragmentation (90, 96). 
However, the specific events leading to PARP-1 activation after ROS-exposure 
have remained unknown. 

Physiologically, myeloid ROS-mediated suppression of lymphocytes has been 
ascribed a prominent role in regulating autoimmunity as studies indicate that 
animals displaying deficient NADPH-oxidase are prone to develop 
autoimmune arthritis and multiple-sclerosis-like neurologic disease (97, 98). In 
humans, parthanatic lymphocyte death has been predominantly associated with 
immune suppression induced by several forms of myeloid leukemic cells (refer 
to section 2.5.1) (13, 92). In addition, PARP-1 dependent cell death has been 
attributed a role in the pathophysiology of ischemic and degenerative 
neurologic diseases and in myocardial infarction (99-102). 

2.4.3 MAP kinases 
In addition to DNA damage, activation of PARP-1 has been suggested to occur 
via an alternative pathway, involving the extracellular signal-regulated kinase 
(ERK) (103). ERK belongs to the family of mitogen-activated protein kinases 
(MAPKs) that, in addition to ERK 1 and 2 (ERK1/2), encompass the c-Jun N-
terminal kinases (JNK1-3), the p38 MAPKs (p38α-δ) and ERK5 (104). 
Together, MAPKs participate in multiple signaling pathways and networks in 
response to growth factors, mitogens, stress and inflammation. The outcomes 
of their signaling transductions are heterogeneous and situation-dependent, and 
include cell proliferation and death, and thus have implications in many 
pathologic conditions, including cancer (104, 105).  
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2.5 Immune surveillance 
The concept of immune surveillance refers to the hypothesis that the immune 
system can detect and eliminate malignant transformation at a preclinical stage 
and thus prevent the formation of overt cancer (1). This theory was originally 
proposed already at the beginning of the 20th century by Paul Ehrlich (106), but 
was officially launched in the late 1950s by Burnet and Thomas following the 
recent appreciation of cellular immunology and antigen recognition by 
lymphocytes (107, 108). Initially though, the hypothesis did not properly fulfill 
its experimental predictions. The insufficiently immune-deficient mouse models 
available at the time failed to develop more spontaneous and carcinogen-
induced tumors, other than virally induced tumors, than did immunocompetent 
mice, leading to a recession for the hypothesis. However, a revival of the 
immunosurveillance theory came in the 1990s along with methods of efficient 
gene silencing using knockout mice and inhibitory monoclonal antibodies (109). 
Since then, numerous studies have demonstrated that mice with severe immune 
deficiencies are indeed more prone to tumor development than animals with 
intact immune systems. Murine studies using knockout models or blocking 
antibodies for mechanisms necessary to mount specific responses by T cells, 
NK cells and NKT cells have demonstrated distinct roles in tumor 
immunosurveillance for these lymphocyte subsets (110-113). Further 
supporting a role of cytotoxic effector lymphocytes in anti-tumoral immunity 
are studies showing that perforin-deficient mice have increased susceptible to 
tumors (114-116).  

The theory of immune surveillance has gained further momentum from 
transplantation studies in mice, assessing the immunogenicity of tumors 
developed under different immunologic pressures. In essence, these studies 
have shown that tumors that develop in immunocompetent mice are more 
aggressive than those that evolve in immune deficient animals. (1).  These and 
other findings have supported the formation of the immunoediting theory, 
which states that immunity promotes immune escape and tumor progression by 
selecting clones with poor immunogenicity or immunosuppressive traits for 
survival in a Darwinian manner (117).  

Although the abundance of murine studies provides proof-of-principle and 
suggests a role for immunity in prevention and formation of human cancer, the 
importance of immune surveillance in human cancer has remained a matter of 
debate. The opponents of the immune surveillance theory sometimes argue that 
earlier epidemiologic reports merely demonstrated increased frequencies of 
cancers of viral origin in immunosuppressed individuals (118). However, these 
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studies suffered from some relevant limitations. Firstly, the pharmacological 
immunosuppression used in the prevention of organ-rejection is not associated 
with immune deficiencies as grave as those of murine knockouts (1), and are 
mainly suppressed in their T and B cells compartments. Hence, residual 
effector functions including NK cell activity may serve as protection from 
tumor formation. Secondly, the increased morbidity of organ-transplanted 
patients, accompanied by their shorter life span, is likely to confound any 
increased susceptibility to cancer development.  

Nevertheless, several later follow-up studies of organ-transplanted patients have 
shown that this patient category is indeed at higher risk of developing 
malignant diseases, including forms of non-viral origin (119-125). Consistent 
with these epidemiological findings are results from histopathologic studies 
demonstrating a beneficial correlation between prognosis and the occurrence of 
tumor infiltrating lymphocytes (TILs) in several solid cancers (126-133).  

Collectively, a substantial amount of evidence from different areas of research 
thus supports a role of immunity in cancer development. This notion was 
recently highlighted by the fact that evasion of immune destruction was 
recognized as an emerging hallmark of cancer (118). 
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2.6 Immune escape 
As noted, recognition by T cells relies on the expression of specific tumor 
antigens via HLA class I. Thus, as malignant cells are not foreign to the host, 
but represent “altered-self”, an insufficient expression of foreign antigens and a 
preserved expression of self-antigens may render malignant cells difficult for 
the immune system to recognize. This obstacle of tumor recognition is likely to 
apply to several, it not all, human cancers. In addition, consistent with the 
immunoediting theory, malignant cells deploy several other traits by which they 
circumvent immune recognition and destruction. 

The expression pattern of ligands for immune cell receptors is commonly 
deviant in cancer cells as to promote immune tolerance. One way to evade T 
cell recognition is down-regulation of HLA class I (134-141). Thereby, tumor-
antigens are withheld from identification by T cells. However, this is likely to 
result in increased susceptibility to NK cell cytotoxicity, in accordance with the 
“missing self” hypothesis (refer to section 2.3.1).  

Conversely, up-regulation of ligands for inhibitory T and NK cell receptors 
may also induce immune tolerance. A group of surface molecules that are 
currently attracting significant clinical interest are the receptor-ligand pairs 
referred to as immune checkpoints. These are co-inhibitory pathways, which 
down-tune the activity of CTLs, and other immune effectors (142). For 
example, CD80 and CD86 are ligands for the inhibitory cytotoxic T 
lymphocyte-associated protein 4 (CTLA-4), expressed by activated T cells, and 
the programmed death receptor ligands 1 and 2 (PD-L1/2) ligate the PD1 
receptor of activated T cells, NK cells and NKT cells (142, 143). The 
expression of CD80/CD86 and PD-L1/2 is enhanced on tumor cells in various 
malignancies, resulting in reduced lymphocyte activity. Inhibition of these 
inhibitory pathways is successfully being exploited for immunotherapeutic 
purposes (refer to section 2.6.2) (142). Other examples of aberrant expression 
by malignant cells that impede immune mechanisms are ligands for death 
receptors, such as TRAIL and FasL with capacity to induce apoptosis in 
immune effector cells (84).  

Tumor cells also commonly produce and secrete substances, including anti-
inflammatory cytokines such as transforming growth factor beta (TGF-β) (144), 
IL-10 and others (145), which exert a range of immunosuppressive activities, 
including interference with CTL and NK cell cytotoxicity (146). Cancer-
induced immunosuppression may be directly inflicted by the malignant clone or 
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by immunosuppressive third-party immune populations, derived either from 
the lymphoid or the myeloid lineage. 

An extensively studied entity of tumor-promoting immune cells is the 
CD4+CD25+FOXP3+ regulatory T cells (Tregs). Tregs are a subset of T helper 
cells with a physiologic role in prevention of autoimmune T cell responses (147, 
148) and can be recruited towards the tumor in response to TGF-β, IL-10 or 
other anti-inflammatory signals. In the tumor microenvironment, Tregs further 
facilitate tumor progression by various inhibitory actions on T and NK cells 
(149). For example, they neutralize IL-2 and constitute an additional source of 
TGF-β and IL-10. In addition, Tregs act on APCs by reducing their expression 
of co-stimulatory molecules.  

Another group of immune cells commonly associated with malignant 
progression is the heterogeneous entity of myeloid immunosuppressive cells. 
Immature myeloid cells as well as monocytes, macrophages, dendritic cells and 
granulocytes can be exploited in tumor advancement to exert pro-malignant, 
anti-inflammatory tasks. In fact, their promotion of tumor development 
stretches beyond immune suppression, as they also may contribute to tumor 
angiogenesis and metastasis (150).  

The entity of myeloid cells currently receiving the most attention in the context 
of cancer is the myeloid-derived suppressor cells (MDSC) (151). MDCS were 
originally described in mice, but their expansion has also been demonstrated in 
several types of human cancer and correlate with inferior prognosis (152). 
MDSCs arise as a result of tumor interference with the maturation of healthy 
myeloid cells. This interference results in the expansion of subsets of myeloid 
cells with immature phenotypes, which may share characteristics with normal 
monocytes or neutrophils. In comparison to healthy myeloid cells, MDSCs are 
endowed with an exaggerated armamentarium of bactericidal and 
immunoregulatory traits, and have been shown to subvert tumoricidal immune 
functions through various mechanisms including production of oxygen and 
nitrogen radicals and secretion of IL-10 (151, 153). Another strategy of MDSC 
immunosuppression is to deny the anti-tumoral immune cells important 
nutrients, as illustrated by their expression of arginase 1 (ARG-1) and inducible 
nitric oxide synthase (iNOS) (151). As both enzymes use L-arginine as their 
substrate, they deprive L-arginine supplies and thereby restrict T and NK cell 
responses (154). Similarly, expression and activity of indoleamine 2.3-
dioxygensase (IDO), an enzyme that consumes tryptophan and produces 
noxious metabolites, contributes to lymphocyte suppression (154, 155). 
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2.6.1 Reactive oxygen species 
As noted above, the NADPH oxidase is expressed by many types of myeloid 
cells, including healthy monocytes, neutrophils, MDSCs and several entities of 
leukemic myeloid cells, which endows them the capacity of ROS production (9, 
13, 14, 156). In vitro, myeloid cells from healthy individuals and leukemic cells 
from patients with chronic myeloid leukemia (CML) and AML have been 
demonstrated to induce ROS-mediated PARP-1 dependent cell death 
(parthanatos; refer to section 2.4.2) in T cells and NK cells (13, 92). Since 
immature myeloid cells do not express a functional NADPH oxidase, the 
immunosuppressive status of leukemic cells depend on their differentiation 
stage. Hence, in AML, the predominantly immunosuppressive subtypes are 
those with monocytic differentiation (12, 13).  

Experimental studies have also demonstrated that myeloid-derived ROS induce 
functional impairments in T cells and NK cells also following non-lethal 
exposure. For example Romero et al. showed that NK cells exposed to ROS 
down-regulate the activating receptors NKp46 and NKG2D (157), and a study 
by Kono and co-workers showed that myeloid-derived ROS induced down-
regulation of the ζ (zeta)-subunit of the T cell receptor and the FcγRIII/CD16, 
structures critical for T cell recognition and NK cell mediated ADCC (158). 
Moreover, several murine studies have suggested a role for myeloid-derived 
ROS as instrumental for induction of CTL tolerance by tumor-employed 
myeloid cells (159, 160). 
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2.7 Immunotherapy 
Immunotherapy refers to the employment of immune effector functions in the 
treatment of cancer. The concept originated with allogeneic stem cell 
transplantations (Allo-SCT) more than 50 years ago (161), but since the 
introduction of monoclonal antibodies (mAbs) in the late 1990s the field of 
immunotherapy has expanded enormously. Here, a brief overview is provided 
of some immunotherapies of relevance to this thesis.  

2.7.1 Allogeneic stem cell transplantation 
The efficacy of allo-SCT relies on two mechanisms.  Firstly, the stem cell graft 
provides rescue from bone marrow toxicity, and thus allows the administration 
of myeloablative doses of conditioning treatment prior to transplantation. This 
aims at reducing the malignant burden to minimal levels. In addition, the 
conditioning regimen serves to suppress the recipient’s immune system and 
thus allow engraftment. For this purpose however, reduced intensity 
conditioning therapy (RICT) is sufficient, and has expanded the use of allo-SCT 
to older patients. Secondly, allo-SCT employs allo-reactive immune responses 
of the donor-derived immune system to eradicate residual leukemia. Although 
the recipient and the donor are matched for HLA compatibility, differences in 
the expression of other allogeneic structures will differ, and thus enable 
recognition and killing of residual malignant cells by donor derived 
lymphocytes (161). T cells have been shown to be the key mediators of the 
graft-versus-leukemia  (GvL) effect (162), but a prominent role of NK cells in 
GvL has also been demonstrated (163). Allo-SCT is a potentially curative 
treatment option for several malignancies, including CLL (3) and CMML (4, 5, 
164), but its wide-spread use is limited due to the accompanied risks of 
mortality and severe immunopathology in the form of graft-versus-host disease 
(GvHD) (165). 

2.7.2 Monoclonal antibodies 
The technique to produce monoclonal antibodies (mAbs) was developed in the 
1970s by Georges J.F. Köhler and César Milstein (166). Briefly, the method 
involves the fusion of murine antibody-producing B cells, derived from 
immunized animals, with myeloma cells, thus forming cell lines termed 
hybridomas, i.e. monoclonal cells producing identical antibodies (167). The 
murine mAbs obtained by this procedure came to revolutionize diagnostics and 
biomedical research by its utility in an array of laboratory applications including 
immunohistochemistry and flow cytometry. However, early attempts to use 
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murine antibodies for therapeutic purposes were thwarted by the 
immunogenicity and side effects of the mAbs (168).  

With the development of refined genetic engineering and recombinant 
technology came the ability to generate chimeric, i.e. partly humanized, mAbs 
with tolerable side effects and longer half-lives (169). The first mAb to be 
marketed for treatment of malignant disease was rituximab, which was 
approved by regulatory authorities in the US in 1997 and in the EU in 1998 for 
the treatment of non-Hodgkin lymphomas. Rituximab is a chimeric IgG1 
antibody recognizing the B lineage marker CD20 (170).  The exclusive 
expression of the CD20 antigen by B cells, and the fact that its’ expression is 
commonly preserved in B cell malignancies, makes CD20 an attractive target 
for therapies directed targeting B cell populations.  Indeed, rituximab has 
contributed to the treatment of numerous B cell malignancies including CLL, 
for which it mainly has come to serve as an addition to chemotherapeutic 
regimens (171-173). However, as single agent treatment, rituximab has limited 
efficacy for most B cell malignancies including CLL, with low complete 
response rates, and short response durations (174-176).  

As CD20 antigen is expressed on all B cells, treatment with rituximab and other 
CD20 mAbs, results in depletion of non-malignant B cells. Therefore, 
rituximab has become a valued treatment option for autoimmune diseases, 
including rheumatoid arthritis (177), and hematologic autoimmune disorders 
(178) for which B cells have a prominent role. Following the success of 
rituximab, other CD20 mAbs, with refined properties, have emerged. 
Ofatumumab, a further humanized antibody with affinity for another epitope 
of the CD20 antigen, has shown promising efficacy in treatment of CLL (179, 
180). The most recently approved CD20 mAb was obinutuzumab, with an Fc-
portion engineered for higher FcR affinity. In a recent large randomized trial, 
obinutuzumab demonstrated superiority over rituximab in conjunction with 
chlorambucil (181). 

The elimination of malignant cells by mAbs is presumed to rely on several 
mechanisms, including direct induction of apoptosis, complement-dependent 
cytotoxicity (CDC) and employment of cytotoxic immune cells expressing Fc 
receptors (182). NK cells, macrophages, monocytes and neutrophils all carry 
Fc-receptors and have been attributed roles in mediation of malignant cell 
elimination either by ADCC or ADCP (24, 183-186). However, investigational 
approaches aiming to dissect the individual contributions of different effector 
mechanisms in vivo have not been conclusive. The most extensively studied 
effector cells in vitro are the NK cells, of which numerous studies have 
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demonstrated potent cytotoxic capacity via antibody-dependent cellular 
cytotoxicity (ADCC) (80, 187, 188). NK cells attach to the Fc portion of IgG1 
mAbs via the activating Fc-receptor CD16/FcγRIII expressed on their cell 
surface. Although concomitant inhibitory receptor signaling, e.g. by KIRs, may 
limit ADCC, IgG binding to CD16 functions as the single most activating 
signal for NK cells, and has the potential to override concomitant inhibitory 
signaling (188). More recent CD20 mAbs are constructed to augment the 
degree of cell-mediated elimination. One example is obinutuzumab, for which 
the Fc-portion has been modified for increased FcR-affinity, and thus exerts 
ADCC more efficiently than rituximab (189). 

In recent years, several mAbs with avidity for other antigens have been 
developed. However, in addition to mAbs with affinity for tumor-associated 
antigens (TAAs), i.e. structures displayed by the malignant cells per se, some 
mAbs are developed aiming to inhibit mechanisms that promote tumor 
progression. For this purpose, antibodies with neutralizing properties are 
desired, which induce minimal activation of FcR-carrying immune cells. 
Therefore, inhibitory mAbs are preferentially constructed using IgG subtypes 
with less affinity for activating FcRs, such as IgG2 or IgG4 (169).  

  

Figure 3. NK cells are key mediators of antibody-dependent cellular cytotoxicity (ADCC).  
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2.7.3 Immune checkpoint blockade 
Recently, the group of newly developed mAbs directed at immunoregulatory 
pathways, or immune checkpoints, have come to attract considerable interest. 
The first immune checkpoint to be targeted was the cytotoxic T lymphocyte 
antigen 4 (CTLA 4). CTLA-4 is an inhibitory receptor, expressed by activated T 
cells, that interacts with the CD80/86 surface molecules of APCs and tumor 
cells. This interaction represents a mechanism by which the activity of CTLs is 
restricted, thus contributing to T cell tolerance and protection form 
autoimmunity (190), but may also facilitate tumor immune evasion (191). 
Ipilimumab, an antagonizing mAb against CTLA-4, has shown efficacy in 
several forms of solid cancer including malignant melanoma, renal cell cancer, 
prostate cancer and ovarian cancer, and was approved in 2011 by the US Food 
and Drug Administration (FDA) and in 2012 by the European Medicines 
Agency EMA) for the treatment of advanced malignant melanoma (192).  

Another immune checkpoint is the interaction between the programmed death 
1 (PD-1) receptor and its ligands PD-L1/2.  Like CTLA-4, PD-1 serves as an 
inhibitory receptor for T cells, but PD1 is also expressed by NK cells, NKT 
cells, B cells and monocytes (193). Under physiologic conditions, PD-L1 is 
mainly found on APCs, while PD-L2 is expressed by various tissues, and thus 
apparently has a role in inducing self-tolerance by down-tuning immune activity 
in the periphery. However, PD-L1 is commonly expressed by tumor cells, and 
may thus serve as an immune escape mechanism (142). Inhibition of the PD-1 
checkpoint has also demonstrated significant clinical efficacy, with responses 
seen in various advanced solid cancers and in Hodgkin’s lymphoma (192). 
Currently, PD-1 antagonists nivolumab and pembrolizumab are approved for 
use by the FDA and EMA for treatment of advanced melanoma. In the US, 
nivolumab also recently received approved for non-small cell lung cancer. 

As CTLA-4 and PD-1 represent different inhibitory pathways, attempts have 
been made to combine treatments for the two checkpoints. Encouraged by 
results obtained in mice, suggesting a synergistic effect of double blockade 
(194), the combination of ipilimumab and nivolumab has been evaluated in 
advanced melanoma with impressive results. A phase I study demonstrated a 
response rate of 53 percent achieving at least 80 percent tumor regression and a 
two-year survival rate of 79 percent (195), and two recently published 
randomized trials, comparing combined ipilimumab with nivolumab with 
single-agent treatment, demonstrated superiority for the combination regimen, 
which induced response rates of 51 to 61 percent (196, 197). However, 
checkpoint blockade is associated with significant rates of severe 
immunopathology, in particular treatments combining different inhibitors. 
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2.7.4 Histamine dihydrochloride and interleukin-2 
The cytokine interleukin-2 (IL-2) was discovered during the 1970s as a 
lymphocyte-derived substance that enabled long-term ex vivo cultures of 
lymphocytes (198). Later studies revealed that the predominant physiologic 
source of IL-2 are T cells, and that it stimulates the proliferation and 
differentiation of several lymphocytic subsets, including CTLs and NK cells 
(199). Recombinant high-dose IL-2 was explored as immunotherapy for 
treatment of several types of advanced malignant disease. Malignant melanoma 
and renal cell cancer displayed particular responsiveness to the treatment with 
small, but significant rates of complete and sometimes durable responses (200). 
Given the relapse-preventive efficacy of allo-SCT in hematologic malignancies, 
treatment with IL-2, also reliant on T and NK cell activity, has been extensively 
evaluated for prevention of relapse of AML. The results have been 
disappointing however, as six trials have failed to demonstrate any benefit from 
IL-2 as single-agent therapy for this disease (201-206).  

In 2006, Brune and co-workers reported the results from a randomized phase 
III trial demonstrating that the combinatory regimen of low-dose IL-2 and 
histamine dihydrochloride (HDC), administered as maintenance treatment in 
complete remission (CR), prevented relapse of AML (10). The rationale for 
supplementing IL-2 with HDC was based on the hypothesis that myeloid-
derived ROS might be operative in AML, and thus prevent the 
immunostimulatory effects of IL-2 (207). The hypothesis was supported by 
previous studies by Hellstrand and co-workers showing that myeloid cells 
constrain the anti-leukemic activity of NK cells by production and secretion of 
ROS, and that HDC restored NK cell cytotoxicity (94, 208, 209). HDC 
prevented the production of ROS via interaction with histamine H2 receptors 
(H2Rs) expressed by myeloid cells, thus reducing the activity of the phagocyte 
NADPH oxidase. Importantly, a synergistic effect of IL-2 and HDC had been 
demonstrated in vitro, as the stimulatory effect of IL-2 on NK cells was 
abrogated in the presence of myeloid cells, and the addition of HDC to IL-2 
counter-acted myeloid immunosuppression and restored NK cell cytotoxicity 
(210).  

Further support for combining IL-2 and HDC in AML was provided by 
functional and phenotypic studies, showing significant impairments in the NK 
cell repertoire of activating receptors (211, 212). In vitro, myeloid cells had been 
shown to down-regulate the activating NK cell receptors NKG2D in the 
absence, but not in the presence of HDC (157, 213). 
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Recently, two reports by Aurelius et al. further elucidated the role of ROS as a 
reversible mechanism of immune escape in AML (12, 92). Functional and 
phenotypic analyses demonstrated that the leukemic cell subsets with 
monocytic differentiation (M4/M5) exerted ROS-mediated immune 
suppression per se (13). ROS-production by monocytic leukemic cells was 
prevented by HDC. In contrast, the immature blast populations of any AML 
subtype were incapable of ROS production. Consistent with these findings, a 
post hoc analysis of the original phase III trial revealed that the relapse-
preventive efficacy of HDC and IL-2 was restricted to monocytic subtypes of 
AML, i.e. to patients harboring an immunosuppressive leukemic clone (12). 

Apart from it’s proven efficacy in AML, the combination of HDC and IL-2 has 
also been evaluated as treatment for solid cancers for which IL-2 alone has 
previously shown efficacy. For patients with malignant melanoma with liver 
metastases, HDC was shown to prolong over-all survival compared to IL-2 
alone (214) and to promote an anti-tumoral T cell response (215). In renal cell 
cancer, HDC and IL-2 were evaluated in two randomized phase II trials 
comparing combination treatment with IL-2 alone. One trial demonstrated a 
significant benefit for the combination regarding 1-year survival, and time to 
progression, whereas the other study failed to show any difference (216)  
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2.8 Chronic lymphocytic leukemia 
Chronic lymphocytic leukemia is a disease characterized by a slow accumulation 
of malignant, highly differentiated B cells in the bone marrow, blood and in 
secondary lymphoid organs (217). CLL is the most common leukemia in 
western countries with an annual incidence of 4-5/100000 and a male to female 
predominance of close to 2:1. The median age at diagnosis is approximately 70 
years and the prevalence increases dramatically with age (218). Typically, the 
malignant clone in CLL is homologous, displaying mature lymphocytic 
morphologic features and a preserved expression of the B lineage markers 
CD19, CD20, CD23 with additional expression of CD5 (217). 

2.8.1 Pathogenesis and diagnosis 
CLL can be considered as a leukemic form of lymphoma, although a 
proportion of patients lack lymph node engagement. The diagnostic criteria for 
CLL include the persistent presence of phenotypically distinctive clonal B cells 
of a minimum of 5x109 cells/L in the peripheral blood. Therefore, the 
diagnosis can generally be established by means of a blood count, a differential 
count and immunophenotyping of peripheral blood by flow cytometry (219). In 
case the criterion of 5x109 cells/L is not fulfilled, the diagnosis of monoclonal 
B lymphocytosis (MBL), a preclinical state of CLL, may be made (220, 221). 
Notably, MBL is not always associated with CLL transformation, but is 
accompanied by a risk of CLL progression of 1-2 percent per year (221). The 
solitary nodal manifestation of CLL, without bone marrow engagement and 
leukemia, is termed small cell lymphocytic lymphoma (SLL) and is clinically 
considered equivalent to CLL (219). 

For a significant proportion of patients the diagnosis of CLL is the result of a 
blood count taken for other reasons. Indeed, the proportion of incidentally 
diagnosed patients has increased along with the development and accessibility 
of automated cell counting and flow cytometry.  

Although still a matter of debate, the notion that CLL arises from pre-
malignant hematopoietic stem cells (HSC) is gaining support (222). In other 
forms of cancer, including myeloid malignancies and acute lymphocytic 
leukemia (ALL), several lines of evidence imply that leukemogenesis occurs 
through the sequential acquisition of mutations commencing in HSCs (223-
228), but this chain of events remains unproven for the development in B cell 
neoplasms (222). Recently, however, by using a xenotransplantation 
engraftment model, Kikushige and co-workers demonstrated that HSCs 
derived from patients with CLL gave rise to hematopoiesis biased towards the 
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B lineage with development of CLL-like clonal populations (229). Also, by 
using sequencing methodology, Damm et al. were able to detect an increased 
frequency of acquired mutations, including oncogenes of purported relevance 
for CLL pathogenesis, in sorted multipotent hematopoietic progenitor cells 
derived from CLL patients (230). These studies suggest the involvement of, and 
possible requirement for, the multi-step acquisition of pre-leukemic mutations 
of the HSC compartment in the pathogenesis of CLL.  

2.8.2 Prognosis  
For the vast majority of patients, CLL is an incurable disease. Thus, a long-
standing paradigm has been not to initiate treatment unless called upon by signs 
of disease progression (219). This concept still applies, as earlier studies have 
failed to demonstrate a clinical benefit from preemptive treatment (231, 232). 
Also, approximately one third of all patients never acquire symptoms, and 
hence never require treatment. In these cases the clinical approach is watch-
and-wait. According to current guidelines, treatment should be considered in 
case of symptoms or signs as (219): 

• Nightly sweats 
• Weight loss 
• Fever 
• Cytopenias due to bone marrow failure 
• Splenomegaly 
• Lymph node enlargement 
• Rapid increase in lymphocyte counts 

The clinical course of CLL is highly heterogeneous. Since the 1970s, the staging 
systems developed by Rai (233) and Binet (234) are widely used for CLL 
management and risk stratification. Based on a physical examination and a 
blood count, they provide an accessible tool to aid the decision of when to 
initiate treatment along with a rough estimation of the prognosis.  

During the past decades, several prognostic biomarkers have emerged. These 
include serum markers such as β2-microglobulin (β2m) and serum thymidine 
kinase (sTK), phenotypic features as CD38 and the zeta chain associated 
protein kinase 70 (ZAP70), the elevation or increased expression of, 
respectively, predict inferior prognosis (235). Also, the mutational 
rearrangement status of the immunoglobulin heavy chain (IgVH) gene locus 
divides CLL patients into two distinct prognostic groups, with a low mutational 
level heralding poor prognosis (236). A clinically widespread prognostic assay is 
the fluorescence in situ hybridization (FISH)-based panel of molecular 
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cytogenetic aberrations that includes the genetic aberrations del(11q), trisomy 
12, del(13q) and del(17p) (237).  

However, the clinical utility of the vast majority of available staging systems and 
biomarkers is limited due to their poor capacity to predict treatment outcome. 
In fact, the only validated predictive biomarkers with significance for treatment 
outcome are the del(17)q and mutation of the TP53 locus (238). The presence 
of either aberration signals the loss of p53 function, a tumor suppressor protein 
critical for induction of cell death. In CLL, a deficient p53 is associated with 
dismal prognosis and inferior responsiveness to standard treatment regimens 
(238). Importantly, patients with loss of p53 function should be considered for 
allo-SCT since several studies have shown that allo-SCT may allow long-term 
survival also for this high-risk patient category (239). 

2.8.3 Treatment 
Several aspects, including age, expected life span and the comorbidities of the 
individual patient are considered when choosing the appropriate treatment. For 
younger patients the objective is to maximize the depth and duration of the 
treatment response, and thus prolong survival (240). Accordingly, a relatively 
high level of toxicity is acceptable. However, for older patients, or those with 
significant comorbidities, a minimum of toxicity is tolerated. Therefore, the aim 
of the treatment may be restricted to achieve symptom control and accepting a 
residual leukemic burden. 

The treatment of CLL has evolved greatly in recent years, progress that has 
translated into improved clinical outcome (241). Randomized trials have 
demonstrated that chemoimmunotherapy, i.e. the combination of chemo-
therapy with mAbs, improves outcome in terms of response rates, progression-
free survival and overall survival compared with chemotherapy alone (172, 
242). The current standard of care for younger patients, excluding those 
carrying del(17p), is the combination of fludarabine, cyclophosphamide and 
rituximab (FC-R). Other combinatory regimens, including rituximab/ 
bendamustine are at hand when relapse occurs. For the youngest patients, and 
patients with particularly high-risk disease, allo-SCT should be considered (239, 
240).  

For the frail patients, the treatment options are fewer. The alkylating agent 
chlorambucil (Clb) is still widely used for these patients due to its tolerability, 
low price and easy oral administration. However, responses are typically shallow 
and short lasting. A recent phase III trial comparing Clb in combination with 
ofatumumab or rituximab to Clb as single-agent, demonstrated superior 
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efficacy of the combination regimens, but at the expense of increased 
significant toxicity (181). Hence, this combination is of limited use for treating 
the most fragile patients, yet also likely to be rejected for the more fit patients 
due to the availability of other, more efficacious options. 

Newer drugs have recently been introduced, some of which are first-in-class 
small molecule drugs targeting the BCR signaling pathway. The Bruton’s 
tyrosine kinase (BTK) inhibitor ibrutinib (243) and the phosphatidylinositide 3-
kinase (PI3K) inhibitor idelalisib have shown impressive anti-leukemic efficacy 
along with tolerable side effects, also for more frail patients (244). Importantly, 
these drugs induce leukemic cell apoptosis in a p53 independent fashion and 
have indeed demonstrated efficacy also for patients with defective p53 function 
(239). These drugs are currently primarily used as first-line therapy for patients 
with p53 dysfunction and for relapsed patients, but their clinical utility is likely 
to increase as the result of ongoing and future studies.  

2.8.4 CLL and immunity 
CLL is associated with pronounced immunodeficiency, involving 
hypogammaglobulinemia and increased susceptibility to infections (245). There 
is also evidence of various malfunctions within the T cell and NK cell 
compartments, such as defective immunological synapse formation (246) and 
increased expression of inhibitory receptors, including CTLA-4, PD1 (247) and 
KIRs (248).  Also, the NK cell population of CLL patients has been shown to 
display impaired cytotoxic activity (249), and a decreased expression of 
activating NK cell receptors reportedly correlates with anemia and a high 
lymphocyte count (250).  
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2.9 Chronic myelomonocytic leukemia 
Chronic myelomonocytic leukemia (CMML) is a morphologically highly 
heterogeneous malignancy with overlapping myelodysplastic and myelo-
proliferative features (217). The persistent presence of clonal monocytes in the 
peripheral blood is a diagnostic criterion that is generally accompanied by 
variable degrees of myelodysplasia and myeloproliferation (217). The disease is 
rare, with an annual incidence below 1/100000 (251), but with markedly 
increasing incidence among the elderly. The median age at diagnosis is 
approximately 70 years, with a male to female predominance of 2:1. 

Due to its biologic heterogeneity and features shared with other myeloid 
entities, the classification of CMML has historically been a matter of debate 
(252). Previously, CMML was classified among the myelodysplastic syndromes 
(MDS) (253), and the FAB classification system from 1994 made a distinction 
between the myelodysplastic (MD) and the myeloproliferative (MP) forms of 
CMML (254).  The current classification by the World Health Organization 
(WHO) places CMML in the relatively new group of myelodysplastic/ 
myeloproliferative disorders (217).  

2.9.1 Pathogenesis and diagnosis 
CMML has convincingly been shown to arise from hematopoietic stem cells 
(224, 255-257) that undergo clonal or oligoclonal evolution and expansion 
(258). Detectable genomic aberrations are common but no pathognomonic 
mutational markers have been defined (259).  

The diagnosis of CMML requires a bone marrow smear along with peripheral 
blood and differential counts. Immunophenotyping is not required but is 
commonly part of the initial workup. CD33, CD13 and CD14 are commonly 
expressed surface markers (259). The occurrence of a CD34+ blast population 
of up to 19 percent in in the bone marrow is consistent with CMML diagnosis, 
while a blast fraction of 20 percent or more by defines AML, reflecting the 
close biologic relationship between CMML and AML. The frequency of blasts 
is also used to divide CMML into two categories; less than 5 percent blasts in 
the peripheral blood or 10 percent in the bone marrow defines CMML-1, while 
blast fractions exceeding these cut-off values define CMML-2 (217).  

2.9.2 Prognosis 
The prognosis of CMML is generally poor with median overall survival times 
ranging between 20 and 31 months from diagnosis (260, 261). Large variations 
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occur though, and some patients live for many years with no need for 
intervention (259).  Transformation into secondary AML, with poor prospects 
of long-term survival, occurs in approximately one third of all patients (261, 
262). Among identified risk factors for poor survival, the blast count is the 
most important, as it is strongly associated with AML development. 

2.9.3 Treatment  
Few efficacious treatment options exist for patients with CMML. Patients with 
myeloproliferation are commonly treated with the oral cytostatic agent 
hydroxyurea to suppress leukocyte counts and ease symptoms (263). The only 
treatment with curative potential is allo-SCT, conveying long-term disease-free 
survival for fractions between 29 and 40 percent in recently published 
retrospective studies of selected younger patients (4, 5, 164). However, as most 
patients are elderly, allo-SCT is usually not a realistic option. The 
hypomethylating agents azacitidine and decitabine have demonstrated clinical 
efficacy with reported over-all response rates of 43-51 percent (264, 265) and 
25-58 percent (266, 267), respectively. However, hypomethylating agents have 
not been evaluated in randomized trials for treatment of CMML. Therefore, 
their impact on survival has not been evaluated.  

2.9.4 CMML and immunity 
Data on the functionality of anti-leukemic immune cells is scarce for CMML 
specifically, but one study by Marcondes et al. reported that NK cells derived 
from patients with CMML were inferior to those of healthy control regarding 
cytotoxicity (268). Likewise, Carlsten and co-workers demonstrated that NK 
cells derived from patients with MDS and CMML were impaired regarding 
cytotoxicity towards CD34+ blasts, and displayed inferior expression levels of 
the NK cell activating receptors DNAM-1 and NKG2D (269).  
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3 Patients and methods 
3.1 Patients 
For papers II-IV patient blood samples were obtained and used for 
experimental purposes. The acquisition of patient samples was approved by the 
Ethical Review Board of Gothenburg and conducted after informed consent. 
Most patients enrolled were seen at the Hematology Section of Sahlgrenska 
University Hospital, and some patients were recruited by the physicians 
involved in the studies included in this thesis. Patients for whom the treating 
physician is the recruiting scientist calls for particular ethical consideration, as 
the invitation to participate in a research project may be perceived as a stressful 
and demanding request. Therefore, in asking for patient participation, 
voluntariness has been particularly emphasized, and the fact underscored that 
declining would not affect medical care.  

Recruitment of patients by the treating physician also requires caution regarding 
the risk of a biased patient selection. For reasons of accessibility, in the papers 
II and III, which concern CLL, all patients were asymptomatic, Binet stage A 
and not undergoing treatment at the time of participation.  

For paper IV, regarding CMML, a more heterogeneous cohort was recruited, 
including patients without symptoms and no concomitant treatment, patients 
with ongoing treatment with hydroxyurea and one patient who had relapsed 
following allo-SCT.  
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involved in the studies included in this thesis. Patients for whom the treating 
physician is the recruiting scientist calls for particular ethical consideration, as 
the invitation to participate in a research project may be perceived as a stressful 
and demanding request. Therefore, in asking for patient participation, 
voluntariness has been particularly emphasized, and the fact underscored that 
declining would not affect medical care.  

Recruitment of patients by the treating physician also requires caution regarding 
the risk of a biased patient selection. For reasons of accessibility, in the papers 
II and III, which concern CLL, all patients were asymptomatic, Binet stage A 
and not undergoing treatment at the time of participation.  

For paper IV, regarding CMML, a more heterogeneous cohort was recruited, 
including patients without symptoms and no concomitant treatment, patients 
with ongoing treatment with hydroxyurea and one patient who had relapsed 
following allo-SCT.  
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3.2 Methods 
3.2.1 Assessment of ROS  
The method for assessing NADPH oxidase activity in myeloid cells by 
chemiluminescense was developed by Dahlgren and co-workers more than 
three decades ago. By measuring the light emission following addition of a 
chemiluminescent reagent to myeloid cells in the presence of horseradish 
peroxidase (HRP), the production of superoxide by the NADPH oxidase can 
be dynamically monitored, and the total ROS production calculated as the area 
under the curve (AUC). By using the hydrophilic luminescent reagent 
isoluminol, which is incapable of penetrating the cell membrane, exclusively 
extracellular ROS are measured (156).  

3.2.2 Flow cytometry 
Flow cytometry enables high-throughput analyses of a multitude of cellular 
properties, including information of size, granular complexity and phenotypic 
expression of extra- and intracellular structures. In this thesis, flow cytometry 
was used for assessment of lymphocyte death, cytotoxicity assays, 
immunophenotyping and functional assessments by quantification of 
intracellular enzymes and proteins.  

Furthermore, fluorescence-activated cell sorting (FACS), a technique by which 
isolation of highly purified cell subsets can be obtained, was utilized for papers 
III and IV. 

3.2.3 Lymphocyte cell death  
Lymphocyte suppression by myeloid cells was assessed as the proportion of 
apoptotic lymphocytes after co-cultures with myeloid cells at various ratios. To 
distinguish between apoptotic and viable cells, the samples were stained with an 
amine-reactive dye, which is impermeable to the intact membranes of live cells, 
but enters and stains the intracellular structures of permeabilized, apoptotic 
cells. The samples were then analyzed by flow cytometry.  Although cell surface 
proteins will also react with the dye, the difference in staining intensity between 
dead and viable cells is distinct.  

This method thus requires staining at a time point sufficiently late for 
membrane integrity to be lost. Thus, staining and analysis was performed after 
16-18 hours of incubation. One limitation of this method is that cells that have 
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undergone complete disintegration will be lost to analysis. Thus, the risk of 
underestimating the number of dead cells should be considered.   

3.2.4 Cytotoxicity assays 
In cytotoxicity experiments, target cell death is the primary endpoint. For this 
thesis, several different ADCC assays were performed, investigating the efficacy 
of NK cell-mediated killing of various malignant cells, including the 721.221 B 
lineage lymphoblastoid cell line (270) and primary leukemic cells derived from 
patients with CLL and CMML. To enable cell death assessment by flow 
cytometry, the target cells were labeled with a fluorescent dye prior to 
incubation. After four hours, the incubation was aborted, and the samples 
subjected to LIVE/DEAD staining. Thus, this method was used to assess the 
proportion of target cells with lysed cell membranes. In some experiments, NK 
cell degranulation was assessed along with target cell lysis.  

A key issue with cytotoxicity assays is determining the appropriate time for the 
cell death read-out. As membrane permeabilization is a late apoptotic event, 
four-hour cytotoxicity assays were consistently used. Longer incubation times 
may result in increased target cell killing, but are likely to result in lysed cells 
being fragmentized, and therefore lost to analysis. Hence, lengthier assays 
would carry the risk of underestimating cell death by this method.  

The expression of CD107a on the cell surface is a marker for degranulation of 
cytotoxic granules, an event that correlates with target cell death (271). By 
measuring the NK cell expression of CD107a by flow cytometry thus allows for 
assessment of NK cell cytotoxic activity. This may be an advantage if this is the 
primary study objective. However, as degranulation does not necessarily 
translate into target cell lysis, the method should be used as a complement to 
other cytotoxicity assays, and not a replacement.  

3.2.5 General considerations 
This thesis is based on results obtained in vitro. Experimental laboratory 
research may be of significant scientific value, as laboratory conditions provide 
the possibility to investigate biologic processes under highly controlled 
circumstances. However, the physiologic and clinical relevance of any in vitro 
experimental approach can righteously be questioned, and may require 
validation by studies in animals, or ideally, in humans. 
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4 Results and discussion 
4.1 Role of MAPKs in lymphocyte death 
Oxidant-induced lymphocyte cell death by myeloid cells has been proposed to 
occur via a caspase-independent pathway involving the nuclear DNA repair 
enzyme PARP-1 (90). In response to excessive DNA damage, PARP-1 is over-
activated, resulting in the translocation of PAR into the cytosol followed by 
mitochondrial AIF release and regulated cell death (272) (refer to section 2.4.2). 
As oxygen radicals are known to inflict DNA damage (41) a causal relationship 
between ROS, DNA damage and the PAR/AIF axis has been assumed, but the 
events linking ROS and DNA damage in parthanatic cell death are incompletely 
understood.  

Oxidants have important roles as signaling molecules and have been shown to 
affect pathways involving MAP kinase signaling (43). In cell-free experiments, 
Cohen-Armon et al. showed that activation of ERK1/2, a member of the 
MAPK family, resulted in PARP-1 activation independently of DNA damage, 
thus suggesting a link between the MAPKs and PARP-1 activation (273). With 
this background, we aimed to evaluate whether ROS-induced lymphocyte death 
results from MAPK signaling rather than excessive DNA-damage.   

First, to investigate the roles of different MAPKs in lymphocyte death, we 
specifically inhibited MEK1/2, p38 and JNK before exposing lymphocytes to 
H2O2. We found that inhibition of MEK1/2, the enzyme responsible for 
activating ERK1/2, significantly preserved lymphocyte viability, while 
inhibition of p38 or JNK did not. In co-culture experiments with lymphocytes 
and ROS-producing monocytes, inhibition of MEK1/2 markedly upheld 
lymphocyte viability, corroborating the results obtained with H2O2 (figure 4). 
These findings thus supported a role of the MEK/ERK pathway in the chain 
of events leading from ROS to lymphocyte death. We therefore sought to 
determine whether lymphocyte exposure to ROS resulted in ERK1/2 
activation. By using flow cytometry following intracellular staining for activated, 
i.e. phosphorylated ERK1/2 (pERK), a significant, transient induction of 
pERK was registered in response to H2O2 exposure. The results were 
confirmed by western blot methodology.  
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In the following two series of experiments, we explored the relationship 
between ERK1/2 and PARP-1 by exposing lymphocytes to ROS in presence 
or absence of inhibitors of either MEK1/2 or PARP-1. In line with our prior 
observations, we found that inhibition of either enzyme prevented the 
accumulation of intracellular PAR, as determined by flow cytometry, thus 
underscoring a role of ERK1/2 in parthanatos. Importantly though, inhibition 
of MEK1/2, but not PARP-1, prevented ERK1/2 activation, suggesting 
ERK1/2 being upstream of PARP-1 in the signal transduction leading from 
ROS to PARP-1 (figure 5).  

We also determined the functionality of NK cells rescued from ROS induced 
death by inhibition of MEK1/2. For this purpose we exposed NK cells to 
monocytes overnight in presence or absence of a MEK inhibitor. Subsequently, 
the NK cells were assessed for cytotoxicity as determined by killing of the B 
lymphoblastic cell line 721.221 (270) in presence of rituximab. These 
experiments confirmed that the NK cells rescued by the MEK1/2 inhibitor 
were functional in terms of cytotoxicity.  

Taken together, the results of paper I suggest that the MEK/ERK signaling 
pathway is involved in ROS-mediated parthanatos of lymphocytes, and that 
activation of ERK occurs prior to PARP-1 activation in response to ROS. 
These findings thus challenge the view of ROS-induced PARP-1 activation as 
being a direct consequence of excessive DNA damage. Instead, the results 
underscore the role of ROS as signaling substances affecting pathways of vital 
importance for cell survival.  
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Figure 4. Inhibition of the ERK1/2 pathway protects lymphocytes from myeloid cell-induced 
death. T cells (A) or NK cells (B) were co-cultured with monocytes overnight in presence or 
absence of the MEK-inhibitor PD98059 (filled triangles) or control (DMSO, open squares). 
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The strategy to protect lymphocytes from cell death by preventing ROS 
production has demonstrated clinical efficacy for treatment of AML (10). A 
conceivable alternative approach to preserve lymphocyte viability is to increase 
lymphocyte resistance to ROS by intervention with transductional pathways 
conveying ROS-mediated death. The results displayed in paper I indicate that 
preventing ERK1/2 activation, by inhibiting MEK1/2 a feasible approach to 
uphold lymphocyte viability in the presence of ROS-producing myeloid cells. 
Inhibition of MEK1/2 is being explored therapeutically, and has demonstrated 
efficacy as treatment of melanoma (274). Our results imply that a contributing 
mechanism of action for MEK inhibitors may be to uphold lymphocyte 
capacity to withstand myeloid-derived ROS.  
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Figure 5. ERK is upstream of PARP-1 in ROS-induced lymphocyte death. (A) Accumulation of 
PAR was prevented by inhibition of either PARP-1 (PJ34) or the ERK pathway (PD98059). (B) 
Inhibition of MEK/ERK, but not PARP-1, prevented ERK phosphorylation in response to ROS.  
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4.2 CD20 antibodies trigger ROS production 
As noted previously, the addition of CD20 mAbs to chemotherapy has 
improved the outcome for patients with CLL (240, 241), but the efficacy of 
rituximab as single agent is limited (174-176). Several lines of evidence have 
demonstrated that immune cells carrying FcRs contribute to the efficacy of 
mAbs by their ability to exert ADCC or ADCP (68, 80, 81, 275). However, the 
distinct roles of individual immune cells for mAb efficacy are incompletely 
defined. NK cell cytotoxicity and viability have been shown to be affected by 
myeloid cells in a ROS-dependent fashion (9), which seem to suppress NK cell 
cytotoxicity rather than add to target cell killing (208, 276). Therefore, we 
hypothesized that myeloid cells might limit the efficacy of CD20 mAbs in CLL 
by restricting the cytotoxic activity of NK cells by ROS-production. We 
addressed this hypothesis by assessing the effects of myeloid cell-derived ROS 
on NK cell functionality and viability in the presence of therapeutic mAbs. The 
results, presented in papers II and III, were partly obtained concomitantly.  

 

 54 

4.2 CD20 antibodies trigger ROS production 
As noted previously, the addition of CD20 mAbs to chemotherapy has 
improved the outcome for patients with CLL (240, 241), but the efficacy of 
rituximab as single agent is limited (174-176). Several lines of evidence have 
demonstrated that immune cells carrying FcRs contribute to the efficacy of 
mAbs by their ability to exert ADCC or ADCP (68, 80, 81, 275). However, the 
distinct roles of individual immune cells for mAb efficacy are incompletely 
defined. NK cell cytotoxicity and viability have been shown to be affected by 
myeloid cells in a ROS-dependent fashion (9), which seem to suppress NK cell 
cytotoxicity rather than add to target cell killing (208, 276). Therefore, we 
hypothesized that myeloid cells might limit the efficacy of CD20 mAbs in CLL 
by restricting the cytotoxic activity of NK cells by ROS-production. We 
addressed this hypothesis by assessing the effects of myeloid cell-derived ROS 
on NK cell functionality and viability in the presence of therapeutic mAbs. The 
results, presented in papers II and III, were partly obtained concomitantly.  



 

 55 

We commenced by investigating the impact of monocytes on NK cell mediated 
ADCC using NK cell and cells derived from healthy blood donors. In a series 
of experiments using NK cells against the B lymphoblastic cell line 721.221 
(270) and rituximab as the linking antibody, we observed that ADCC was 
largely abrogated in the presence of monocytes. The inhibitory effect was partly 
reversed by the ROS scavenger catalase, or by prevention of ROS formation by 
HDC, thus suggesting monocyte-derived ROS as the main mechanism of 
inhibition. These findings incited us to investigate whether the results could be 
reproduced using CLL cells as target cells and patient-derived NK cells and 
monocytes. By using fluorescence-activated cell sorting (FACS) we isolated NK 
cells and monocytes from PBMCs derived from CLL patients. From the same 
PBMC fraction, leukemic cells were isolated by immunomagnetic depletion, 
thus allowing a cytotoxicity assay using autologous cells. CLL cell lysis was 
assessed by four-hour assays in the presence or absence of rituximab and the 
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Figure 6. Monocytes impede NK cell-mediated ADCC against primary CLL cells by ROS 
production. (A) NK cell-mediated ADCC) of autologous leukemic cells by rituximab (RTX) in 
the presence or absence of monocytes, HDC, catalase (Cat), H2R-antagonist ranitidine (Ran) 
and IL-2 (B). (C) NK cell death after overnight incubation with monocytes in the presence of 
immobilized rituximab and the anti-oxidative compounds HDC, catalase and DPI. (D) 
Representative FACS dot-plot of the readout for dead, CFSE-labeled CLL cells by live/dead 
staining.  
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NK cell activating cytokine IL-2. The results from these experiments showed 
that the presence of monocytes strongly reduced ADCC, both in the presence 
and absence of IL-2, thus confirming the findings obtained using the 721.221 
cell line. HDC and catalase significantly upheld ADCC, demonstrating 
inhibition to be mainly ROS-mediated (figure 6A and B). 

Golay et al. have shown that CD20 mAbs vary regarding their propensity to 
induce activation of neutrophils (277). For example, these authors 
demonstrated that obinutuzumab, which was recently approved for use in CLL, 
was capable of more efficiently activating neutrophils than rituximab in an FcR-
dependent fashion. It was claimed that activation was triggered without 
concomitant ROS production. However, the authors had used a FACS-based 
assay, measuring intracellular ROS. This incited us to assess neutrophil ROS 
production in response to CD20 mAbs by using isoluminol-enhanced 
chemiluminescense, a sensitive method for assessment of extracellular ROS 
(156). Indeed, we found that neutrophils responded to mAbs by substantial 
release of ROS. With the aim of investigating the immunosuppressive 
properties of mAb-exposed neutrophils, we proceeded by performing co-
culture experiments with neutrophils and NK cells in presence of rituximab and 
ofatumumab. These experiments revealed that neutrophils exposed to CD20 
mAbs induced significant ROS-dependent NK cell death, while unexposed 
neutrophils did not (figure 7).  
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Figure 7. CD20 mAbs trigger ROS-production in neutrophils. (A) Extracellular ROS-
production from neutrophils derived from patients with CLL in response to immobilized, plate-
bound rituximab (RTX) and ofatumumab (OFA) in the presence or absence of the NADPH 
oxidase inhibitor DPI. 
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NK cell activating cytokine IL-2. The results from these experiments showed 
that the presence of monocytes strongly reduced ADCC, both in the presence 
and absence of IL-2, thus confirming the findings obtained using the 721.221 
cell line. HDC and catalase significantly upheld ADCC, demonstrating 
inhibition to be mainly ROS-mediated (figure 6A and B). 
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The findings that mAbs triggered ROS by neutrophils were consistent with the 
results that monocytes were found to impede ADCC in a ROS-dependent 
fashion. Therefore, we assessed the effect of mAbs on monocyte ROS 
production, and similarly found a marked ROS-release in response to mAbs. 
Co-culture experiments with monocytes and NK cells revealed that mAb-
induced ROS production by monocytes translated into immune suppression in 
terms of augmented ROS-dependent NK cell death in the presence of mAbs. 
These immunosuppressive events were significantly prevented by the presence 
of HDC (figure 6C).  

To investigate the mechanism of ROS-induction by CD20 mAbs, F(ab´)2-
fragments, i.e. antibody fragments devoid of the Fc-region, were obtained by 
pepsin digestion (278), and used as control reagent in ROS-assessment and 
apoptosis experiments. OFA-derived F(ab´)2 fragments were found not to 
induce ROS-release, suggesting that CD20-mAb ROS induction to be FcR-
mediated (figure 8).  
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Taken together, the results of papers II and III imply that therapy with CD20 
mAbs contributes to an oxidative immunosuppressive environment, which may 
affect NK cell function and viability. Thereby, the full anti-leukemic potential 
of mAbs may by limited.  HDC and other ROS-inhibitors reduced 
immunosuppression by preventing ROS formation in the presence of CD20 
mAbs. These results suggest that the efficacy of CD20 mAbs might increase 
with the addition of anti-oxidative therapy, and that this immunotherapeutic 
strategy should be further investigated. 
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Figure 9. Proposed mechanism of mAb-induced immunosuppression. (A) In the presence 
of myeloid cells, mAbs trigger ROS-production resulting in NK cell death. (B) ADCC is 
preserved by preventing ROS production by HDC.  
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4.3 Role of ROS in CMML 
Monocytic subtypes of AML (M4/M5) have been reported to respond 
favorably to HDC/IL-2 immunotherapy compared to other AML subtypes 
(12). This fact has been attributed to the immunosuppressive properties 
demonstrated for monocytic leukemic cell subsets by their ability to produce 
immunosuppressive extracellular radicals, and the responsiveness of these 
subsets to HDC, that reduces ROS formation (12, 13). CMML shares many 
features with monocytic AML, including the occurrence of monocytic leukemic 
differentiation (217). The aim of paper IV was to investigate the role of ROS 
as a putative mechanism of immune escape in CMML.  

First, by using flow cytometry to characterize the leukemic subsets of CMML, 
we found that the CD33+/CD14+ mature monocytic population, but not the 
CD33+/CD34+ blasts, co-expressed the NADPH oxidase and H2Rs, thus 
suggesting that the monocytic clone is capable of ROS production and might 
respond to HDC. These findings were confirmed by ROS measurements using 
chemiluminescense, as monocytes were found to produce significant amounts 
of extracellular ROS upon activation with N-formylmethionyl-leucyl-phenyl-
alanine (fMLF), in the absence but not in the presence of HDC (figure 10). 
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Figure 10. (A) Expression of the NADPH oxidase subunit gp91phox and histamine 2-receptors 
(H2Rs) by leukemic cells subsets from patients with CMML compared to monocytes from 
healthy controls. (B and C) ROS production by CMML-derived monocytes response to fMLF in 
presence and absence of HDC.  
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Next, the immunosuppressive features of CMML-derived monocytes were 
assessed in co-cultures with different lymphocyte subsets. These leukemic cells 
were found to induce substantial PARP-1 dependent cell death in NK cells, 
CD4+ and CD8+ T cells. Cell death was ROS-mediated as the ROS scavenging 
enzyme catalase or prevention of ROS formation by HDC or the NADPH 
oxidase inhibitor DPI prevented death in all lymphocyte subsets (figure 11). 
Together, these observations imply that the monocytic leukemic subset may 
suppress anti-leukemic lymphocytes via extracellular ROS release, and that 
leukemia-induced ROS formation may be a mechanism of immune escape in 
CMML. 

To clarify whether anti-oxidative intervention may augment the anti-leukemic 
immune efficacy of cytotoxic effector cells, we performed cytotoxicity 
experiments using NK cells as effector cells and monocytic leukemic cells as 
target cells. The anti-CD33 mAb lintuzumab was used as the linking mAb to 
trigger NK cell-mediated ADCC. These experiments showed that the anti-
leukemic activity of IL-2-stimulated NK cells was significantly augmented in 
the presence of HDC, as measured by degranulation. However, the increase in 
NK cell degranulation merely translated into a non-significant trend regarding 
target cell lysis. This may be explained by a low number of experiments, but 
raises the question whether these leukemic cells may be resistant to NK cell 
cytotoxicity. It is also conceivable that the apoptotic process is particularly slow 
for these cells, and that a method for assessing earlier apoptotic events, e.g. loss 
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Figure 11. CMML cells induce ROS-mediated, PARP-1-dependent cell death in lymphocytes. 
Lymphocytes were incubated overnight with monocytes derived from patients with CMML in 
the presence or absence of HDC, PARP-1 inhibitor PJ34, DPI or catalase. 
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Figure 11. CMML cells induce ROS-mediated, PARP-1-dependent cell death in lymphocytes. 
Lymphocytes were incubated overnight with monocytes derived from patients with CMML in 
the presence or absence of HDC, PARP-1 inhibitor PJ34, DPI or catalase. 
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of mitochondrial membrane potential or by staining with Annexin V, would 
have yielded more pronounced results. These issues are to be further 
investigated. 

Oxygen radicals have been demonstrated to inflict down-regulation of 
activating NK cell receptors (157). Moreover, reduced expression of activating 
receptors was previously demonstrated in NK cells derived from patients with 
AML (211, 212) and MDS (269). This incited us to assess the expression of 
activating NK cell receptors of patients with CMML. By immunophenotyping 
of patient samples along with samples from age- and sex- matched control 
individuals, we observed that the patient samples displayed significant 
impairments in their expression of NKp30, NKp80 and NKp46 with a similar, 
yet non-significant, trend for NKp46. Also, the frequency of NK cells 
expressing NKp30, NKp46 and NKp80 was found to be lower in patients than 
in healthy subjects. Notably, by culturing NK cells derived from CMML 
patients with IL-2, the NCRs NKp30 and NKp46 were up-regulated, implying 
that the NK cell compartment in CMML is not permanently hampered and that 
immunostimulatory intervention may restore leukemia-associated 
immunodeficiencies.  

Taken together, our results demonstrate that patients with CMML harbor a 
leukemic cell subset with pronounced immunosuppressive potential towards 
anti-leukemic lymphocytes. Immune suppression was ROS-mediated as 
demonstrated by the preventive effect of HDC and other ROS-inhibitors. 
These findings suggest that anti-oxidative immunotherapy may be efficacious in 
CMML, as previously demonstrated for AML (10, 12).  
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Figure 12. Proposed mechanism of immune escape in CMML. (A) Leukemia-derived ROS 
induce lymphocyte death. (B) Anti-leukemic lymphocytes are preserved by anti-oxidative 
intervention with HDC. 
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5 Concluding remarks 
Physiologic systems are commonly governed by multiple pathways, which 
preserve homeostasis and functionality. In immunity, this notion is illustrated 
by the multitude of regulatory functions that prevent autoimmunity and 
excessive inflammation. Moreover, clonal evolution, driven by the selective 
pressure of the surrounding environment, promotes the survival of clones with 
low immunogenicity and immunosuppressive traits. Consequently, the immune 
system almost invariably fails to mount an immune response sufficient to reject 
clinically overt cancer. 

The strategy to target cancer-related immune tolerance has gained momentum 
in recent years. Treatment with HDC, aiming at protecting NK cells and T cells 
from oxidative inhibition, has been introduced in AML therapy (10) and 
antibodies, such as ipilimumab and nivolumab, targeting immunosuppressive 
pathways of relevance to T and NK cell function, have shown significant 
efficacy in advanced solid cancer (196, 197). These findings provide an 
incentive to further explore the immunosuppressive mechanisms of relevance 
to cancer development. Importantly, the fact that mechanisms of immune 
evasion are not specific to a certain disease encourages the investigation of 
immunotherapies in multiple malignancies. 

Oxidants mediate suppression of lymphocytes, and can be targeted by the 
NADPH oxidase inhibitor HDC (11). As shown in paper I, we found a 
prominent role of the MEK/ERK pathway in the transductional events 
resulting in ROS-induced lymphocyte death. These results imply that inhibition 
of these signaling events is a conceivable alternative strategy to uphold 
lymphocyte viability in an oxidative, immunosuppressive environment.  

We also found that immunotherapy with anti-CD20 mAbs induced ROS 
production by neutrophils and monocytes, which translated into immuno–
suppressive events including interference with NK cell-mediated ADCC against 
primary CLL cells. The observation that HDC restored NK cell cytotoxicity 
suggests that CD20 mAbs and HDC, or other strategies to reduce antibody-
induced ROS production, is an immunotherapeutic combination for CLL and 
other B cell malignancies that merits further investigation. 

Our findings are consistent with a mainly immunosuppressive role for 
monocytes and neutrophils in the context of mAb-based immunotherapy. It 
should be emphasized, however, that myeloid cells have been shown to 
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contribute to mAb-mediated elimination via ADCP and ADCC (182), 
processes that partly rely on ROS-production. For HDC to augment the clinical 
efficacy of mAbs it is thus required that the alleviation of ROS production 
results in an increment in NK cell ADCC that exceeds the potential inhibitory 
effects on leukemic cell killing by myeloid cells. This issue should be considered 
in further investigating mAbs and anti-oxidative therapy as a putative 
immunotherapeutic combination. 

We investigated the role of oxygen radicals as an immunosuppressive 
mechanism in CMML, a disease for which the presence of a monocytic 
leukemic population is a defining criterion (217). We found that the monocytic 
leukemic cells produced substantial amounts of ROS and significantly 
suppressed lymphocytic subsets in a ROS-dependent fashion. The addition of 
HDC reduced ROS production and maintained lymphocyte viability in the 
presence of leukemic cells. These observations suggest that leukemia-induced 
ROS production may serve as a mechanism of immune escape that promotes 
progression of CMML. Furthermore, our results demonstrate that ROS 
formation by malignant cells is a feature that is shared between CMML and 
monocytic forms of AML, in which immunotherapy with HDC and IL-2 has 
demonstrated particular clinical efficacy (12, 13). Therefore, we hypothesize 
that HDC and IL-2 may be efficacious also in CMML. To address this 
hypothesis, an exploratory clinical trial with HDC and IL-2 for the treatment of 
CMML has been initiated (Appendix).  

In AML, the HDC/IL-2 regimen has demonstrated relapse-preventive 
potential, but has not been evaluated as treatment of manifest leukemia. 
However, CMML commonly advances slowly, which may allow for an anti-
leukemic immune response to be mounted, and for immunotherapy to be 
efficacious also in situations with a significant clonal burden.  

 

. 
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