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ABSTRACT 

Mast cells are sentinels of danger but they are also the major effector cells in allergic disease 

causing the well-known allergic symptoms caused by their mediators such as histamine and 

prostaglandin D2 that are released upon activation. Mastocytosis is a disease characterized by 

the clonal expansion of mast cells in the skin and/or other organs where the patients suffer 

from mediator-related symptoms and/or organ failure due to mast cell infiltration. The aim of 

the work presented in this thesis was to investigate mast cell function in health and disease, 

particularly systemic mastocytosis. 

In paper I, we investigate the in vivo reactvitiy of mast cells in patients with mastocytosis. We 

show that though the patients with systemic mastocytosis have increased levels of circulating 

mast cell mediators their mast cells in skin and lung are no more reactive then those in 

heatlhy controls. 

Paper II. We analyze the reactivity of in vitro cultured mast cells from the patients 

investigated in paper I, and could show that systemic mastocytosis mast cells  proliferate and 

develop normally though with increased expression of the high affinity IgE receptor.  Mast 

cells from patients with systemic mastocytosis are more reactive to increased osmolarity by 

releasing more PGD2. Investigating the genetic background of mastocytosis we discovered 

that they exhibit a specific miRNA profile.  

In the search for new therapeutical possibilities for mastocytosis we investigated the 

combination of ABT-737, a BH3 mimetic, and Roscovitine in paper III. By targeting 

expression and function of pro-survival proteins we found that even in very low doses the 

drugs induce apoptosis in mast cells carrying the D816V KIT mutation.  

Paper IV. Histone deacetylase inhibitors (HDACi) alter genetic expression. Here we show 

that SAHA, a class II HDACi induces mast cell apoptosis in cell lines and primary systemic 

mastocytosis patient cells, and that KIT is epigenetically silenced by SAHA in KIT D816V 

mutated cells. 

We have previously shown that IgE-receptor cross linking induces mast cell degranulation 

and activation-induced cell survival. In paper V we further investigate the effects of the Bcl-2 

family and found that Bfl-1 is vital for the cell to survive, reform and be ready to degranulate 

again. Patients with allergic disease or cutaneous inflammatory skin disease have increased 

expression of Bfl-1 in their skin mast cells suggesting that targeting Bfl-1 might be an option 

for treatment. 

Paper VI. Further investigating the function of the A1/Bfl-1 gene, we found that knockdown 

of A1/Bfl-1 in mice protects the animals from passive cutaneous and systemic anaphylaxis. 

Additionally, connective tissue mast cells depend on A1/Bfl-1 for their development and 

survival.  
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1. INTRODUCTION 

1.1 THE MAST CELL 

Mast cells are watchmen of the body responding quickly to danger signals by releasing a 

cocktail of mediators in order to activate neighboring cells and to recruit and activate the 

proper combatants of the immune system. They are highly conserved in both function and 

morphology, found in all species of vertebrates and originated about 450 million years ago 

(1). Though mast cells are a very important part of the immune system they are notorious for 

their involvement in asthma and allergy. First described in the thesis of Paul Erlich in 1878 

and since then mostly studied for their harmful effects we now know that they are also 

protective;  truly the “Dr Jekyll and mr Hyde” of the human body (2). 

1.1.1 Mast cells in health and disease 

Mast cells reside in all tissues but predominantly in tissues that form boundaries to the 

surrounding environment as for example skin, lung and intestines (3, 4). At this position mast 

cells easily sense when the body borders have been breached and can act accordingly. The 

human body is constantly under attack from pathogens that could be harmful for us if they 

were let to roam free, and the immune system has developed in order to defeat pathogens as 

well as monitoring the body for signs of disturbances in the overall homeostasis. The immune 

system is divided into two parts of equal importance. The innate immune system is the first 

line of defense consisting of both mechanical barriers like the skin and mucosa as well as 

immune cells like mast cells, basophils and phagocytes. They have no memory of their own 

but express a wide variety of sensors that can detect an extensive range of danger signals. 

They can attack and destroy the invasive pathogens but also attract cells of the adaptive 

immune system. These cells, B and T lymphocytes, will respond by antibody production or 

with cellular responses. Mast cells bridge the innate and adaptive immunity by responding to 

the invasive pathogens and recruiting leukocytes to the place of infestation (5, 6). For 

example mast cells have the capacity to recognize bacteria by a wide range of pattern 

recognition receptors (7, 8). They can respond by releasing chemokines which recruit 

neutrophils into the inflamed tissue (9, 10).  Many studies have shown that mast cells are vital 

in fighting peritoneal infections that otherwise may end in sepsis (11, 12). Many other stimuli 

caused by for example cell injury or cell stress leads to the release of mast cell  mediators (13, 

14) . The mast cell mediators can under these circumstances help with the healing of the 

damaged tissues (15). Other danger signals that activate mast cells are changes in the basic 

body homeostasis like temperature, pressure, pH or osmolarity (16). In spite of all their good 

sides mast cells are notorious for their fundamental role in asthma and allergy (17). Allergic 

diseases include rhinitis, allergic asthma, food allergy and atopic dermatitis. When antigens 

enters the body the patient quickly suffers from acute symptoms like itch, swelling and 

mucus production. Why a harmless protein/antigen can cause a Th2 driven immune response 

resulting in plasma cells producing IgE specific to the protein we do not know. But when the 

IgE is in circulation it will bind to the high-affinity IgE-receptors, FcRI, on mast cells and 
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basophils. The next time the antigen enter the body the IgE sensitized cells will be activate 

and  release mediators which will instead of fighting an infection cause both the acute 

symptoms and in the long-term lead to tissue remodeling and chronic inflammation. 

1.1.2 Development 

Mast cells originate from hematopoietic stem cells that emerge from the bone marrow and the 

early mast cell progenitors home into the tissue. (18) Mast cell homeostasis is carefully 

monitored since any increase in mast cell numbers is potentially harmful for the tissues. The 

mechanism of how mast cell migration is initiated and performed is not entirely understood. 

However α4β7 integrins have been shown to play a central role in tissue homing in mice 

interacting with endothelial VCAM-1 (19). Chemokines and their receptors also play a 

pivotal role in MCp transfer, for example human cord blood MCps express CCR3, CCR5, 

CXCR2 and CXCR4 (20). Chemotaxis could also be influenced by how inflamed tissues 

attract MCps. Patients with allergic asthma have increased numbers of mast cells in the lungs 

that express chemokine receptors CCR1 and CCR4(21). 

Once mast cell progenitors enter the tissue they mature under the influence of the 

microenvironment.  The surrounding cells secrete cytokines important for the maturation. 

Fibroblasts, stromal cells, endothelial cells and keratinocytes all produce stem cell factor 

(SCF) which is essential for the growth and differentiation of mast cells (22-25). SCF binds 

to the KIT receptor on the mast cell inducing phosphorylation of tyrosine kinases leading to a 

cascade of phosphorylation of the downstream targets including PI3K, MAPK and 

JAK/STAT (26). Mast cells express receptors for numerous cytokines notably it is the typical 

Th2 cytokines IL-3, IL-5, IL-6, IL-9 that drive mast cell differentiation while Th1cytokines 

are inhibitory (20, 27, 28). Since the differentiation is so dependent on the secretion of 

cytokines from the surrounding cells it is not hard to imagine the vast heterogeneity of the 

mast cells within the body and even within the same organ (29, 30). They may vary in size, 

granulation and granular content. Maturating mast cells are packed with secretory granules 

which slowly fill with a variety of mediators. Human mast cells are basically divided into two 

groups, those that store tryptase in their granules (MCT) and mast cells containing both 

tryptase and chymase (MCTC) (31, 32). MCTs are found in submucosal tissues and in healthy 

lungs while the MCTC subtype is dominantly found in skin (33). In Eosinophilic esophagitis 

mast cells expressing only tryptase and carboxypeptidase A contribute significantly to the 

disease, which show that there is greater heterogeneity in mast cells than the mere two groups 

(34).  In the murine system mast cells are also divided into two groups; the mucosal and 

connective tissue mast cells (35, 36). Mucosal mast cells are found in the mucosal tissue in 

low numbers in healthy mice (37). During an infection thought there is a drastic increase in 

MMC numbers. MMCs in the gut mainly produce two types of β chymases, mouse mast cell 

protease 1 and 2 (38). Connective tissue mast cells however are predominantly found in the 

skin. They are long lived with very low turnover. They express two different chymases 

(mMCP-4 and 5) but also two tryptases (mMCP-6 and 7) as well as MC-CPA (39). This is a 

general division and in real life mast cells are highly heterogenic and the protease expression 
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varies due to the tissue and even tissue localization, e.g., tracheal mast cells of both subtypes 

produce six serine proteases as well as carboxypeptidase-A3 (40).  

1.1.3 The KIT receptor and downstream signaling  pathways   

The human KIT gene is located on chromosome 4q11-12 and is expressed in two isoforms 

(41). The isoforms differ in the presence or absence of a specific amino acid sequence 

(GNNK) in the extracellular domain. The splice variants differ in biological activity where 

the GNNK- gives rise to stronger receptor phosphorylation and internalization, and down-

stream MAPK phosphorylation (42). In normal mast cells the isoforms are coexpressed but in 

neoplastic mast cells the GNNK- receptor is domineering (43). The combination of the KIT 

mutation D816V and the GNNK- transcript increase the proliferation which can in turn 

influence the treatment response. The KIT gene is highly conserved over species barriers 

(44). It is a type III tyrosine kinase receptor consisting of an extracellular part containing five 

immunoglobulin-like motifs, a trans membrane segment and an intracellular section where 

the kinase domains and activation loop are situated (45). It is the kinase domains and 

activation loop that catalyze the relocation of a phosphate group from ATP to the substrate. 

One SCF dimer binds to two KIT monomers resulting in receptor homodimerization and 

autophosphorylation on tyrosine residues. Upon tyrosine phosphorylation the receptor is 

internalized. The binding of adaptor proteins Grb2 will not only transfer the activation signal 

but also recruit Cbl leading to ubiqintation and degradation of the receptor (46). SHP1 and 2 

can inhibit the function of KIT by binding to the phosphorylated residues, thus blocking 

downstream signal transduction (47, 48). PKC inhibit the activity of the KIT receptor by the 

phosphorylation of the kinase region (49). Slug has been identified as a direct transcriptional 

repressor of KIT (50). Interestingly there is a high turnover of the KIT receptor even without 

ligand-receptor interaction (51). Activation of the KIT receptor will initiate many regulatory 

pathways.  

The phosphoinoside 3ˈ-kinase (PI3K) pathway starts with the translocation of PI3K to the 

plasma membrane where it docks to tyrosine residue 721 using the SH2 domain (52). This 

will activate PIP3 in the plasma membrane that will anchor Akt to be phosphorylated by 

PDK1/2 (53-55). Once activated Akt can phosphorylate a large number of substrates. It will 

directly activate mTOR which leads to G1 cell cycle progression and cell proliferation (56). 

Akt can also phosphorylate and activate MDM2, a negative regulator of tumorsupressor gene 

p53. By similar indirect manor NFκB is activated. Activated Akt will inhibit apoptosis by 

disarming proapoptotic Bim in two steps; inhibition of transcription by inactivation of the 

Forkhead transcription factors FOXO1a and FOXO3a and by direct phosphorylation of Bim 

(57). Akt also inactivate pro-apoptotic proteins like Bad and Bax (58, 59). GSK3β is 

inactivated by AKT leading to the accumulation of cyclin D1 and cell proliferation. The PI3K 

pathway is negatively regulated by the PIP3 phosphateses SHIP1/2 and PTEN which will 

convert PIP3 to PIP2 (60, 61). 

The Janus kinase 2 (JAK2) is constituently associated to KIT and is promptly phosphorylated 

by SCF binding (62). STAT5 will dock to the phosphorylated tyrosine residue via their SH2 
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domain (63).  JAK2 will then phosphorylate STAT5 allowing for them to dimerise. STAT 

dimers enter the nucleus where it will bind to specific gene promoters and direct 

transcription. Genes that are regulated by STAT5 include for example GATA2 and Bcl-XL 

that drive cell proliferation, development and survival (64, 65). The JAK7STAT pathway is 

quickly activated but also short lived. Once the STAT dimers are formed they are targets of 

tyrosine phosphatases, as is phosphorylated JAK (66). SOCS3 inhibit the pathway by binding 

to the phosphorylated JAK marking it for degradation (67). PIAS proteins on the other hand 

will inhibit STAT5 action at the transcription site (68).  

Using adaptor proteins binding to the SH2 domain, the RAS/MAPK pathway is activated 

(69). The adaptor protein Grb2 binds directly to tyrosine residues in the KIT receptor. It 

forms a complex with guanine exchange factor Sos, which in turn activates the membrane 

bound protein RAS (70).  Activated RAS will in turn activate MAP3K Raf directing 

phosphorylation of MAPKK MEK and then MAPK ERK1/2 (71).  Phosphorylated Erk 1/2 

may translocate to the nucleus or stay in the cytoplasm depending on the substrates (72). In 

fact there are hundreds of substrates through which ERK have numerous ways to influence 

cellular proliferation and survival.  

The Src tyrosine kinases Fyn and Lyn are yet another pathway in which KIT signaling is 

transferred (73). They express SH2 domains which interact with the phosphorylated tyrosine 

residues on the KIT receptor. Activated Src kinases will initiate PI3K, JAK/STAT and the 

RAS/MAPK pathways. They have shown to be important in mast cell proliferation and 

chemotaxis (74). Mast cells harboring the D816V mutation are largely independent of Src 

activation (75). 

 

 

Figure 1, The activation pathways of the KIT receptor. SCF binding to the KIT receptor 

will activate a downstream cascade of phosphorylation, initiating transcription of survival and 

proliferation genes and inhibiting pro-apoptotic proteins.   
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1.1.4 Mast cell mediator release 

Mast cells can be activated by a wide variety of stimuli and they may respond in many ways. 

Within seconds upon activation, e.g., through the high affinity IgE-receptor, mast cells can 

release the content of their preformed secretory granules. Receptor activation leads to 

cytoskeletal rearrangement and microtubule formation (76, 77). The granule slide along the 

tubule and when they reach the plasma membrane they fuse first with each other and then 

with the outer membrane to spill the content into the extracellular space (78, 79). Mast cells 

can also produce and secrete lipid mediators. Activation of Phospholipase A2 initiates the 

release of arachidonic acid from the cell membrane (80). Via the cyclooxygenase pathway 

prostaglandins are produced. Mast cells predominantly produce prostaglandin D2 (PGD2) 

upon activation though they may also produce PGE2 (81). The prostaglandins are transported 

out of the cells via the multidrug resistance protein 4 and possibly other transporter proteins 

(82). Through the lipoxygenase pathway arachidonic acid is converted into the lipoxygenase 

(LT)  pathway generating LTB4 and  the  cysteinyl leukotriens LTC4, D4 and E4 (83). Mast 

cells can also produce cytokines and chemokines in response to stimulation.  Thus, some 

cytokines and chemokines are stored in the secretory granules and subsequently released 

within seconds of degranulation (84, 85), while other cytokines are newly synthesized as a 

response to stimulation.  

1.1.5 FcεRI activation 

The most excessive studied pathway for mast cell activation is through the high affinity 

immunoglobulin E receptor FcεRI. The receptor is composed of four subunits, the 

extracellular, transmembrane bound α unit, the β unit which cross the membrane four times 

and the two γ units which are bound by a disulfide bond and mediates the intracellular 

signaling (86, 87). The extracellular part of the α unit contains two binding domains for the 

heavy chain of the IgE molecule. When the cell-surface bound IgE recognize a multivalent 

antigen the receptors aggregate and become cross-linked.  The receptor-IgE-antigen complex 

is internalized setting of the activation cascade resulting in cytoskeletal rearrangement, 

expulsion of granules and secretion of lipid mediators and cytokines (88). Once mast cells 

have been activated some of them have the unique capacity to survive and regranulate and 

thus be ready to be reactivated within a short space of time (89).  

1.1.6 Mast cell mediators 

Mast cells have the ability to produce and release numerous mediators depending on the 

stimulation (39). Histamine is formed from histidine by the enzyme L-histidine 

decarboxylase and is stored in the secretory granules (90). It is released upon activation like 

FcεRI crosslinking and bind to the histamine receptors H1-H4 on diverse cells and tissues 

(91). Histamine is a powerful mediator with many effects, e.g. regulating the sleep-wake 

rhythm, wound healing, vasodilation and smooth muscle contraction. Many of the symptoms 

displayed by mast cell associated diseases are a result from histamine release which is why 

antihistamines are widely used.  
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Mast cells produce and store large amounts of proteases which bind and cleave specific 

substrates (32). The proteases produced are non-mast cell specific (e.g. granzymes) and three 

classes of mast cell specific proteases; Tryptase, Chymase and Carboxypeptidase A. Tryptase 

is a neutral serine protease stored in the mast cell granule and released upon activation. There 

are two subgroups αI and II and βI-III. Catalytic active tryptase is stored within the mast cell 

granules and is able to cleave its substrates directly upon release, however mast cells also 

continuously secrete tryptase (92). Neuropeptides, prothrombin, fibrinogen are examples of 

proteins which carry a substrate sequence and are thus degraded by tryptase (93). Tryptase 

also have the ability to activate the PAR-2 receptor on various tissues. PAR-2 activation leads 

to brochodilatation, vascular relaxation and altered gastrointestinal epithelial permeability 

(37, 94, 95). Humans express only one form of chymase and it is almost exclusively found in 

mast cells. In allergic disease chymase augment the effect of histamine on wheal formation 

but it can also degrade danger signals, e.g. IL-33, thus reducing inflammation (96-98). In 

healthy tissue chymase is involved in managing connective tissue homeostasis (99). 

Carboxypeptidase A is stored in mast cell granules in its active form though activation is kept 

low by the suboptimal pH (100). Biological substrates include endothelin-1, angiotensin I and 

sarafotoxin 6. It has been implicated to contribute in anaphylaxis and can be used as a 

diagnostic marker (101).   

Prostaglandin D2 is de novo synthesized by activated mast cells and can cause contraction of 

the airways, regulate body temperature and cause vasodilatation all depending on what tissue 

is activated via binding to the PTGDR (DP1) and CRTH2 (DP2) receptors. The PTGDR 

receptor is associated to asthma and specific groups of disease severity (102). CRTH2 is 

expressed on T cells, basophils and eosinophils among others (103). By activating the 

CRTH2 receptor PGD2 will stimulate migration and the production of Th2 proinflammatory 

cytokines (104). CRTH2 is also expressed on the surface of type 2 innate lymphoid cells, 

these cells are enriched in the nasal polyps of patients suffering from rhinitis (105).  
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1.2 MASTOCYTOSIS  

1.2.1 Introduction 

Mastocytosis is a disease where mast cells accumulate in one or more tissues well beyond 

normal numbers and the cell infiltrate per se as well as the large amount of mediators that 

they release will cause a number of different symptoms (106, 107). The symptoms greatly 

depend on which tissues are affected (107), and range from mast cell mediator symptoms of 

itching, flush and hives, to very general symptoms like nausea, headache and irritability. 

Severe forms of systemic mastocytosis present with symptoms of bone marrow failure with 

cytopenia, weight loss, and subfebrility. The generality of the symptoms can make the 

diagnosis of systemic mastocytosis difficult (108).  The genetics of mastocytosis is to some 

degree investigated; generally there is a mutation in the tyrosine kinase receptor KIT which 

renders the receptor constantly active, independent of its ligand stem cell factor (109). The 

vast majority of cases of systemic mastocytosis are indolent, with a normal life expectancy 

and little effect of quality of life when symptomatic treatment is administered at optimal 

levels. However, there is no available treatment that can remove the aberrant cells and cure 

the patient. There are however many new treatments under investigation (110). Due to the 

mutational alteration of the KIT receptor the first line of tyrosine kinase inhibitors have low 

effect on mastocytosis but there are several new TKIs showing promising effects.  

1.2.2 Genetics 

One single mutation, the exchange of an A to a T at codon 816 changing the amino acid from 

aspartic acid (D) to valine (V) in the kinase domain of the KIT gene, leads to the detrimental 

effect of ligand independent activation (111, 112).  There is no need for SCF to be present 

since the KIT receptor is constantly activated and the mast cell will continue to grow and 

differentiate (113). Although the D816V mutation is by far the most common in systemic 

mastocytosis, other KIT mutations have been described (114-123). Some also located within 

the kinase domain are associated with more severe disease phenotype. Other mutations within 

the KIT gene but outside the activation loop have been described to associate with more 

benign forms of mastocytosis. Recent data show that additional KIT mutations will work 

synergistically with the D816V mutation and worsen the disease prognosis (109). The KIT 

mutations are somatic and thus not hereditary. Interestingly there are reports on familiar cases 

of systemic mastocytosis where a germ line mutation of KIT is present (124). This mutation is 

however not the D816V mutation common in most patients with adult onset.  
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Table 1, Kit mutations associated to different kinds of mastocytosis .  

Kit mutation Location Associated form 

C443Y, C419Y, 

InsFF419, T417Y, 

Y418Y 

Extracellular 

domain 

Cutaneous pediatric mastocytosis 

Del419 Extracellular 

domain 

Familial cutaneous mastocytosis 

Dup(501-502) Extracellular 

domain 

Mast cell leukemia 

K509I Extracellular 

domain 

Familial SM 

A533D Transmembrane 

domain 

Familial cutaneous mastocytosis 

F522C Transmembrane 

domain 

SM 

D572A Juxtamembrane 

domain 

Cutanous pediatric mastocytosis 

V560G Juxtamembrane 

domain 

SM, Familial cutanous mastocytosis 

V559I Juxtamembrane 

domain 

Agressive SM 

R634W Kinase domain Familial cutanous mastocytosis 

InsV815-I816 Kinase domain SM 

D816F, D816H, D816I, 

D816V, D816Y 

Kinase domain SM, Agressive SM, Cutanous pediatric 

mastocytosis, Familial cutanous 

mastocytosis 

I817V Kinase domain SM 

D820G Kinase domain Aggressive SM 

N822I Kinase domain Familial cutaneous mastocytosis 

E839K Kinase domain Maculopapular cutaneous mastocytosis 
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Other heterozygous somatic mutations commonly found in various myeloid hematological 

malignancies have also been found in systemic mastocytosis. Many of these are regulators of 

transcription and epigenetics: TET2 is a tumor suppressor gene which is involved in DNA 

demethylation. Loss of function mutations in the TET2 gene is one of the most frequent non-

Kit mutations in mastocytosis (125). How TET2 contribute to disease progression is debated 

in one cohort it correlates to advanced forms of mastocytosis while in another study no such 

correlation was found (126, 127). By introducing the D816V mutation into TET2 mutated 

mast cells there is an increase of proliferation. Other epigenetic regulators ASXL1 and 

SRSF2 however are associated to poor prognosis not only in mastocytosis but also in other 

malignant myeloid malignancies (128, 129).  The SRSF2-P95 hotspot mutation correlates to 

mastocytosis with associated clonal hematologic non-mast cell lineage diseases showing that 

an alteration of the mRNA splicing machinery in association to a KIT mutation lead to a 

more aggressive disease (130, 131).  Further, epigenetics aberrations have been demonstrated 

in patients with systemic mastocytosis. Global levels of DNA hydroxymethylation in patients 

with mastocytosis would imply that there is the possibility of global destabilization of gene 

expression (132, 133). 

1.2.3 Symptoms 

The symptoms of mastocytosis vary depending on the tissue(s) affected.  In cutaneous 

mastocytosis the skin is the only organ involved and the symptoms are mostly associated to 

the skin. For example itching, blistering and swelling.  In systemic mastocytosis where there 

is mast cell infiltrate various organs the symptoms are greatly diverse. Symptoms can 

manifest chronically or at intervals. Often these attacks can be brought on by certain triggers 

like stress, physical exercise or rapid changes in temperature, also the intake of alcohol, 

certain food or drugs, can bring on an episode. Although the diversity is great almost all 

patient display some form of flushing. We strongly believe that systemic mastocytosis is an 

underdiagnosed disease, due to the fact that most symptoms are quite general like 

gastrointestinal problems, ulcers, heart palpitations, hypotension, osteoporosis/sclerosis, 

sweating, dizziness and headache. Furthermore, psychological symptoms like depression, 

irritation, concentration difficulties and anxiety have been observed.  Sadly patients can live 

many years with undiagnosed and unmanaged disease. Anaphylaxis is a severe and rapid 

incident where the mast cell mediators bring on systemic vasodilatation causing a rapid blood 

pressure drop, often ending in syncope. Patients with systemic mastocytosis have a 1000 fold 

increased risk anaphylaxis compared to the general population. The experience from the 

mastocytosis center at Karolinska university hospital is that hymenoptera sting is frequently 

the anaphylaxis trigger (125, 126). Interestingly, there is no direct correlation between mast 

cell burden and degree of clinical symptoms (127). On the contrary, some patients suffer 

greatly from mediator symptoms yet there is no detectable mast cell increase, while other 

patients have massive mast cell infiltration in an organ but rather mild or even no symptoms. 

This has spurred the hypothesis that systemic mastocytosis mast cells are somehow more 

reactive, however this hypothesis has not been proven. 
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1.2.4 Diagnosis 

Cutaneous mastocytosis is diagnosed from the visual skin symptoms and positive Darier sign 

(128). However skin biopsy can be used to determine the level of mast cell infiltration. 

Systemic mastocytosis cannot be diagnosed on the symptoms alone, but needs a biopsy of an 

involved organ (not skin), frequently bone marrow. In 2001 a consensus report was published 

presenting standardized diagnosis criteria to ensure correct evaluation of patients (129). The 

diagnosis criteria including one major and three minor; the major being presence of mast cell 

aggregate of 15 or more cells in the bone marrow or other organ however not the skin. The 

minor criteria are: A) more than 25% of the mast cells have abnormal spindle shaped 

morphology; B)   CD117 positive cells also express CD2 and/or CD25; C) elevated levels of 

serum tryptase (>20 ng/ml);  D) presence of the D816V KIT mutation, detected either in 

blood or tissue. If the major and one minor criteria or three of the minor criteria are fulfilled 

the patient is diagnosed with systemic mastocytosis.  

 

Figure 2, Examples of diagnostic histological staining of bone marrow. A) Tryptase 

staining show a mast cell aggregate of >15 mast cells. B) CD25 staining of the same 

infiltrate. Credit Igor Schliemann 

1.2.5 Forms of mastocytosis and disease progression 

There are three main forms of CM, maculopapular cutaneous lesions where brown spots 

appear on the skin where the mast cells aggregate, mastocytoma where the mast cells 

aggregate to one spot forming a lump, and diffuse cutaneous mastocytosis where mast cells 

infiltrate the entire skin (128). The typical maculupapular cutaneous lesions are divided into 

two subgroups. The monomorphic variant where small maculopapular lesions are found and 

the polymorphic variant where the lesions are larger and the shape and size are varied.  

Cutaneous mastocytosis of the polymorphic variant mainly affect children and the disease 

resolve itself at or just after puberty (130, 131). Some children exhibit the small 

maculopapular lesions commonly found in adults. These children often carry the disease into 

adulthood and develop systemic mastocytosis (132). Diffuse cutaneous mastocytosis is very 

rare (133). The children have no individual lesions rather a general mast cell infiltration of the 

entire skin. Their skin is thicker and prone to blistering even from mild irritation.  

Mastocytoma patients exhibit one or more large, brown nodules (134). They may display 



 

 11 

symptoms like flushing, swelling and itch when the lesion is rubbed however patients may be 

entirely asymptomatic. Adult onset CM has a good prognosis but still reduce the quality of 

life of the patients from both cosmetic reasons and due to the skin irritation (128). 

In systemic mastocytosis at least one organ other than the skin is involved, most often the 

bone marrow (129).  Patients with the most common form of SM, indolent systemic 

mastocytosis (ISM) have low mast cell burden (135). The prognosis is good with normal life 

expectancy and high quality of life as long as symptoms are well managed. Some patients 

with the indolent form however develop a more aggressive disease over time. Detecting these 

patients prove a great challenge since most of them have the same KIT mutation. Many 

attempts have been made to find biomarkers identifying the patients who are at risk of disease 

development. So far elevated levels of IL-6 at the time of diagnosis associate with the 

progress of advanced disease in the future (136, 137). In systemic mastocytosis with 

associated hematologic neoplasm (SM-AHN) the symptoms and prognosis differ greatly 

depending on the associated disease (138). The associated disease is often of a myeloid origin 

as acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML) though it 

can be any hematologic malignancy (139). Both malignant components usually share 

common genetic abnormalities such as the activating KIT mutation or other mutations (140). 

TET2, SRSF2 and ASXL1 are frequently mutated in SM-AHN, recent investigations show 

these mutations precede the KIT mutation and that the presence of ASXL1 mutations 

associates to worsen outcome (141, 142). In the rare form aggressive systemic mastocytosis 

(ASM) the prognosis is poor since treatment options are few (143).  In ASM there is often a 

considerate infiltration of mast cells in different tissues with resulting organ failure. Almost 

any organ may be affected but most commonly are the bone marrow and skeletal system, but 

also the liver, spleen and GI tract are frequently affected. The median survival is two to four 

years. However, ASM can develop into mast cell leukemia with dismal prognosis. In mast 

cell leukemia there is a rapid expansion of mast cell in many tissues, even in peripheral 

blood, and the prognosis is very bad with approximately six months survival (144, 145). It 

can be preceded by advanced forms of mastocytosis or be a de novo event. Interestingly mast 

cell leukemia is less frequently displaying the D816V KIT mutation; in fact there is a 

subgroup of patients with no KIT mutation at all  (145). In mast cell sarcoma 

morphologically atypical mast cells form a large tumor which rapidly grow destroying the 

surrounding tissue (146, 147). It is a very rare disease with poor prognosis. Some patients 

have had pediatric mastocytosis which then has transformed into sarcoma but most are adult 

onset. Some sarcomas have the D816V mutation but it is not universal.  
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Figure 3, Representative skin changes. Maculopapular cutaneous lesions in adult patients 

with mastocytosis. Credit Theo Gülen 

1.2.6 Treatment  

Presently there is no curative treatment for systemic mastocytosis (110, 148). For most 

patients, the disease is indolent without progression, and with a normal life expectancy, and 

m tanagement of the symptoms is  the key. Assymptoms vary so greatly between patients 

there is no straight line of treatment for all patients. Antihistamins are used to alleviate 

symptoms like pruritus and flushing (149, 150). H1 antihistamines are a diverse group of 

molecules which all block the H1 receptor on target cells thus inhibiting the reaction. The 

large variety of H1R-blockers makes it easier to fine-tune the therapy for each patient. H2 

receptor blockers mainly target cells in the GI tract and is used to treat gastric hypersecretion 

and peptic ulcers. Ultraviolet light can alleviate symptoms of cutaneous mastocytosis (151). 

Both the lesions and the pruritus are significantly reduced by UV treatment however this 

treatment is in itself is carcinogenous and should be used with caution. Sodium cromoglycate 

effectively reduces gastrointestinal problems (152, 153). It stabilizes the mast cells by 

blocking calcium influx and thus degranulation. Leukotriene antagonists block the activation 

of leokotrien receptors on, e.g., smooth muscle cells. This may reduce respiratory and gastro 

intestinal symptoms (154). Omalizumab, a humanized monoclonal anti IgE antibody, has 

been used to alleviate symptoms in some patients with varying results (155, 156).  More 

aggressive forms of systemic mastocytosis are met with more aggressive forms of treatment 

where the goal is to reduce the cell burden. Interferon α can reduce the mast cell burden and 

seem to somewhat stabilize the cells however there are severe side effects (157). Lower doses 

of interferon alfa in combination with high dose corticosteroids are more frequently used. 

Cladribine is a purine analogue shown to initiate remission but can also induce severe 

myelosupression (158). Hematopoietic stem cell transplant can be effective in aggressive 

systemic mastocytosis, yet only younger patients are eligible (159). 

1.2.7 Drugs in research 

The need for better drugs inspire the field to do intensive research on finding new effective 

drugs that can actually treat the patients instead of merely manage the symptoms. The finding 
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that tyrosine kinase inhibitor imatinib was immensely effective in treatment of CML brought 

the hope that it could also be used to treat systemic mastocytosis. Mast cells with the KIT 

mutation D816V are resistant to imatinib due to structural changes brought on by the 

mutation (160). However, other kinds of tyrosine kinase inhibitors are under clinical 

investigation. Midostaurin is a TKI which have been shown to downregulate KIT 

autophosphorylation in mast cells with mutated KIT which are resistant to Imatinib (161). It 

has shown very promising results in clinical trials (162, 163). A majority of patients display 

reduced mast cell number in the bone marrow as well as serum tryptase levels even in very 

aggressive forms of MCL. Dasatinib is another TKI which induces apoptosis in KIT mutated 

mast cells and have shown promising result in clinical trial (164, 165).  There are numerous 

other TKIs used mainly for research, the difficulty is to find a TKI that specifically target 

mutated KIT. Interestingly each KIT mutation will influence the morphology and activity of 

the receptor and thus alter the response to TKIs (166). By screening a library of small 

molecules BLU-285 was found to specifically inhibit KIT with the D816V mutation. It is 

presently in phase one clinical trial for treatment of advanced systemic mastocytosis, no 

NCT02561988.   

Other targets downstream of the KIT activation pathway can be targeted by small molecular 

inhibitors. The JAK/STAT pathway is activated by phosphorylated KIT stimulating increased 

proliferation. The JAK/STAT pathway is also an important part of signal transduction in 

many cytokine receptors. JAK inhibitors have recently been tested in a few patients with 

advanced mastocytosis (167, 168). The resulting reduction of symptom burden was 

significant as was the increase of quality of life, however little or no reduction of mast cells or 

serum tryptase levels were seen. The PI3K pathway also contains numerous promising 

targets. Pan inhibition of PI3K itself is associated with high toxicity but has shown to inhibit 

proliferation of mutated mast cells in a murine model (169). Idelalisib is a new PI3K inhibitor 

targeting the active subunit preferential in hematologic neoplasms and it has been shown to 

be very effective in the treatment of CLL (170). Another second generation PI3K inhibitor 

LY294002 successfully inhibit proliferation in KIT mutated mononuclear cells (171). mTor a 

downstream target of the PI3K pathway is upregulated in neoplastic mast cells and inhibition 

of mTor induces apoptosis in KIT mutated mast cells in vitro (172, 173). However the first 

clinical trial of the usage of an mTor inhibitor in treatment of systemic mastocytosis failed to 

show clinical relevance (174). To increase efficacy dual inhibitors targeting PI3K and mTor 

simultaneously has been developed. The dual PI3-kinase/mTOR blocker NVP-

BEZ235 currently in multiple clinical trials has been shown to induce apoptosis in human 

mast cell lines 1.1 and 1.2 (175). The effect on mast cell survival is even more pronounced 

when combined with Stat-5 inhibition (176). Akt is the dominant actor in the PI3K pathway 

and several AKT inhibitors have been developed and is in clinical trials, however, they have 

not yet been tested in mast cells (177). Small molecular inhibitors can also be utilized in 

targeting the Bcl-2 family members. They are proteins regulating cell survival and apoptosis 

via intricate homeostasis. Obatoclax was the first pan inhibitor of the Bcl-2 family to be 

introduced in clinical trial. It has been shown to induce apoptosis in mastocytosis cell lines 
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alone and in synergistic effect with a tyrosine kinase inhibitor (PKC412). Our group has 

investigated the effect of ABT-737, a BH3 mimetic, inhibiting Bcl-2, Bcl-XL and Bcl-w that 

effectively induces apoptosis in mast cells (178). In paper IV we show that it works 

synergistically with the Mcl-1 inhibitor Roscovitine to induce apoptosis in KIT mutated mast 

cells. 

Another way to attack the mast cells is to target surface markers which are expressed by 

neoplastic mast cells. CD123, the alpha chain of the IL-3 receptor, is expressed on some 

aberrant mast cells (179). CD123 can be targeted by SL-401, a molecule where the catalytic 

and tranlocational domains of diphtheria toxin have been fused together with IL-3 (180). It 

would directly target and kill cells expressing CD123. It is presently in clinical trial for usage 

against systemic mastocytosis (no NCT02268253). Antibodies may also be used to target the 

surface molecules. Bretuximab vedotin is an antibody-drug conjugate consisting of chimeric 

antibodies binding CD30 connected to monomethyl auristain E an antimitotic agent. CD30 is 

overexpressed by neoplastic mast cells in many patients with ASM or MCL and the drug has 

been tested in a few patients resulting in a normalization of bone marrow composition (181-

183). Targeting CD52 in vitro induces apoptosis in neoplastic mast cells (184). This short 

description of the research in development of new treatment options for mastocytosis 

indicates the difficulty to treat this heterogeneous disease.   
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1.3 REGULATION OF MAST CELL SURVIVAL AND APOPTOSIS 

1.3.1 Introduction 

The body is an organism in constant development. Cells develop in responds to different 

stimuli and some of them like the tissue residing mast cells will survive for a very long time 

while other cells like the intestinal epithelial cells are constantly renewed. There is a fine 

balance between life and death in the cellular world. This is why it is so strictly monitored by 

multiple control layers. Too much survival will lead to cancer while to little survival lead to 

ischemic and neurodegenerative disease. Apoptosis is controlled cell death where the cell 

follows a specific rout ending in its degradation and engulfment without spilling any internal 

cell substances which could potentially harm the surrounding tissue. Apoptosis is vital in 

normal development but can be detrimental if activated under the wrong circumstances. 

Many of the genes involved in apoptosis regulation are implicated in cancer development 

1.3.2 The Bcl-2 family 

The B-cell lymphoma 2 (Bcl-2) family members are important regulators of cell survival and 

apoptosis (185). The Bcl-2 gene family is consisting of the pro-survival proteins; Bcl-2, Bcl-

xL, Bcl-w, Mcl-1, Bfl-1and the pro-apoptosis proteins divided into the Bax-subfamily and the 

BH3-subfamily.  The pro and anti-apoptotic family members bind to each other in order to 

inhibit the function and block the binding sites of their counterpart (186).  The BH3 only 

family members can inhibit the function of the pro-survival proteins which in turn inhibit the 

effector proteins Bax/Bak. Intracellular stress signals will increase the expression of the pro-

apoptotic and reduce the expression of the pro-survival family members. The pro-apoptosis 

proteins induce mitochondrial membrane permeability and release of cytochrome c into the 

cytoplasm. Together with apoptotic protease activating factor 1 (APAF1) cytochrome c will 

form the apoptosome which then recruit and activate caspase-9 (187).  Active caspase-9 will 

cleave and activate the executioner caspases -3, -6 and -7. They will in turn start cleaving 

cellular content thus starting degradation (188). Inhibitor of apoptosis proteins (IAPs) are the 

last layer of apoptosis regulation (189). They bind to the executioner caspases and inhibit 

them by catalyzing ubiquination and by physically blocking the substrate. 

The Bcl-2 family is vital in regulating mast cell survival and apoptosis. SCF signaling leads 

to increased expression of pro-survival proteins Bcl-2 and Bcl-XL (190).  SCF has been 

shown to regulate mast cells survival by repressing the transcription of Bim and 

phosphorylation of the Bim protein that makes it vulnerable for proteosomal degradation  (57, 

190). Bcl-2 and Bcl-XL have been proven to be essential in the development in murine mast 

cells both in vitro and in vivo (191, 192). Other cytokines are indispensable for mast cell 

survival where Puma as well as Bax and Bak that have been shown to induce apoptosis 

following cytokine deprivation (193, 194).  Alterations of the expression of members in the 

Bcl-2 family can be detected in many forms of cancer. In mastocytosis both Bcl-2 and Bcl-

XL can be detected at higher levels in patient samples (195, 196). Inhibiting pro-survival 

members of the Bcl-2 family using small molecules is a way to induce apoptosis. As 
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previously mentioned our group has investigated the effect of ABT-737 a BH3 mimetic 

inhibiting Bcl-2, Bcl-XL and Bcl-w (178).  

 

Figure 4, Illustration of the Bcl-2 family. There is an intricate balance between the pro and 

anti-apoptotic members of the Bcl-2 family. The increase of Bax and Bak will lead to MOMP 

and the subsequent release of cytochrome C, activation of caspases and apoptosis. Bax/Bak is 

in turn inhibited by the anti-apoptotic Bcl-2 like proteins which are inhibited by BH3 only 

proteins. 

1.3.3 Activation induced survival 

Our group has intensively studied the mechanism for activation- induced mast cell survival. 

When the antigen binds to the IgE molecules on the FcεRI receptor it leads to receptor cross-

linking and the degranulation cascade is induced. Certain mast cells have the ability to 

survive, regranulate and thus be activated again. This is mainly controlled by the Bcl-2 family 

member A1 (197-199). The FcεRI activation leads to the translocation of NFAT from the 

cytosol to the nucleus and the subsequent transcription of A1 (200). Interestingly there is a 

difference in the capability to survival after receptor crosslinking between the two mast cell 

types (201). Investigating the in vitro cultured mast cells mimicking the two subtypes show 

that the short-lived mucosal mast cells have no A1-induction and no increased survival while 

the long lived connective tissue mast cells induce A1 expression and display activation 

induced survival upon IgE receptor cross-linking.  Mice lacking the A1 gene have 
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significantly reduced numbers of connective tissue mast cells and the mice have dramatically 

reduced response to induced anaphylaxis (199). There is a significant upregulation of the 

human homolog Bfl-1 in mast cells in birch-pollen provoked skin (202). Bfl-1 expression is 

induced not only by cross-linking FcεRI but also FcγRI indicating that activation-induced 

survival occurs not only in allergic diseases but also in diseases where IgG is the main 

immunoglobulin (203).  
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1.4 EPIGENETICS  

1.4.1 Introduction 

Each cell of the body contains the same DNA although they have fundamentally different 

commitments. This is because the entire DNA is not active all the time, the same genes are 

not transcribed in all cells and if they are transcribed the amount of protein produced is very 

different. Epigenetics is defined as stably heritable phenotype resulting from changes in a 

chromosome without alterations in the DNA sequence. This involves everything from how 

the DNA sequence is accessible for the transcriptase via the folding of the DNA determining 

the proximity of regulating elements to the DNA sequence of interest to how the mRNA is 

controlled. In 1957 Conrad Hal Waddington founded the metaphor of the epigenetic 

landscape to describe how gene regulation modifies cellular evolution.  In cancer the 

epigenetic regulation is often distorted at all levels. 

1.4.2 DNA structure 

The DNA forms a double helix with strands running in opposite directions (204). The helix is 

wrapped around the nucleosomes 1.65 times (205). The nucleosomes are cores formed by 

two copies of each of the four histones H2A, H2B, H3 and H4 (206). Histones are highly 

alkaline proteins each histone has both a C-terminal and an N-terminal tail. The fifth histone, 

H1, keep the DNA connected to the nucleosome. The nucleosomes fold up the chromosome 

fiber which loops and coils again (207). The chromosome can open and close depending on 

the need for the transcription machinery to access the DNA.  

1.4.3 DNA modifications 

Our genome contains large regions of genetic information that is not supposed to be 

transcribed. They are e.g. pseudogenes, repetitive elements and transposons but also genes 

which are transcribed only during development. These regions are effectively silenced 

without any effect on the surrounding genes by the addition of a methyl group to cytosine 

thus forming 5-methylcytosine (5mC) (208). Methylation of a cytosine nucleotide usually 

occurs when it is followed by a guanine nucleotide, a CpG. They cluster together forming 

CpG islands which often locate in promotor and other regulatory regions. The effect of the 

methylation is a blockade of binding sites for the transcription machinery but also the binding 

of proteins that influence the chromatin structure (209, 210). Demethylation is vital during 

development. Recent discoveries show that thymine DNA glycosylase in collaboration with 

Tet enzymes can transform 5-methylcytosine to form 5-hydroxymethylcytosine (5hmC) (211, 

212). Tet enzymes can further oxidize 5hmC to form 5-formylcytosine (5fC) and 5-

carboxycytosine (5caC) (213). 

1.4.4 Histone modifications  

The N-terminal histone tails protruding from the nucleosome can be chemically modified 

which regulate the availability of the DNA strain (207). Methyl groups are added to the tails 

on histones 3 and 4 by histone methyltransferases while they may be removed using histone 
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demethylases (214, 215).  Methylated histones can either repress or activate transcription 

depending on which of the histone tails are methylated and how many methyl groups are 

transferred. For example adding three methyl groups to H3K9 will bind heterochromatin 

protein 1 continuously closing the DNA for transcription (216). Histone deacetylases and 

transferases move acetyl groups to and from the histone tails (217, 218). Acetyl groups on the 

histone tails will reduce the interaction between the nucleosome and the DNA relaxing the 

DNA (219). Histone deacetylase inhibitors keep the DNA relaxed by inhibiting the removal 

of the acetyl groups (220, 221).  

1.4.5 Micro RNA 

MiRNAs are short sequences of approximately 22 nucleotides. They bind to the targeted 

mRNA sequence retaining them in the cytosol and thus regulating what proteins are in the 

end translated. They were first described in C. Eleganse by dr Ambrose in the beginning of 

the 1990th, however it would take a decade before the field of miRNA research was to gain 

momentum (222). Then the miRNA Let-7 was found to be crucial for developmental timing 

in C. Eleganse (223). The family of Let-7 is unusual in the way that if they are silenced the 

effect on the organism is detrimental (Let=Lethal) (224). 15 years later we now know that 

most miRNAs can be taken out without such massive impact on the organism. They rather 

seem to be guardians of the cell to step into action when the cell is stressed by ex-

environmental factors like changes in osmotic pressure (225). The miRNA mechanism is 

highly conserved found in plants, animals and even in some viruses though with minor 

differences in target recognition (226-228).  

The miRNa genes are often found in introns. They are transcribed by RNA PolII/III and the 

RNA forms a pri-miRNA (229, 230). It is then cleaved into pre-miRNA by the enzyme 

Drosha and DGCR8 and forms a hairpin (231, 232). The hairpin is transported out from the 

nucleus by exportin -5 (233). In the cytoplasm the Dicer and TRBP enzymes cleave of the 

hairpin loop and divide the strands (234). The mature miRNA is then loaded into the RISC 

complex by Ago2 (235). Once located there the miRNA is highly stable (236). When mRNA 

is released from the nucleus it has to pass by a cloud of miRNA-RISC complexes. The 

mRNAs which show a specific target sequence will interact with the miRNA and will be 

retained in the cytosol never to reach the ribosome. There has been a deliberation regarding if 

the mRNA is degraded or only retained for a period. It has been shown that at least to some 

degree the miRNA guide the mRNA to the general eukaryotic machinery for mRNA 

degradation (237, 238).  

Recent studies implicate miRNAs in directing myeloid development (239). Mir-27a has been 

shown to be important in myeloid development. It regulates the expression of GATA2, a 

transcription factor regulating hematopoiesis as well as mast cell development (240, 241). 

The mir-221/222 cluster has the ability to directly target KIT mRNA but has also been shown 

to indirectly inhibit Slug, a negative regulator of KIT (242, 243). In other cell systems KIT is 

directly targeted and down regulated by the mir-221/222 cluster (244). The cluster is 

upregulated upon mast cell activation but seems not to directly influence viability (245). 
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Instead cell cycle inhibitor p27klp1 is the effected target inhibiting proliferation and stem cell 

accumulation. Following studies indicate that mir-221 is a major regulator of mast cell 

effector functions as degranulation and migration due to cytoskeletal deregulation (246). 

Alteration of the mir-221 seed sequence in the KIT 3´UTR correlate with increased risk of 

acral melanoma (247).  Mast cell viability and homeostasis is regulated by mir-146a (248). 

Extensively implicated in allergic diseases Mir-155 is a regulator of mast cell effector 

function by targeting parts of the signal transduction. Mir-155 knockout mice display 

significantly increased passive anaphylaxis due to the alteration of the PI3Kγ pathway (249). 

Anaphylaxis is on the other hand reduced in mir-155 deficient mice in response to IL-10 

treatment via the alteration of Stat3 expression (250). In mast cell neoplasms the expression 

of mir-539 and mir-381 is reduced by KIT signaling and subsequently the target MITF is 

upregulated contributing to cell proliferation. (251). KIT is also the target of mir-193a (252). 

Mir-193a was found to be repressed in KIT mutated blast cells and when the expression was 

restored or mimicked the KIT expression was reduced and cell growth inhibited. 
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2 THE PRESENT STUDY 

2.1 AIM 

The overall aim of the study presented in this thesis was to investigate mast cell function in 

health and disease. 

The specific aims for papers I-VI were: 

Paper I: To study the in vivo reactivity of mast cells in patients with systemic mastocytosis. 

Paper II: To investigate the in vitro reactivity and genetics of mast cells developed in vitro  

from progenitor cells enriched from patients with systemic mastocytosis. 

Paper III: To analyze the sensitivity of KIT mutated mast cells to combinatorial treatment 

with ABT-737 and Roscovitine. 

Paper IV: To explore the effect of the deacetylase inhibitor SAHA on a KIT mutated cell line 

and primary bone marrow cells. 

Paper V: To examine the dependence of Bfl-1 for activation-induced mast cell survival. 

Paper VI: To reveal the in vivo function of the pro survival gene A1. 
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2.2 MATERIAL AND METHODS  

The methodology used in the study is briefly described herein. For a more detailed 

description please see papers I-VI. 

Chromatin immunoprecipitation 
ChIP assay was performed by crosslinking the chromatin to regulatory proteins using 

formaldehyde. The isolated nucleus was shredded and protein modifications of interest were 

extracted with bead separation. DNA was released from the protein and analyzed with PCR. 

Basophil Histamine release assay 
Blood donated from patients and health subjects were washed and incubated on the assay 

plates coated with anti-IgE for 30 minutes at 37°C before the plates were washed and sent to 

RefLab Aps for analysis on the Histareader™ 

Enzyme linked Immunosorbent assay (ELISA) 
ELISA was used to measure the release of prostaglandin D2 from human cultivated mast cells 

and to measure the release of murine mast cell protease 1 and 2.  

Flow cytometry 

Flow cytometry was used in most studies to analyze surface receptor expression using 
monoclonal antibodies with conjugated flourophores. It was also utilized in investigat ing the 

cell vibality by staining the cells with propidium iodine and AnnexinV.  

Histamine assay 

Supernatants from activated mast cells was incubated on the assay plates at 37°C for 30 
minutes before the plates were washed and sent to RefLab Aps (Copenhagen, Denmark) for 

analysis on the Histareader™ 

Histology 

Human tissue samples were taken using a 3 mm disposable punch, under local anaesthesia. 
Samples were snap frozen, embedded immediately in TissueTek OCT medium and stored at 
70°C. For staining, 6 mm thick sections were cut by cryostat. Tryptase containing cells were 

visualized using Z-Gly-Pro-Arg-4-methoxy-2-naphthylamide and Fast Garnet GBC. The 
protein of interest was stained immunohistochemically. Murine tissue specimens were fixed 

with paraformaldehyde and embedded in paraffin. Four-micrometer sections were stained 

with toluidine blue and fast green for histological examination and enumeration of mast cells 

In vitro cultures of human mast cells 
Peripheral blood mast cells were developed from whole blood donated by healthy controls or 

subjects recruited via the Mastocytosis center Karolinska where they were clinically 
evaluated. The CD34+ cells were separated using magnetic bead separation and were 
cultured for approximately seven weeks under both hypoxic and normoxic conditions with a 

cocktail of cytokines including SCF, IL-6, IL-9 and IL-4, as described by Lappalainen et al 
(253). At the end of the culture period the maturation of the cells was determined by 

enzymatic staining for tryptase activity. Cord blood derived mast cells were cultured from 
donated umbilical cord blood. Progenitor cells were cultured in StemPro medium 
supplemented with IL-3, SCF and IL-6. All participants were informed and provided their 

written informed consent to participate. 
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In vitro culture of murine mast cells 
Connective tissue mast cells were derived from bone marrow by culturing the cells in RPMI 
1640 with supplemented with FBS, L-glutamine, sodium pyruvate, nonessential amino acids, 

penicillin, streptomycin, 2-ME, SCF and murine IL-4. Mucosal-like mast cells were produced 
by culturing bone marrow cells in DMEM with FBS, L-glutamine, sodium pyruvate, 

penicillin, streptomycin, SCF, human TGF-1, murine IL-9 and murine IL-3. Peritoneal cell–
derived mast cells were generated by cultivating peritoneal cells in Opti-MEM complemented 

with FBS, L-glutamine, penicillin and SCF containing hybridoma supernatant harvested from 

CHO-KL cell cultures or murine SCF. 

Mast cell activation 
Mast cells both human and murine were activated for 30 min at 37°C before the reaction was 

stopped on ice. IgE-receptor activation was performed by incubating the human mast cells 
with IgE for 24 hours before being washed and anti-IgE was added. They were also activated 
with ionophore A23187, Morphine and Mannitol. Murine mast cells were sensitized with IgE 

by incubation with 15% hybridoma supernatant containing 1 mg/ml monoclonal mouse anti–
2,4,6-trinitrophenol (TNP) IgE Ab (IgEl-b4; American Type Culture Collection) for 90 min. 

The cells were then stimulated with 100 ng/ml TNP-BSA or ionomycin alternatively 
ionophore A23187. The supernatants were spun down and stored at -70°C until time for 

analysis. 

Mast cell lines 
The human mast cell lines HMC-1.1 and HMC-1.2 (were maintained in IMDM (Sigma) 

supplemented with 10% FCS, 2 mM L-glutamine, 100 IU/ml penicillin/streptamycine and 1.2 
mM monothioglycerol (254, 255). The human mast cell line LAD-2) was maintained in 

supplemented StemPro-34 SFM medium with 100 ng/ml SCF (256)  

Measurement of mast cell mediators in blood and urine 

Serum tryptase levels were measured with the ImmunoCAP® tryptase assay. The major 
urinary histamine metabolite tele-MIAA was measured by LC/MS and values were expressed 
as micromole per milimole creatinine (257). The early PGD2 metabolite, 11β-PGF2α, was 

measured in urine using a commercial enzyme immunoassay kit (Cayman Chemical Co., 
Inc., Ann Arbor, MI). Urine creatinine concentrations were measured by automated 

colorimetric Jaffe method.   

Methacholine and Mannitol provocation test  

Methacholine (MCh) (prepared at Karolinska University Hospital Pharmacy, Stockholm, 
Sweden) inhalation challenges were performed using a dosimeter-controlled jet nebulizer 

(Spira Electro 2; Respiratory Care Center, Hämeenlinna, Finland). For Mannitol provocation 
test, mannitol capsules (Aridol, Pharmaxis, Frenchs forest, NSW, Australia) were inhaled 
using a dry powder inhaler (Plastiape, Osnago, Italy). The challenge was initiated with an 

empty capsule and FEV1 was measured in duplicates 60s later. If the fall in FEV1 was <10% 
from baseline value, challenge proceeded, commencing with 5 mg of mannitol. Spirometry 

was performed 60s later and if the fall in FEV1 was < 15%, the dose of mannitol was 
increased stepwise (10, 20, 40, 80, 160, 160, 160 mg) until the fall in FEV1 was >15% or the 

maximum cumulative dose (635 mg) according to the protocol had been administered. 

microRNA analysis 
RNA was extracted using Trizol though isopropanol was exchanged for ice-cold absolute 

ethanol. The RNA was treated with heparinase for two hours at 25°C and then analyzed with 
qPCR or with Affymetrix® miRNA array 2.0 at the core facility for bioinformatics and 

expression analysis, Karolinska Institutet. 
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Passive cutaneous anaphylaxis 
Mice under anesthesia and analgesia were sensitized passively with IgE by intradermal 
injection in the ear pinnae of DNP-specific IgE antibodies or with PBS and were challenged 

24 hours later by intra venous injection with DNP. Ear swelling was measured immediately 

before and at 30-min intervals after antigen challenge for 6 h using a micrometer. 

Passive systemic anaphylaxis 
Mice were sensitized passively with IgE by intra peritoneal injection of DNP-specific IgE 

antibodies in PBS and then challenged 24 hours later with DNP in PBS. Body temperature 

was measured directly before and at 5-min intervals after antigen challenge for up to 1 hour. 

Quantitative polymerase chain reaction 
RNA was translated into cDNA by reverse transcription. The cDNA was amplified using 

gene specific primers that were either purchased ready-made or designed using Primer3+.  

Reduction of gene expression using small interfering RNA 

Cells were transfected using a gene specific siRNA pool with five siRNAs targeting different 
sequences in the target RNA. siRNA was introduced using an Amaxa Nucleoporator. 24 

hours post transfection dead cells were removed and the effect on gene inhibition was 

measured with qPCR. 

Serum concentration of IgE 
The serum concentrations of IgE (kE/L) were determined with (ImmunoCAP® Total IgE, 

ThermoFisher, Uppsala, Sweden). The specific IgE antibody test (ImmunoCAP® Phadiatop®, 

ThermoFisher) was applied in six patients. 

Skin prick test 
Skin prick testing (SPT) was performed with commercial extracts of standard aeroallergens 
(birch, timothy grass and mugwort pollens, cat, dog and horse dander, house dust mites, 

moulds) and food allergens (milk, egg, nuts, cereals, codfish, shrimp), and hymenoptera 
venom (bee and wasp). Additionally, SPT with the MC secretagogues morphine (10 mg/ml) 

was performed. As a positive and negative control we used histamine dihydrochloride 
10mg/ml and saline (NaCl 0.9%), respectively. A skin test panel was considered positive if 

the wheal diameter was at least 3 mm larger than that elicited by the saline control. 

Statistical analyses 

The statistical analyses were performed using GraphPad Prisim version 5 and differences 
were considered significant if p<0.05. All data have been presented as mean and SEM unless 
otherwise stated. Commonly student T-tests were used in two group comparisons and two-

way ANOVA with bonferroni posttest was used in multiple group comparisons.  

Study subjects  

In study I and II, 15 cases (≥18 years) with systemic mastocytosis (5 men and 10 women), 

with a median age of 48 years (21 to 69) were recruited. 13 healthy volunteers (eight women, 
five men), aged 22 to 55 years with no history of allergic diseases, and 11 subjects with 

allergic asthma (eight men, three women), aged 22 to 52 years constituted the control groups 
for the study. Exclusion criteria were usage of beta blockers; inability or refusal to undergo a 
bone marrow biopsy and aspirate, subjects with HIV or other known immunodeficiency, 

carcinoid syndrome, pheocromocytoma, pregnancy. 

Transgenic mice 
VVA1 and VVFF transgenic mice were generated by Dr Ottina at Innsbruck medical 

university (258). In our studies mice with a C57BL6 background was used. 6-12 old mice 
were used during the experiments according with Austrian legislation (BMWF-66.011/ 

0112II/3b/2012). 
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Western blot 
Cell lysate was separated with gel electrophoresis and transferred to a membrane where 

proteins were visualized using specific antibodies. 
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2.3 PAPER I; ANALYSIS OF IN VIVO MAST CELL REACTIVITY IN PATIENTS 

WITH SYSTEMIC MASTOCYTOSIS. 

Patients with systemic mastocytosis suffer from mediator related symptoms and in more 

severe cases organ failure due to mast cell infiltration.  One hypothesis is that individuals 

with systemic mastocytosis have mast cells with a more reactive phenotype, though this has 

never been proven scientifically. The aim of this study was to investigate whether patients 

with systemic mastocytosis have altered mast cell reactivity in vivo and/or if the target tissues 

have developed resistance to the circulating mast cell mediators. In this study we used two 

controls groups, healthy non-atopic controls and allergic asthma, the latter in order to 

compare to another mast cell associated disease. First we analyzed baseline levels of serum 

tryptase and the urinary metabolites of histamine, 1-methyl-4-imidazoleacetic acid (tele-

MIAA) and the PGD2 metabolite 11β – PGF2α. We also examined the histamine release 

from basophils, since the functionality of basophils in SM has previously not been examined 

and these cells could be a potential source of histamine. To investigate the reactivity of the 

target tissues we evaluated whether tissue responsiveness was altered in SM patients by skin 

prick test with morphine and histamine; and provocation with mannitol and methacholine of 

the airways. 

 

Figure 5, Serum and urinary analysis of histamine, tryptase and PGD2. A) Urinary 
levels of the major histamine metabolite tele-MIAA. B) Baseline serum tryptase levels (sBT). 
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C) Urinary levels of 11β-PGF2α, a metabolite of PGD2 in healthy controls and subjects with 
asthma or systemic mastocytosis (SM). The values presented are medians with interquartile 
ranges. D) Principal component analysis (PCA) of the relationships between tryptase, tele-

MIAA and 11β-PGF2α based on variance analysis, employing 62 urinary spot samples 
(performed in duplicate) and 31 serum samples. These variables were log-transformed and 

Pareto scaled. The extent of the variance explained by PC1 and PC2 was 79 and 14%, 
respectively. The extensive increase in their concentrations in some of the SM patients is 
reflected in the spread along PC1 axis. The SM patients formed a cluster that was clearly 

distinguishable from both the patients with asthma and the healthy controls. 

Serum tryptase as well as the urinary metabolites of histamine tele-MIAA and PGD2 11β – 

PGF2α, were significantly increased in patients with SM compared to the controls and 
formed a distinct group in a principal component analysis (Figure 5). Both patients with SM 
and controls showed an increase of release of histamine from basophils in a dose dependent 

way, however, there were no discernible differences between the groups. For the skin prick 
test we could not detect any differences between the groups, neither in response to morphine 

or histamine.  Likewise there was no indication of increased airway reactivity in patients with 
SM, i.e., no increase in airway responsiveness to mannitol or methacholine. 

In this study we demonstrate that patients with systemic mastocytosis have increased 

systemic levels of mast cell mediators, as previously described. Even so when mast cell 
stimulus was applied locally, in the skin and airways, there were no discernable differences in 

response between the groups. One hypothesis was that the end organs have somehow 
developed a resistance to the mediators. But when a pure mast cell mediator, i.e., histamine, 
was added locally to the skin, or methacoline was inhaled, the same response was recorded in 

individuals with systemic mastocytosis as in the control groups. It is well known that patients 
with mastocytosis have increased levels of circulating mast cell mediators. Since we could 

not provide data supporting the hypothesis of a hyperactive mast cell phenotype in systemic 
mastocytosis one interpretation of the data is that the increase in mast cell mediators is due to 
the increased number of mast cells. However, there might be a dysfunctional regulation of 

biosynthesis, storage or release of the mast cell mediators. Furthermore, we have in this study 
only investigated mast cells in the skin and in the airways, whereas SM patients are more 

prone to cardiovascular effects of mediator release rather than respiratory effects. Thus 
reactivity among mast cells might differ in different tissues in SM. Furthermore, SM patients 
are more prone to MC activation events following physical stimuli such as friction, 

temperature changes and exercise rather than pharmacologic stimuli.  

In conclusion we show that patients with systemic mastocytosis do no exhibit mast cell 

hyperreactivity in vivo. Neither is there evidence of a tissue resistance development as 
assessed by challenge with histamine or methacholine. Furthermore, no evidence of increased 
basophil reactivity was detected in these patients.  Our results suggest that the increased 

levels of mast cell mediators are due to the increase in mast cell numbers, but other 
dysfunctions in mediator synthesis, storage and release, or mast cell reactivity to other type of 

stimuli cannot be ruled out. 
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2.4 PAPER II; MAST CELLS FROM PATIENTS WITH MASTOCYTOSIS SHOW 

ALTERED MIRNA PROFILE AND OSMOTIC INDUCED HYPERREACTIVITY 

Paper II is another arm of the study on systemic mastocytosis. Whereas we in paper I 

investigated mast cell reactivity in vivo, in this part, paper II, we investigated mast cells in 

vitro. Here we aimed to further investigate the possibility of a hyperreactive mast cell 

phenotype and discern genetic differences beyond the KIT D816V mutation. Mast cells were 

developed in vitro from enriched CD34+ cells cultured in a cocktail of cytokines, including 

SCF. When cultures had reached a level of 90% tryptase positive cells, approximately seven 

weeks in culture, they were considered ready to be used. All patients with systemic 

mastocytosis carried at time of diagnosis mutated KIT in the bone marrow cells. However 

PCR specific to the D816V mutation revealed that none of the mast cell cultures harbored the 

mutation, suggesting that the CD34+ progenitor cells are D816V KIT negative. There were 

no differences between the groups in regard to the number of cells obtained at the end of the 

culture period. Surface expression of the FcεRI receptor was analyzed using flow cytometry 

and there was a trend pointing to increased expression of the receptor on cells from SM 

patients. We could not detect any differences between the groups in regard to the levels of 

histamine released after activation with calcium ionophore A23187, anti-IgE, morphine or 

mannitol (Figure 6 A). However the cells from the SM patients released significantly more 

PGD2 after activation with mannitol indicating a hyperactive cell type in response to 

alteration in osmolarity (Figure 6 B).  
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Figure 6. Release of histamine and PGD2 from activated in vitro developed mast cells. 
Mast cells were treated for 30 minutes with calcium ionophore A23187, morphine, mannitol 
or anti-IgE and the release of histamine (A) and PGD2 (B) was measured in the cell free 

supernatant. Healthy controls (open boxes)(n=6) and systemic mastocytosis (filled 

boxes)(n=11).  

Total RNA was analyzed on an Affymetrix ® miRNA array 2.0 to investigate the expression 
of 4544 noncoding RNAs in mast cells developed from SM patients and healthy controls, 

respectively. 13 miRNAs were identified with significantly different expression (p=0,001, 
q=0,36), either upregulated or down regulated, in cells from SM patients n=4 compared to 

healthy control n= 3 (Figure 7 A). Interestingly all of the miRNAs proved to have targets 
within the KEGG pathway of inflammatory mediator regulation of Transient Receptor 
Potential (TRP) channels. The subfamily of TRPV has been shown to contribute to how the 

nervous system is able to detect changes is osmolarity (259, 260). We further analyzed the 
mRNA on the  of three patients and two controls in order to narrow down the possible 

miRNA targets using the PrimeView™ Human gene array (Figure 7 B). It resulted in 47 
differentially expressed mRNAs. Four miRNAs had numerous targets within the deregulated 
mRNAs. The antisense RNA of the gene ABCC5 is a target of three of the upregulated 

miRNAs and is significantly down regulated in the patients (Figure 7 C). This antisense RNA 
has the ability to bind to the mRNA of ABCC5 and obstruct the receptor expression on the 

cell surface. Furthermore, ABCC5 is a member of a family of transporter proteins known to 

be responsible for the exodus of prostaglandins (261). 
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Figure 7. miRNA and mRNA expression in in vitro developed mast cells . (A) miRNA 

expression (B) mRNA expression C) mRNAs with target sequences for the detected 

miRNAs. 

 

In conclusion we show that mast cells cultured from progenitors retrieved from patients with 

mastocytosis release significantly less PGD2 then control cells. Analyzing the RNA we found 

a specific miRNA and mRNA profile for Mastocytosis. The deregulation of ABCC5 may 

explain the differences in PGD2 release.    
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2.5 PAPER III; ABT-737 AND ROSCOVITINE INDUCES APOPTOSIS IN A 

SYNERGISTIC FASHION IN MAST CELLS CARRYING THE D816V 

MUTATION 

Systemic mastocytosis is characterized by the accumulation of aberrant mast cells with D81V 

KIT mutation. The D816V KIT mutation renders the receptor to be phosphorylated and the 

downstream signaling pathways continuously activated. One effect of this autoactivation is 

the increased expression of the prosurvival members of the Bcl-2 family , a family of proteins 

which are the main regulators of cell survival (190). In this study we examined the effect of 

combinatorial treatment of KIT D816V positive mast cells with ABT-737 and Roscovitine. in 

order to target most of the pro survival Bcl-2 family members. ABT737 is a BH3-mimetic 

which inhibits Bcl-2, Bcl-XL and Bcl-w. Our group has previously shown that it ABT737 

induces apoptosis in cutaneous mast cells (178). Roscovitine is a CDK-inhibitor that also 

downregulate the expression of prosurvival Mcl-1 (262). 

We found that ABT-737 and Roscovitine both alone and in combination induced apoptosis in 

D816V positive HMC-1.2 mast cells (Figure 8). The cells were treated for 24 and 48 hrs with 

Roscovitine 10 or 30 µM, ABT 0.05 µM  or the combination of the two (ROS 10 µM  and 

ABT 0.05 µM). The combination of the drugs at suboptimal concentrations induced a marked 

reduction in cell viability. The combinatorial treatment reduced the expression of Mcl-1 and 

significantly upregulated the expression of proapoptotic BimEL.  

 

Figure 8. Low doses of ABT-737 and Roscovitine exhibit synergistic effects in inducing mast cell 

death. HMC-1.2 cells were treated with Roscovitine, ABT-737 or the combination of the two.  

Survival was measured after 24 and 48 hrs (top); the levels of BIMEL and Mcl-1 were measured after 

48 hours (bottom).  

 



 

32 

In conclusion we demonstrate that the antiapoptotic proteins of the Bcl-2 family are 

promising targets in the treatment of systemic mastocytosis. By combining the two drugs, in 

order to target most of the different pro-survival proteins, the doses can be reduced 

significantly. This would reduce the risk of severe side effects, increase the treatment efficacy 

and may hinder the development of drug resistance. 
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2.6 PAPER IV; HISTONE DEACETYLASE INHIBITOR SAHA MEDIATES MAST 

CELL DEATH AND EPIGENETIC SILENCING OF CONSTITUTIVELY 

ACTIVE D816V KIT IN SYSTEMIC MASTOCYTOSIS 

The aim of this study was to investigate the effect of the histone deacetylase inhibitor SAHA 

on mast cells with D816V mutation. HDAC inhibitors (HDACi) are small molecules that 

prevent the enzymatic removal of acetyl groups from the N-terminal tails of histones. SAHA 

is a pan inhibitor altering the expression of 5-15% of protein coding genes; approximately 

same number of genes are up and down regulated (263). SAHA is currently approved for the 

treatment of cutaneous T-cell lymphoma and in addition presently in numerous clinical trials. 

Previous studies in other cellular systems indicate that the KIT receptor is a promising target 

of SAHA (264).  

In this study we analyzed the effect of SAHA as well as other HDACi Romidepsin, 

Panobinostat and Valproic acid on the human mast cell line HMC-1.2 which carries the 

D816V KIT mutation. All four drugs induced apoptosis and reduced cell proliferation in a 

dose dependent fashion. The most extensive effect was achieved with SAHA treatment. 

Analysis of KIT receptor expression revealed a decrease in both mRNA levels and surface 

expression as well as in receptor phosphorylation.  

Knowing that the cells die and that the mutated receptor is targeted we continued to 

investigate the effect on fresh bone-marrow samples from patients with different forms of 

systemic mastocytosis. SAHA treatment had a profound effect on the bone marrow cells and 

the efficacy of the drug correlated to the severity of the disease (Figure 9).  
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Figure 9.Response to SAHA treatment in in mast cells isolated from bone marrow. A) Flow 

cytometry gating strategy for side scatter (SSC) and KIT expression (CD117), example of gating for 

CD117 positive cells. B) Staining of patient sample bone marrow mast cells upon incubation with 

SAHA for 48 h.  C) Decrease in surface KIT in patients vs controls D) Mast cell viability after 48h of 

SAHA treatment.  

To further investigate the mechanistic effect we examined the epigenetic stability of the 

genomic region around the KIT gene, focusing on the regulatory region as well as the genes 

up (KDR) and downstream (PDGFRα) of KIT. Using the active marks H3K18ac and 

H3K27ac and repressive marks H3K9me3 and H3K27me3 we could discern that in the KIT 

mutated cell line HMC-1.2 the KIT region is active already at baseline but the activation was 

significantly reduced with SAHA treatment (p<0.05 for -71, p<0.01 for -123 and KIT promoter 

region) (Figure 10). The surrounding genes though were silent at baseline but were activated 

with SAHA.  

 

 

 
Figure 10. ChIP qPCR of HMC1.2 cells with active and repressive histone H3 marks, corrected 
for H3 density over the KIT region. A) H3K27me3 repressive mark. B) H3K9me3 repressive mark. 
C) H3K27ac active mark. D) H3K18ac/H3 active mark.E) Illustration of the region and primers 

Genes in the region 

Primer location 
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In this study we show that the HDAC inhibitor SAHA is very effective at inducing apoptosis 

in aberrant mast cells because the KIT region is silenced at an epigenetic level. The 

mechanistic need to be further elucidated, but we suggest that SAHA should be considered in 

the treatment of the more aggressive cases of mastocytosis.  
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2.7 PAPER V; ANTI-APOPTOTIC BFL-1 IS THE MAJOR EFFECTOR IN 

ACTIVATION-INDUCED HUMAN MAST CELL SURVIVAL 

Mast cells are long lived tissue residing sentinels. In order to keep this function they need the 

capacity not only to survive the massive cellular rearrangement of degranulation but also to 

swiftly reform and restock the granules (89). Our group has previously demonstrated that the 

antiapoptotic protein Bfl-1/A1 is upregulated in activated mast cells and that mouse mast 

cells lacking the A1 gene do not exhibit activation induced survival (197). In this study we 

investigated the role of Bfl-1 in human mast cells to decipher if this is the main regulator of 

activation-induced mast cell survival.  

ABT-737 and Roscovitine failed to hinder activation induced survival following IgE cross 

linking indicating that neither Bcl-2, Bcl-XL, Bcl-w nor Mcl-1 are major regulators. However 

by inhibiting the expression of t Bfl-1 using siRNA the mast cells did not exhibit activation-

induced survival (Figure 11). To translate these data into an in vivo situation we examined the 

Bfl-1 expression in mast cells. In allergen provoked skin of allergic subjects we found a 

significant increase in the mast cell expression of Bfl-1 in the allergen challenged skin. 

Interestingly there was also an increase of Bfl-1 expressing mast cells in lesional skin of 

patients suffering from atopic dermatitis and psoriasis. Those diseases are not associated with 

IgE- receptor crosslinking but mast cells can also express IgG-receptor FcRI and activation 

through this also induces a similar survival program in mast cells (203).  
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Figure 11, Bfl-1 regulate activation induced survival and is upregulated in atopic skin. 

A) siRNA inhibit upregulation of Bfl-1 and Mcl-1. B) Silencing of Bfl-1 inhibit the increase 

of viability following IgE crosslinking. C) Co-staining of tryptase and Bfl-1 in atopic skin.  

 

In conclusion, in this study we demonstrate that Bfl-1 is the main regulator of activation- 

induced mast cell survival after IgE-receptor crosslinking. Since there was an increased 

expression of Bfl-1 in the mast cells in the provoked skin of patents with allergic disease we 

propose that Bfl-1 can be responsible for the increase in mast cell number and thus can serve 

as a therapeutic target for some groups of patients with cutaneous inflammatory diseases.  
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2.8 PAPER VI; KNOCKDOWN OF THE ANTI-APOPTOTIC BCL-2-FAMILY 

MEMBER A1 PROTECTS MICE FROM SYSTEMIC ANAPHYLAXIS 

In this study we continued to investigate the function of A1 in mast cell development and 

survival, and for mast cell driven reactions in vivo. Our previous studies showed that A1/Bfl-

1 is an important regulator of mast cell survival however the in vivo significance is poorly 

investigated. Due to the genetic location of the three A1 isoforms no traditional A1 knockout 

mouse has been possible to create. Ottina et al developed a constitutive knockdown of all A1 

isoforms in the hematopoietic system by RNA interference (258). 

Mast cells are highly heterogeneous but how the differences are regulated is poorly 

understood. Murine mast cells are generally divided into mucosal and connective tissue mast 

cells. They are located at different tissues and express diverse proteases. They are very 

diverse in their development and survival. Connective tissue mast cells are long lived and 

tissue resided. Mucosal mast cells are quickly recruited into the tissue after a helminth 

infection though only survives for a few weeks. 

Mucosal like and connective tissue like mast cell were cultured and the RNA interference 

was stable during the cultivation. The mucosal like mast cells did not appear to depend on A1 

for survival and differentiation. The connective tissue like mast cells on the other hand 

showed impaired mast cell survival after IgE-receptor crosslinking, similarly to previously 

described (201). The number of connective tissue mast cells in vivo were significantly 

reduced in ears and tongues of A1 knockout mice.  

Both passive systemic and cutaneous anaphylaxis was severely reduced in mice lacking 

A1expression and there was a significant reduction of mast cells in the dermis of the ear 

pinnae after passive cutaneous anaphylaxis (Figure 12). In passive cutaneous anaphylaxis 

DNP-specific IgE was injected into the ear pinnae (WT n=6, VVFF control n=7 and VVA1 

n=5), after 24h the mice were challenged by i.v injection of the DNP and ear swelling was 

investigated every 30 min for 6 hours. After 6 hours the number of mast cells in the ear 

pinnae was investigated and there were significant differences in mast cell numbers. 

Interestingly when peritoneal mast cell from A1 knockout mice were cultured in vitro we 

found that they do not proliferate at the same rate as the control samples. 
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Figure 12. A1-knockdown mice exhibit markedly reduced IgE-dependent cutaneous 

PCA. A) Passive cutaneous anaphylaxis, ear swelling was measured immediately before 
and at 30-min intervals after Ag challenges for 6 h. B) Numbers of mast cells in the dermis 

of ear pinnae at sites of PCA 6 h after DNP challenge. C) Representative toluidine blue 
staining of activated mast cells in ear pinnae. Arrows indicate mast cells. 

 

Mice which lack A1 expression do not respond to activation of the FcεRI receptor via IgE 

crosslinking to the same extent as control mice. They also have fewer mast cells in the tissue 

and interestingly mast cells recovered from the peritoneal cavity display impaired 

proliferation. To conclude we demonstrate that A1 is an important regulator in the 

development of connective tissue mast cells an important step in the understanding in mast 

cell heterogeneity. 

.  
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3 FUTURE PERSPECTIVE 

Though the mast cell was discovered in 1878 there are so many things we do not understand 

about them. The first hundred years they were mostly regarded as effector cells in allergic 

diseases. Currently though they are well recognized as an important part of the body’s host 

defense system. In this thesis I describe the work I have done to understand the mechanisms 

of mastocytosis, identifying a cure and to understand mast cell development and survival. 

Mastocytosis a rare disease but it is well worth to study. To me one of the most puzzling 

questing is exactly how the point mutation develops? Mastocytosis is not a hereditary disease 

though a few cases of familiar mastocytosis had been described. And most patients with 

systemic mastocytosis carry the same point mutation though in different compartments. So 

why this exact locus? What is it with this small genetic region that make different, unrelated 

people all around the world acquire the same exact mutation? Point mutations generally occur 

during replication but they can also be the result of DNA damage. Recent studies highlight 

the correlation between epigenetic changes and DNA mutations. The epigenetic network of 

DNA and histone modifications modify the DNA accessibility but also the genetic stability. 

TET2 along with other genes involved in DNA methylation have been shown to be mutated 

in mastocytosis by many groups. Also the general levels of DNA methylation has been 

shown to be reduced. We know from other neoplastic diseases that point mutations often 

occur at CpG sites. For this reason it would be interesting to investigate the epigenome of 

mast cells from patients with mastocytosis. To backtrack the cells from the mature mast cells 

back to the progenitor cells and study the DNA for mutations as well as alterations in the 

DNA stability and histone status. The D816V mutation is a founding event but perhaps the 

chain stats before that, with a slight shift in DNA stability? 

By increasing our understanding of the disease we may find new ways to treat the patients. At 

the moment different lines of therapies are being investigated; targeting the KIT receptor, 

inhibiting downstream pathways of KIT, utilizing surface molecules etc. Many of the drugs 

have severe side effects. Combinational treatments where drugs increase the efficacy by 

synergistically target parts of the same pathway is a way to reduce the drug dose which 

should reduce the side effects. For example a TKI could be combined with one or more 

molecular inhibitors. Within the field of TKI development many new KIT specific drugs are 

emerging however they have all different effects of the different KIT mutations. In the future 

of personalized medicine the analysis of the patient mutational status could direct the 

treatment.  

Mast cells are very heterogeneous their development entirely dependent of the release of 

cytokines from the surrounding tissue. This is a complex event activating multiple pathways 

and finally producing proteins to execute the receptor signals. Which proteins are expressed 

is largely depending on the epigenetic landscape of the cell. We have just started to scrape the 

surface on how mast cell development is regulated by epigenetic changes. Recently Damiani 

et al showed that platelet activating factor alter the expression of DNA methyltransferases1 

and 3b (265). At the same time the expression of histone acetyltransferase increases as do the 
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H3acetlyation. It is probable that similar events occur after activation of other cytokine 

receptors. Receptor stimulation leads thus to the opening of genes. It would be interesting to 

investigate how different stimuli alter the epigenetic genome and how that change gene 

transcription. It would also alter the transcription of noncoding RNAs. The latest study shows 

that there are almost four thousand miRNAs in the human genome but only a handful of them 

have been implicated in mast cell biology (266). Even fewer of them have been functionally 

studied but those investigations prove that miRNAs are vital in mast cell development in 

health and disease. Long noncoding RNAs (lncRNAs) are ten times longer than miRNAs and 

by far more numerous about the same numbers as of protein coding genes. They regulate 

gene transcription at multiple levels and by different mechanisms. For example by actively 

cooperate in transcriptional complexes and by binding and by inhibiting the mRNA produced 

however. Only a few lncRNAs have been characterized and studied in detail and next to 

nothing is known about lncRNAs and mast cells. There are some studies showing lncRNA 

influencing hematopoiesis by affecting transcription factors like GATA1 and TAL-1 both of 

which are important in mast cell development. A quick enquiry reveals there are 3 lncRNAs 

placed in the KIT gene. Their expression and function would be very interesting to 

investigate.  

There are many interesting lines of enquiry in the field of mast cell biology which are worth 

investigating. However I find that most new breakthroughs come after the development of 

new methods. Therefor it is hard to imagine what awaits around the corner. The 

implementation of the CRISPR/Cas9 technique into mast cell research will expose new 

frontiers. The first studies applying it in mast cell biology revealed the importance of 

carbonic anhydrase enzymes in mast cell development (267). 
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