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Preface 
 
 
 
 
It has been almost five years since I began the exciting journey of deciphering the 
molecular instructions for making blood cells. My fascination with stem cells and 
regenerative medicine dates back to my high school days when I wrote a final 
paper about stem cells’ potential to cure degenerative diseases. At the same time, 
the discovery that mature cells can be reprogrammed back into a pluripotent state 
with only four genes was published, which further strengthened my interest in the 
field. I was, therefore, thrilled to embark on a Ph.D. project that combined stem 
cells, developmental biology and reprogramming technologies. Today, more than 
10 years after the iPSC breakthrough, the field of cellular reprogramming has seen 
tremendous progress and has provided biologists with new tools to study and treat 
disease. Moreover, with the rise of direct lineage conversion and the ever-growing 
list of minimal intrinsic determinants of cell fates, one can envision a not-so-
futuristic scenario where any cell type could be produced à la carte. In this thesis, 
I will try to convince you that cellular reprogramming is a powerful tool not only 
to produce blood cells from skin cells, but also to teach us about how cellular 
identities are specified. I hope you enjoy reading it as much as I have enjoyed 
writing it! 

 
 
 

 
Sandra 

Lund, 29th November 2017 
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Background 

Blood Cells in the Making 

Overview of the hematopoietic system 

Blood is an essential liquid tissue in vertebrates. Flowing through an intricate 
network of blood vessels, it supplies the body with vital nutrients and oxygen, 
provides defense against pathogens and carries away waste products. Blood is 
largely composed of fluid plasma, making up 55% of the blood volume. The 
remainder represents several cellular components with highly specialized 
functions. These components make up three major groups: red blood cells (RBCs) 
or erythrocytes, that collect oxygen from the lungs and deliver it to the body’s 
tissues; platelets, which are essential for blood clotting and wound healing; and 
white blood cells. The latter form the immune system, which can be further 
divided into the innate and adaptive systems. Cells of the innate immune system 
include granulocytes, monocyte/macrophages, dendritic cells and Natural Killer 
(NK) cells, which mediate a rapid defense against pathogens involving 
phagocytosis and induction of inflammatory responses. In contrast, cells of the 
adaptive immune system provide a slower and more specific response by killing 
infected cells (T-lymphocytes) or by producing antibodies against exogenous 
antigens (B-lymphocytes). 

Mature blood cells are predominantly short-lived, and thus need continuous 
replacement to be maintained in constant numbers. This is possible thanks to a 
continuous process termed hematopoiesis, from Greek haîma (αίµα) for “blood” 
and poíēsis (ποίησις) meaning “to make”. Hematopoiesis relies on a small number 
of bone marrow (BM)-residing hematopoietic stem cells (HSCs) that self-renew –
produce additional HSCs through cell division– and give rise to all blood cell 
lineages (reviewed in Orkin, 2000). Remarkably, healthy adult humans are 
estimated to produce up to one trillion (1012) blood cells a day (reviewed in 
Ogawa, 1993). To cope with this enormous proliferative demand, hematopoiesis 
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occurs in a highly coordinated hierarchical manner where HSCs give rise to many 
intermediate progenitors with restricted differentiation but extensive proliferation 
capacity (Figure 1). Historically, evidence supporting this hierarchical model has 
been largely acquired through the use of in vitro colony forming cell (CFC) assays 
and in vivo transplantation. CFC assays identify and quantify lineage-restricted 
progenitors by their ability to form colonies of maturing cells, such as 
granulocyte/monocyte, erythroid or megakaryocyte colonies (Gregory et al., 1973; 
Iscove et al., 1970; Worton et al., 1969; Wu et al., 1968). On the other hand, 
transplantation provides information about the capacity of a cell to engraft, self-
renew and differentiate into the full spectrum of blood cell lineages in an in vivo 
environment (Ford et al., 1956; Jacobson et al., 1951). Because transplantation 
allows longevity to be measured for as long as the recipient lives, ‘true’ stem cells 
can be identified (reviewed in Coulombel, 2004). Thus, HSCs are functionally 
defined by their ability to provide lifelong reconstitution of the entire blood system 
of a recipient. However, as new technologies emerge, the classical view on the 
dynamics with which HSCs contribute to hematopoiesis continues to be revised. 
Recent studies employing genetic fate mapping and clonal marking suggest that 
long-lived progenitor cells downstream from HSCs are the main drivers of steady-
state hematopoiesis during most of adulthood, and that native hematopoiesis 
differs from post-transplantation hematopoiesis (Busch et al., 2015; Sawen et al., 
2016; Sun et al., 2014).  

The blood system has long served as a paradigm to study the biology of adult 
stem cells. HSCs are arguably the best characterized tissue-specific stem cell and 
the only stem cells in routine clinical use to date, with HSC-containing grafts 
being used to treat a wide range of hematological disorders (reviewed in Bryder et 
al., 2006; Copelan, 2006). The development of fluorescence-activated cell sorting 
(FACS) technology coupled to in vitro and in vivo functional assays has enabled 
the prospective isolation as well as delineation of the hierarchical relationship of 
HSCs and progenitor cells. This, in turn, has also promoted the study of intrinsic 
and extrinsic regulators of cell fate in hematopoiesis.  

Intrinsic and extrinsic regulation 
Central to the intrinsic regulation of cellular phenotypes are transcription factors 
and their interactions within gene regulatory networks (GRN) (reviewed in Orkin, 
2000). Insights into the functions of the critical transcription factors for 
hematopoiesis have been established by gene-targeting knockout mouse models, 
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as well as forced expression experiments, complemented by studies in other model 
organisms, such as zebrafish or Xenopus (reviewed in Ciau-Uitz et al., 2010; Orkin 
and Zon, 2008) (Figure 1). With these methods, one can distinguish between 
factors required for HSC formation/function and factors controlling lineage-
specific differentiation. Examples of “HSC transcription factors” are TAL1 (also 
known as SCL), Runx1, MLL, Tel/Etv6 and LMO2, whose genes account for the 
majority of leukemia-associated translocations in patients (reviewed in Orkin, 
2000; Proytcheva, 2011). As for lineage-restricted factors, they hold the dual role 
of promoting their own lineage differentiation while antagonizing another. 
Examples of this principle are illustrated at several levels. In the common myeloid 
progenitor (CMP), for instance, PU.1 and GATA1 antagonism leads to the 
bifurcation into granulocyte/macrophage progenitors (GMP) and 
megakaryocyte/erythroid progenitors (MEP), respectively (Zhang et al., 1999; 
Zhang et al., 2000). Similarly, Friend of Gata1 (FOG1) drives CMPs towards the 
megakaryocyte/erythroid lineage while blocking myeloid differentiation by 
antagonizing C/EBPa (Mancini et al., 2012). Other examples of cross-regulation 
include EKLF and Fli-1 for erythroid versus megakaryocytic cell fate (Starck et 
al., 2003), and Gfi1 and PU.1 for granulocyte versus monocyte/macrophage 
differentiation (Dahl et al., 2007). Importantly, most of these factors do not act 
only on one level, but are deployed at multiple stages of blood development. This 
allows decisions to be inherited from one progenitor to the next, making it possible 
to re-use a transcription factor in a different network context (reviewed in Graf and 
Enver, 2009).  

Cell fate choices are also dictated by extracellular signals, for example, by 
hematopoietic cytokines. Cytokines are secreted proteins that affect multiple 
aspects of every hematopoietic cell type, including survival, proliferation, 
maturation and functional activation (reviewed in Rieger and Schroeder, 2009). 
Key cytokines acting on both HSCs and progenitors are depicted in Figure 1. It has 
so far been difficult to unequivocally demonstrate whether cytokines instruct cell 
fate changes or merely allow the survival and proliferation of precursors that have 
already intrinsically committed to one lineage. This is because most, if not all, 
cytokines exhibit pleiotropy –multiple biological actions– and redundancy –shared 
biological actions– (reviewed in Rieger and Schroeder, 2009; Zhang and Lodish, 
2008). Further studies will be required that analyze the capacity of individual 
cytokines to instruct lineage choice, and to integrate with other cytokine signals 
and with intracellular transcription factor networks in specific cell types, 
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preferably at the single-cell level (reviewed in Rieger and Schroeder, 2012). 
Cytokines involved in the development of specific blood lineages will be 
discussed in detail in the following chapters.  

 

Figure 1. Schematic overview of the adult hematopoietic hierarchy 
Hematopoiesis is a hierarchical process in which HSCs give rise to every effector blood cell type through a series of 
increasingly lineage-restricted progenitor and precursor cells (adapted from Doulatov et al., 2012). Examples of 
transcription factor antagonism during lineage determination, as well as factors necessary for the development of 
specific progenitors and precursors are depicted in red. Key cytokines acting at different stages are displayed in blue.   
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Ontogeny of hematopoiesis 

To understand how the different tissues of the adult organism develop, it is 
important to define their embryonic origins. Tracing the origins of the 
hematopoietic system is complicated because blood is a mobile tissue and because 
hematopoiesis in the mammalian conceptus occurs in many sites that are separated 
both anatomically and temporally (reviewed in Dzierzak and Speck, 2008).  

The ontogeny of blood formation has been investigated in multiple model 
systems from Drosophila to human, including the frog, chick and fish (Dieterlen-
Lievre and Martin, 1981; Kau and Turpen, 1983). However, study of the mouse 
has proven integral to our understanding of hematopoietic development and 
emerged as an invaluable mammalian counterpart to human to study the embryo. 
This is mainly because of the ready availability of functional assays for HSCs and 
progenitor cells and the growing accessibility of mouse genetics to create 
transgenic models (reviewed in Schmitt et al., 2014). Most findings described in 
this section will therefore refer to studies made in the murine system. 

From mesoderm to hematopoietic fate 
During implantation of the blastocyst, the cells of the inner cell mass –which are 
termed pluripotent because of their ability to generate every cell in the organism– 
undergo a series of commitment steps, resulting in the formation of the epiblast 
and the hypoblast. The epiblast subsequently forms the amniotic cavity and the 
embryonic epiblast (embryo proper), while the hypoblast (also called primitive 
endoderm) gives rise to the yolk sac (YS). Around embryonic day (E) 6.5 (E6.5), 
the embryonic epiblast is transformed into the three primordial germ layers 
(ectoderm, mesoderm and endoderm) in a process termed gastrulation. Each of 
these three layers gives rise to a different set of tissues: the ectoderm forms the 
epidermis and the nervous system, the endoderm forms the digestive and 
respiratory systems, and the mesoderm gives rise to muscle, bone, heart, 
connective tissue, blood vessels and blood (Schoenwolf and Larsen, 2009). A key 
feature of gastrulation is the formation of the primitive streak (PS), a structure that 
changes the embryo from a bundle of cells into an entity with a defined 
longitudinal axis around which other features can orientate. Cells entering the PS 
adopt different fates depending on their position relative to the axis.  

The first mesoderm cells emerge from the posterior part of the PS and give rise 
to the extraembryonic mesoderm that forms the allantois and amnion, as well as 
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the blood and vasculature of the YS (Kinder et al., 1999). As gastrulation 
proceeds, progenitors for the embryonic mesoderm migrate through more anterior 
parts of the PS and gradually generate different mesoderm sub-lineages: lateral 
plate mesoderm (LPM, precursor to the gut wall and intra-embryonic blood and 
vascular systems), intermediate mesoderm (precursor to the urogenital system), 
paraxial mesoderm (precursor to the somites) and axial mesoderm (precursor to 
the notochord) (reviewed in Tam and Loebel, 2007). This patterning is largely 
influenced by signaling cues from several members of the TGFb/BMP, Nodal and 
Wnt families (reviewed in Arnold and Robertson, 2009). Thus, the timing and site 
of ingression through the PS, as well as exposure to different signaling cues, 
directly influence mesoderm sub-lineage specification. The hematopoietic and 
vascular systems are therefore derived from at least two different mesoderm sub-
lineages during development: the extra-embryonic mesoderm and the LPM.   

As the embryo grows in size and complexity, the demands for oxygen and 
nutrient supply, as well as immunity and waste disposal increase. These needs are 
met by the production of successive hematopoietic systems, or so-called 
“hematopoietic waves”, before culminating in the formation of HSCs that will 
sustain life-long hematopoiesis in the adult. Hematopoietic waves can be broadly 
classified in “primitive” and “definitive” waves and will be the focus of discussion 
until the end of this chapter (Figure 2). 

Primitive yolk sac hematopoiesis 
Primitive hematopoiesis refers to the earliest wave of transient blood formation 
that occurs in the extra embryonic YS at E7.25 and produces a limited range of 
hematopoietic sub-lineages: erythroid, megakaryocyte and macrophage 
progenitors (reviewed in Palis, 2016). Primitive erythroid cells arise from a 
distinct progenitor called primitive erythroid colony-forming cell (EryP-CFC) that 
transiently expands in numbers within the YS and gives rise to large nucleated 
erythroblasts expressing embryonic globins. These macrocytic erythroblasts begin 
to circulate into the embryo proper with the onset of cardiac contractions at E8.25, 
undergo terminal maturation and ultimately enucleate between E12.5 and E16.5 
(Fraser et al., 2007; Ji et al., 2003; Kingsley et al., 2004). Enucleated primitive 
erythrocytes are found in the circulation of mouse pups for several days after birth. 
Similarly, primitive megakaryocytic potential arises from a megakaryocyte colony 
forming cells (Meg-CFC), which are also first detected in the YS of the mouse 
conceptus at E7.25. The emergence of Meg-CFC at the same time and location as 
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EryP-CFC has led to postulate the existence of a common progenitor for the two 
lineages, as it is the case in the adult with the bipotential MEP. Indeed, 
experimental evidence for ‘primitive’ MEPs has been provided using a CFC assay 
with lineage-specific immunohistochemical stains to identify the megakaryocyte 
and primitive erythroid cells present within the same colony (Tober et al., 2007). 
The product of this primitive wave also comprises macrophage potential, with 
macrophage colony-forming cells (Mac-CFC) emerging in the YS at E7.25. These 
‘primitive’ macrophages are thought to be the source of microglia cells in the brain 
(reviewed in McGrath et al., 2015b). 

The precise cellular origin of these first hematopoietic cells still remains 
controversial. They were initially thought to arise from a common precursor, the 
hemangioblast, giving rise to both the endothelial and blood cells that constitute 
the YS blood islands (Haar and Ackerman, 1971). Evidence for the existence of 
hemangioblasts was provided in embryonic stem cell (ESC) differentiation 
cultures with the identification of blast colony-forming cells (Blast-CFC) that 
generated colonies with hematopoietic, endothelial and smooth muscle potential 
(Choi et al., 1998). Similar in vivo potential was also detected in the primitive 
streak region of E7.5 mouse embryos (Huber et al., 2004). However, studies 
involving fate-mapping and clonal labelling of mouse embryos have concluded 
that the earliest blood and endothelial lineages within the YS are not clonally 
related, suggesting that if hemangioblasts indeed exist, they are an extremely 
infrequent and/or transient population (Padron-Barthe et al., 2014; Ueno and 
Weissman, 2006). 

Definitive erythro-myeloid progenitor-derived hematopoiesis  
Studies in the mouse have shown that primitive hematopoiesis is not sufficient to 
support embryonic survival until HSCs are functional. At E8.25, just prior to the 
onset of circulation, a second wave of YS-derived hematopoiesis takes place, 
producing erythro-myeloid progenitors (EMP) with a broader differentiation 
capacity than primitive hematopoietic progenitors. EMPs are then released into the 
circulation and seed the fetal liver (FL), where they differentiate into definitive 
erythroid, megakaryocyte, macrophage, neutrophil and mast cell lineages by E11.5 
(reviewed in Frame et al., 2013; McGrath et al., 2015a). This second wave is 
generally considered “definitive” because it generates erythroid cells with adult 
characteristics (smaller in size and expressing mostly adult globins), although this 
designation is still controversial because the term “definitive” has been used by 
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several authors to refer exclusively to adult-repopulating HSC activity (reviewed 
in Frame et al., 2013). In addition, EMPs are the source of tissue-resident 
macrophage populations that persist in multiple organs throughout adulthood 
(Gomez Perdiguero et al., 2015). Altogether, EMP-derived and primitive 
hematopoiesis are sufficient to support the survival until birth of mouse embryos 
lacking HSCs (Chen et al., 2011).  

Recently, a unique cell surface phenotype for EMPs has been identified (ckit+ 
CD41+ CD16/32+) that facilitated their isolation and analysis. While CD41 and 
CD16/32 also mark maturing megakaryocytes and macrophages, respectively, ckit 
has been found to unambiguously label emerging EMPs in the YS (Frame et al., 
2016). EMPs also express endothelial markers, suggesting an endothelial ancestry 
(McGrath et al., 2015a). In line with this, endothelial cell clusters containing ckit+ 
Runx1+ cells are found within the vascular plexus of the YS as EMP first emerge 
(Frame et al., 2016; Li et al., 2005). Moreover, in Runx1-null mouse YS there is a 
complete lack of ckit+ CD41+ CD16/32+ EMPs, while maturing primitive 
erythroid, megakaryocyte and macrophage populations remain intact (Frame et al., 
2016). These studies support the notion that EMP emerge from endothelial cells in 
a Runx1-dependent manner, a process called endothelial-to-hematopoietic 
transition (EHT). 

Multipotent progenitors with lympho-myeloid potential 
Several studies have recently demonstrated that lymphoid and lymphomyeloid 
multipotent progenitors, including B-1 cell progenitors, also arise before HSCs, 
challenging the long-lasting belief that lymphoid potential is an exclusive feature 
of HSC-derived hematopoiesis (Boiers et al., 2013; Inlay et al., 2014; Kobayashi 
et al., 2014; Yoshimoto et al., 2011; Yoshimoto et al., 2012). These progenitors, 
devoid of long-term repopulation ability, have been detected in the mouse YS as 
early as E9.5, as well as in the para-aortic splanchnopleura (the precursor of the 
aorta-gonad-mesonephros (AGM) region). It is still unclear if they all emerge from 
a common lymphomyeloid progenitor wave or independently from each other, and 
what their relationship with EMPs is. 

Definitive hematopoietic stem cell-derived hematopoiesis 
The presence of transplantable HSCs in cord blood indicated that HSCs emerge 
during embryogenesis. It was previously thought that HSCs arise in the YS 
(Moore and Metcalf, 1970), however, later studies involving transplantation of 



23 

cells from various regions of the E8-E12 mouse embryo unequivocally 
demonstrated that HSCs capable of engrafting and repopulating myeloablated 
adult recipients first arise at E10.5 in the AGM region of the dorsal aorta (de 
Bruijn et al., 2000; Medvinsky and Dzierzak, 1996; Muller et al., 1994). Other 
sites are known to generate HSCs de novo shortly after, including the placental 
labyrinth, vitelline and umbilical arteries and YS (de Bruijn et al., 2000; Gekas et 
al., 2005; Gordon-Keylock et al., 2013; Kumaravelu et al., 2002; Robin et al., 
2009). After emergence, HSCs migrate through the circulation and colonize the 
FL, which provides the environment for their successful expansion and maturation 
(Ema and Nakauchi, 2000). They subsequently colonize the BM, where they 
ultimately reside, mostly quiescent, during the lifetime of the organism. HSC’s 
long-term repopulating ability has been associated temporally and spatially with 
clusters of round hematopoietic cells budding from endothelium via Runx1-
dependent EHT (Chen et al., 2009b; de Bruijn et al., 2002). 

 

Figure 2. Current model of hematopoietic ontogeny in the murine embryo over time 
During development, several waves of hematopoietic progenitors with distinct multilineage differentiation capacity 
emerge to support survival and growth of the embryo. The first, primitive wave (red arrows), emerges in the yolk sac 
at E7.25 and consists of primitive erythroid (EryP), megakaryocyte (Mk) and macrophage (Mac) lineages. EryP 
mature semi-synchronously in the bloodstream between E9.5 and E12.5. The second wave (blue arrows) consists of 
erythro-myeloid progenitors (EMP) which emerge in the yolk sac beginning at E8.25, seed the newly formed fetal liver 
and give rise to definitive erythroid (EryD), Mk, Mac, neutrophil and mast cell (Neu/Mast) lineages. Lymphomyeloid 
potential is also detected in the yolk sac and embryo proper before HSCs emerge. The final wave (black arrows) 
involves HSCs, which first arise at E10.5 in large arterial vessels of the embryo and subsequently seed the fetal liver, 
where they undergo expansion and maturation until around birth. HSCs eventually colonize the bone marrow, where 
they reside after birth and throughout post-natal life. The timeline at the bottom illustrates the developmental time 
points (in days post-coitum) (adapted from Palis, 2016). 
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From Stem Cells to Red Blood Cells 
Red blood cells (RBC), otherwise known as erythrocytes, constitute the most 
common cell type in the blood. They are pivotal to the survival of all vertebrate 
organisms, fulfilling the essential functions of transporting oxygen and facilitating 
gas exchange in the lungs and peripheral tissues. Oxygen is bound and transported 
by hemoglobin molecules, which are composed of four globular protein subunits 
and a heme group, and take up 98% of the cytoplasmic protein content in RBCs 
(D'Alessandro et al., 2010). RBCs have a limited lifespan, approximately 40 days 
in adult mice and 120 days in adult humans, so they constantly need to be 
generated to maintain the red cell mass. Healthy human adults produce 
approximately two million RBCs every second in a process called erythropoiesis. 
Erythropoiesis is required in all stages of life and occurs at multiple anatomical 
sites during ontogeny, leading to the formation of two distinct types of RBCs: 
primitive (embryonic) and definitive (adult) (Dzierzak and Philipsen, 2013). The 
presence of two developmentally and morphologically distinct populations of 
erythroid cells was first reported more than a century ago and has been the subject 
of intense research over the last decades (Maximow, 1909; reviewed in Palis, 
2014). This chapter will summarize advances in our understanding of how the 
erythroid lineage develops and is regulated. 

The definitive erythroid compartment 

The classical model of HSC-derived, definitive erythropoiesis begins with 
multipotent HSCs and progresses through a series of lineage-committed erythroid 
progenitors and precursors, which terminally differentiate to enucleated 
erythrocytes. This process takes place in the FL during development and 
postnatally in the BM. Importantly, as explained in the previous chapter, definitive 
erythropoiesis also occurs in the YS beginning at E8.25, as part of EMP-derived 
hematopoiesis (reviewed in Palis, 2016). 

As depicted in Figure 3, the earliest committed definitive progenitor, the slowly 
proliferating burst forming unit erythroid (BFU-E), gives rise to the rapidly 
dividing colony forming unit erythroid (CFU-E). These progenitors are defined by 
their capacity to form colonies of mature erythroid cells in semisolid media: BFU-
E-derived colonies require 7 and 14 days to develop in mouse and human systems, 
respectively, and typically contain a thousand erythroid cells; while CFU-E-
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derived colonies require only 2 and 7 days in mouse and human systems, 
respectively, and consist of 16-32 cells. In turn, CFU-E differentiates into 
morphologically distinct, nucleated precursors that undergo a stepwise maturation 
from proerythroblast (ProE) to basophilic (BasoE), polychromatophilic (PolyE), 
and orthochromatic (OrthoE) erythroblast forms. This maturation is characterized 
by progressive (1) decrease in cell size, (2) nuclear condensation, (3) decrease in 
RNA content, (4) erythroblast expansion through a limited set of symmetric cell 
divisions and (5) massive accumulation of hemoglobin (reviewed in Palis, 2014). 
Lastly, OrthoEs exit the cell cycle and form reticulocytes by extruding their nuclei. 
Enucleation takes place in the FL and BM within erythroblastic islands, structures 
composed of erythroblasts physically attached to macrophages (reviewed in Chasis 
and Mohandas, 2008). Soon after OrthoEs enucleate, pyrenocytes (extruded 
nuclei) provide an “eat me” signal so they can be ingested by macrophages. The 
reticulocyte is then released into the blood stream where it matures into an 
erythrocyte. Reticulocyte maturation results in a 20% loss of plasma membrane 
surface area, decreased cell volume, a tighter association of the cytoskeleton to the 
plasma membrane and the loss of all residual cytoplasmic organelles, including 
mitochondria and ribosomes (Waugh et al., 2001). All these changes convert the 
reticulocyte into a biconcave disc with a diameter of 6-8 µm and increased 
viscoelasticity, i.e. the mature RBC. These features enable RBCs to flow through 
the smallest capillaries in the tissues and maximize the surface area for gas 
exchange. 

Cell membrane proteins have been identified that are selectively expressed or 
repressed during erythroid maturation and can be tracked by FACS to isolate and 
analyze the different erythroid compartments. For example, the transferrin receptor 
(CD71) is upregulated in the transition from murine BFU-E to CFU-E. Likewise, 
ckit is expressed from the HSC-level until the early ProE stage. When CFU-Es 
differentiate into erythroblasts, erythroid specific protein Ter119 is upregulated 
while expression of CD71 is progressively lost (Figure 3) (Kina et al., 2000; 
Koulnis et al., 2011; Liu et al., 2013a). One study showed that CD44 is a more 
effective surface marker to distinguish between erythroblasts at different stages of 
maturation than CD71 (Chen et al., 2009a). As for globin genes, definitive 
erythroid cells express “adult” b1-, b2- and a-globin genes in the mouse, and 
“fetal” g-, “adult” b-, and a-globin genes in the human. 
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The primitive erythroid compartment 

Primitive erythropoiesis emerges in the YS of the mouse conceptus from a 
transient wave of progenitors, the EryP-CFC, that first emerge at E7.25, peaks in 
numbers at E8.25 and are no longer detectable at E9.0 (Palis et al., 1999). EryP-
CFC form colonies in vitro that require 5 days to develop and contain several 
hundred mature primitive erythroid cells, a potential that is intermediate to that of 
the definitive BFU-E and CFU-E progenitors. Primitive erythroid cell maturation 
is also characterized by the progression of cells through progenitor, precursor and 
mature RBC compartments. However, unlike definitive erythropoiesis, primitive 
precursor maturation happens semi-synchronously in the bloodstream between 
E9.5 and E12.5. By E12.5, the primitive erythroblasts have reached the 
orthochromatic stage and cell division terminates.  

Primitive erythroid cells express a unique set of globin genes that has 
historically facilitated their identification and study. In mouse, the embryonic eg-, 
bH1-, z- and a-globin genes are expressed, while the e-, g-, z- and a-globin genes 
are expressed in human. Embryonic globins have also been used as a marker to 
unequivocally identify primitive erythroid cells in the mouse conceptus and 
demonstrate that these enucleate in the bloodstream between E12.5 and E16.5 
(Fraser et al., 2007; Kingsley et al., 2004; Palis, 2014).  

Not so much is known about primitive erythroblasts maturation and the 
components of their membrane cytoskeleton during this process. One study 
showed that primitive erythroid cells lose 35% of their surface area and 50% of 
their volume between E14.5 and E17.5, independently of whether or not the cells 
enucleate. This suggested that, unlike definitive erythropoiesis, membrane 
remodeling and enucleation may be uncoupled processes in terminally mature 
primitive erythroid cells (Waugh et al., 2013). 

Extrinsic regulation of erythropoiesis 

Erythropoiesis is a dynamic process that responds to oxygen tension in the body 
and is tightly regulated through both intrinsic and extrinsic factors. Extrinsic 
factors, such as cell adhesion molecules, cytokines and growth factors, are mostly 
provided by the microenvironment (or niche) where erythroid cells develop.  

As for definitive erythropoiesis, BFU-Es are responsive to cytokines including 
insulin like growth factor 1 (IGF-1), glucocorticoids (GC), the stress hormone 
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cortisol, interleukin 3 (IL-3), interleukin 6 (IL-6) and stem cell factor (SCF). The 
latter binds to its receptor ckit, whose expression is high in both BFU-Es and 
CFU-Es and declines at the ProE stage. SCF is required for proliferation of 
erythroid progenitors and disruption of its signaling cascade impairs erythroid 
recovery following stress (Broudy et al., 1996). Also, SCF and hypoxia have been 
shown to synergize with BMP4 to promote the expansion and differentiation of 
BFU-E during the recovery from acute anemia (Perry et al., 2007). At subsequent 
stages, the major extrinsic regulator is the clinically relevant erythropoietin (Epo). 
Epo is produced in the FL and adult kidney in response to hypoxia and it interacts 
with cells expressing its receptor, EpoR. CFU-Es are exquisitely dependent on 
EPO for their survival and differentiation, but not for their generation (Koury and 
Bondurant, 1990; Wu et al., 1995). Epo signaling is no longer required at the late 
phases of erythroid maturation. Consistent with this, EpoR expression peaks at the 
CFU-E and ProE stages, but is downregulated as erythroid progenitors undergo 
terminal differentiation (Broudy et al., 1991; Zhang et al., 2003). Epo binding 
triggers the homodimerization of EpoR and initiates a signaling cascade through 
Jak2/Stat5, PI3K/AKT, and MAPK pathways (reviewed in Richmond et al., 2005). 
The Jak2/Stat5 pathway appears to mediate the anti-apoptotic effect of Epo via 
induction of Bcl-xL (Socolovsky et al., 1999). Moreover, exogenous expression of 
Bcl-xL in primary murine erythroblasts allows these cells to undergo terminal 
maturation without the presence of cytokines (Dolznig et al., 2002). GCs, in turn, 
are lipophilic hormones that act through binding and regulating the transcriptional 
activity of glucocorticoid receptors (GCR). GCs have been shown to cooperate 
with Epo and SCF to induce proliferation of erythroid progenitors in vitro, and 
mice deficient for GCRs exhibit normal erythropoiesis but fail to increase 
erythrocyte production upon stress (Bauer et al., 1999; von Lindern et al., 1999). 
More recently, Flygare et al. demonstrated that GCs induce limited self-renewal of 
BFU-Es, but not of CFU-Es or erythroblasts. Additionally, they showed that many 
of the genes induced by GCs in BFU-Es contain binding sites for hypoxia-induced 
factor 1a (HIF1a), denoting a synergistic effect between these factors on 
promoting BFU-E self-renewal (Flygare et al., 2011). TGF-b signaling has also 
been implicated in regulating early steps of erythropoiesis. Specifically, blocking 
TGF-b signaling by receptor kinase inhibitor increases BFU-E self-renewal and 
total erythroblast production (Gao et al., 2016). 
As for primitive erythropoiesis, Epo also seems to be playing a critical role. EpoR 
is expressed in YS blood islands between E7.5-E8.5 and in the YS of E9.5-E11.5 
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mouse embryos (Makita et al., 2001; McGann et al., 1997). Addition of Epo in 
E7.5 mouse YS explants was shown to increase erythroid cell numbers and 
embryonic globin expression (Palis et al., 1995). Moreover, disruption of EpoR 
caused severe retardation in the proliferation of mouse primitive erythroblasts after 
E9.5 (Lin et al., 1996). Recently, Suzuki et al demonstrated that neuroepithelial 
cells of E8.5-E11.5 mouse embryos express Epo and are likely the source of this 
hormone sustaining primitive erythropoiesis (Suzuki et al., 2013). Furthermore, 
primitive erythroid progenitors, unlike their definitive counterparts, do not self-
renew when cultured ex vivo in the presence of EPO, SCF and dexamethasone (a 
synthetic GC hormone), a difference connected to the differential expression of the 
receptors for the latter two factors (England et al., 2011; Palis, 2014).  

 

Figure 3. Schematic overview of adult erythropoiesis 
Formation of RBCs from HSCs progresses through a series of lineage-committed erythroid progenitors and 
precursors, which terminally differentiate to enucleated erythrocytes. The earliest committed progenitor, the slowly 
proliferating burst forming unit erythroid (BFU-E), gives rise to the rapidly dividing colony forming unit erythroid (CFU-
E). In turn, CFU-E differentiates into morphologically distinct precursors that undergo a stepwise maturation 
characterized by a progressive decrease in cell size, reduced proliferative capacity, nuclear condensation and 
massive accumulation of hemoglobin. Cytokines and transcription factors that influence this process are depicted in 
red and black, respectively. Bottom panels represent expression levels of key erythroid markers (adapted from 
Hattangadi et al., 2011). 

Intrinsic regulation of erythropoiesis 

Downstream of these cytokines, intracellular signal transduction proteins interact 
with a relatively small number of transcription factors, including GATA-1, 
SCL/TAL1, LMO2, LDB1 and KLF-1, to produce mRNAs essential for 
erythropoiesis (reviewed in Cantor and Orkin, 2002; Hattangadi et al., 2011). 
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These transcription factors are present in diverse multiprotein complexes (Figure 
4), and their functions have been established by gene-targeting knockout mouse 
models, cell-based ex vivo assays and studies of diseases of ineffective 
erythropoiesis. Although intrinsic regulation of erythropoiesis occurs at several 
levels –micro RNAs, chromatin modifiers, etc.–, this section will only focus on 
describing key transcriptional regulators. 

GATA-1 
GATA-1 is a member of the GATA family of X-linked zinc-finger transcription 
factors and arguably the most studied erythroid transcription factor. It is expressed 
in erythroid, megakaryocytic, eosinophilic, mast and multipotential hematopoietic 
precursors (Evans and Felsenfeld, 1989; Tsai et al., 1989). Gata1 plays a central 
role in the regulation of both primitive and definitive erythroid cells, i.e. disruption 
of Gata1 leads to the maturational arrest of both primitive and definitive erythroid 
lineages at the ProE stage (Fujiwara et al., 1996; Pevny et al., 1995). It was first 
identified by its ability to bind DNA regulatory sequences found in globin genes 
(Evans and Felsenfeld, 1989; Tsai et al., 1989). Since then, GATA-binding motifs 
(A/T)GATA(A/G) have been identified in numerous promoters and enhancers of 
virtually all erythroid and megakaryocytic-specific genes (Weiss and Orkin, 
1995b). However, it has recently been discovered that GATA-1 does not always 
occupy these sites during erythropoiesis in vivo. Genome-wide analysis of GATA 
factor chromatin occupancy have shown that the majority of GATA-1 binding 
occurs at distal regulatory elements such as enhancers, with very few (10-15%) in 
the proximal promoter regions (Fujiwara et al., 2009; Yu et al., 2009). Lastly, 
different functional domains of GATA-1 are required to activate gene expression 
in primitive vs. definitive erythroid cells, suggesting that different GATA-1-
containing transcriptional complexes may function different in these lineages 
(Shimizu et al., 2001).  

Alterations in GATA-1 cause a diverse range of RBC and platelet disorders 
whose precise characteristics relate to specific structure-function properties of the 
protein (reviewed in Crispino and Weiss, 2014). Mutations in GATA-1 N- and C-
terminal zinc fingers disrupt DNA binding or associations with essential cofactors, 
which cause a variety of inherited anemias and/or thrombocytopenias, such as 
congenital dyserythropoietic anemia (CDA) or Gray platelet syndrome (Del 
Vecchio et al., 2005; Kratz et al., 2008; Phillips et al., 2007; Tubman et al., 2007). 
Also, distinct mutations within exon 2 lead to predominant expression of a 
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shortened isoform of GATA-1, named GATA-1s, which retains both N-terminal 
and C-terminal zinc fingers, but is missing the N-terminal activation domain. 
Germ-line GATA-1s mutations are associated with congenital hypoplastic anemia, 
including Diamond Blackfan anemia (DBA) (Parrella et al., 2014; Sankaran et al., 
2012). 

FOG-1 
Friend of GATA (FOG-1) is a very close interacting partner of GATA-1 and a 
zing finger-containing protein that does not directly bind DNA (Fox et al., 1999). 
FOG-1 is highly expressed in erythroid and megakaryocytic cells and its 
interaction with GATA-1 is indispensable for erythroid differentiation (Tsang et 
al., 1997). ProEs expressing GATA-1 with a point mutation that disrupts the 
interaction with FOG-1 (but not DNA binding) fail to undergo erythroid 
maturation (Crispino et al., 1999). 

SCL/TAL1-LMO2-LDB1-E2A complex 
The basic helix-loop-helix (bHLH) transcription factor SCL/TAL1 binds to a short 
consensus DNA motif (CANNTG) called the E-box. SCL/TAL1 expression 
largely mirrors that of GATA-1, as it is expressed in erythroid cells, 
megakaryocytes and mast cells (reviewed in Cantor and Orkin, 2002). The 
SCL/TAL1 gene knockout results in the absence of hematopoiesis in the YS, while 
the conditional knockout of the same gene in adult hematopoiesis leads to a failure 
in erythropoiesis (Mikkola et al., 2003; Robb et al., 1995). In erythroid cells, 
SCL/TAL1 forms a complex with the ubiquitous E47/E2A and with the LIM 
domain containing cofactors LMO2 and LDB1. This complex interacts with 
GATA-1 to form a pentameric complex that binds to composite E-box/GATA-1 
DNA motifs spaced 9-11 nucleotides apart (Wadman et al., 1997). These motifs 
are found in many erythroid genes and in the regulatory elements of key 
transcription factor genes including Gata1, Scl/Tal1 and Klf1 (Anderson et al., 
1998; Cohen-Kaminsky et al., 1998; Wadman et al., 1997) (Figure 4A). LMO2, 
GATA-1, SCL/TAL1 and LDB1 are all required for erythropoiesis in mice (Li et 
al., 2010; Robb et al., 1995; Shivdasani et al., 1995; Warren et al., 1994). 
SCL/TAL1 complex can also mediate gene repression by recruitment of the 
corepressors ETO2 and Mtgr1 (Fujiwara et al., 2009; Soler et al., 2010; Tripic et 
al., 2009) (Figure 4B).  
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KLF1 
KLF1 (also called EKLF) is a zinc finger transcription factor, whose expression is 
largely restricted to the erythroid cell lineage (Miller and Bieker, 1993; 
Southwood et al., 1996). It regulates the expression of several erythroid-specific 
genes, including the adult and embryonic globins, heme biosynthetic enzymes, 
several transcription factors, cytoskeletal proteins and blood group antigens (Basu 
et al., 2007; Hodge et al., 2006; Nilson et al., 2006). Mice heterozygous for the 
KLF1 gene appear completely healthy, however, in the complete loss of KLF1, the 
fetuses develop severe anemia and die around E14 (Nuez et al., 1995). Consistent 
with role of Klf1 in cytoskeletal gene regulation, Klf1-null primitive erythroblasts 
display markedly abnormal cell membranes and ruffled cell surfaces (Isern et al., 
2010). Since KLF1 has a broad impact on erythroid-specific gene expression, the 
array of human erythroid phenotypes associated to KLF1 mutations is large. To 
name a few, the first loss-of-function mutations in human KLF1 gene were 
discovered in individuals with the Lutheran (a-b-) blood group phenotype, and 
always occurred in the presence of a normal KLF1 allele (Singleton et al., 2008). 
These individuals did not exhibit anemia or RBC abnormalities, indicating that 
one allele of KLF1 appears to suffice for normal erythropoiesis, just like in mice. 
On the other hand, two unrelated patients with CDA were found to carry missense 
mutations of critical residues in the DNA binding domain of KLF1 and displayed 
very high levels of fetal hemoglobin (HbF, a2g2) and high levels of circulating 
nucleated RBCs (Arnaud et al., 2010). 

Developmental regulators 
While primitive and definitive erythropoiesis share key transcription factors 
essential for erythropoiesis, there are several that are only expressed in one 
lineage. The transcription factor c-MYB is expressed highest in CFU-Es and early 
erythroblasts and acts as an inhibitor of terminal erythroid differentiation (Emilia 
et al., 1986; Vegiopoulos et al., 2006). c-Myb null mouse embryos do not contain 
definitive erythrocytes and die of anemia around E15, but primitive erythropoiesis 
remains intact (Mucenski et al., 1991; Tober et al., 2008). In humans with Trisomy 
13, dysregulation of the c-Myb gene and upstream microRNAs is associated with 
the persistence of embryonic and fetal hemoglobin expression (Sankaran et al., 
2011). SOX6 and BCL11A are also differentially expressed transcriptional 
regulators, being exclusively expressed in definitive erythropoiesis. BCL11A, 
initially shown to be crucial for B cell development, has been associated with the 
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“fetal hemoglobin switch”, that is, the replacement of g-globin by adult b-globin 
after birth (Uda et al., 2008). Sankaran et al. demonstrated that BCL11A acts as a 
stage-specific repressor, silencing g-globin gene expression by occupying several 
sites within the b-globin gene cluster (Sankaran et al., 2008). Also, BCL11A has 
been identified as a direct target of KLF1 in human and mouse erythroid cells 
(Borg et al., 2010; Zhou et al., 2010). Haploinsufficiency for KLF1, and thus the 
failure to activate BCL11A, was found to be the cause of hereditary persistence of 
fetal hemoglobin in a in a Maltese family (Borg et al., 2010). In addition, BCL11A 
and SOX6 have been shown to interact physically and co-occupy the human b-
globin cluster along with GATA-1, cooperating in the silencing g-globin 
transcription in adult human erythroid progenitors (Xu et al., 2010) (Figure 4C). 
Taking into account that downregulation of Bcl11a would reactivate fetal globin 
expression, this gene has emerged as a valuable molecular target to treat patients 
suffering from b-hemoglobin disorders, such as sickle cell disease and b-
thalassemia (reviewed in Sankaran, 2011). 

 

Figure 4. Selected erythroid transcription factor complexes  
(A) Gata1/Tal1/Lmo2/E2A/Ldb1 pentameric complex has been shown to facilitate transcriptional activation of crucial 
erythroid genes, such as glycophorin A, the a-globin locus and Klf1. (B) The Tal1 complex can also recruit the 
corepressors ETO2 and Mtgr1 and mediate gene silencing. (C) Model of BCL11A-mediated silencing of g-globin 
genes. Depicted at the bottom is the human b-globin gene locus, located on chromosome 11. BCL11A and its 
interaction partners GATA1, FOG1 and NuRD complex bind to sequences within the globin locus and repress the 
expression of the g-globin genes. KLF1 reinforces this process by activating transcription of Bcl11a (green arrow) and 
also by directly binding to and promoting transcription of adult b-globin gene. Mechanistic studies have shown that 
BCL11A-mediated silencing of g-globin involves long-range interactions and cooperation with SOX6. Bcl11a 
expression varies between humans and mice, but its role in globin gene switching is conserved. Mice lacking BCL11A 
have normal erythropoiesis, but fail to downregulate the embryonic globin genes in definitive erythroid cells. MYB has 
also been implicated in the regulation of fetal hemoglobin expression, although the precise mechanisms are not fully 
understood. HSs indicates DNase I–hypersensitive sites; LCR, locus control region (adapted from Sankaran, 2011).  
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From Stem Cells to Platelets  
Platelets are small blood components that play an essential role in repairing 
vascular damage and initiating thrombus formation following blood vessel injury. 
They circulate in the blood stream in a quiescent form, and upon stimulation, 
activate to release their granule contents and spread on the affected tissue to create 
a physical barrier that prevents blood loss (reviewed in Machlus et al., 2014). 
Platelets have a short lifespan of only 7-8 days in humans and 3-5 days in mice, 
and possess no cell nucleus in mammals –they are fragments of cytoplasm (2-3 
µm diameter) derived from large progenitor cells, megakaryocytes (~50-100 µm 
diameter), in a process called megakaryopoiesis. In healthy human adults, each 
megakaryocyte can generate up to 3 x 103 platelets, resulting in a total production 
(and removal) of 1 x 1011 platelets every day (Thon et al., 2010). Akin to erythroid 
cells, platelets and megakaryocytes are detected before HSCs emerge, implying 
several waves of megakaryopoiesis throughout development. This chapter will 
review the current knowledge on the process of platelet formation, with emphasis 
on the intrinsic and extrinsic regulators. 

The megakaryocytic compartment 

The classical model for HSC-derived megakaryopoiesis involves the commitment 
of HSCs to CMPs, which in turn generate MEPs that ultimately differentiate into 
megakaryocytes (Figure 5). However, some studies have hinted that alternative 
routes towards the megakaryocytic lineage exist. It has been shown that 
progenitors that have surface markers similar to HSCs but have become Flt3+, 
termed lymphoid-primed multipotent progenitors (LMPPs), do not have the 
capacity (or very limited) to produce megakaryocytes or erythrocytes in vivo or in 
vitro, but retain lymphoid and granulocyte-monocyte potential; questioning the 
classical CMP-CLP model as an obligatory route for lineage commitment (Figure 
1) (Adolfsson et al., 2005; Mansson et al., 2007). In addition, another study 
revealed that the HSC compartment itself contains stem-like megakaryocyte-
committed progenitors that are transcriptionally primed towards the 
megakaryocytic lineage and can rapidly replenish the platelet pool in case of acute 
inflammation (Haas et al., 2015). All of these findings suggest that 
megakaryocytic lineage commitment may be a more plastic and context-dependent 
process than previously thought. 
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The first cells fully committed to the megakaryocytic lineage, termed Meg-
CFC, form a small cluster of megakaryocytes in vitro. Meg-CFC give rise to 2N 
megakaryocytes, which, in turn, go through an endomitotic cell cycle –they 
replicate DNA but do not undergo cytokinesis– and an expansion of the 
cytoplasmic mass, resulting in the formation of a pool of mature megakaryocytes 
with a DNA content up to 128N per cell (reviewed in Machlus et al., 2014; Pang et 
al., 2005). These large megakaryocytes then undergo a maturation process 
involving the generation of a demarcation membrane system (which will form the 
plasma membrane of future platelets), the expression of 
GP1ba/GP1bb/GPIX/GPV surface markers, the generation of distinctive platelet 
organelles such as the a- and dense granules, and the synthesis of organelle 
granular proteins such as platelet factor 4 and Von Willebrand factor (reviewed in 
Deutsch and Tomer, 2006). Subsequently, fully mature megakaryocytes extend 
long, branching pseudopods called proplatelets, which are composed of platelet-
sized swellings in tandem arrays that are connected by thin cytoplasmic bridges 
(Italiano et al., 1999). The entire megakaryocyte cytoplasm is converted into a 
mass of proplatelets, and the nucleus of the megakaryocyte is eventually extruded. 
Individual platelets are then released from proplatelet ends and into the 
bloodstream (reviewed in Patel et al., 2005). 

As discussed in the first chapter, megakaryocyte potential is also present before 
the onset of HSC-derived hematopoiesis. It is first detected in the YS of mouse 
embryos at E7.25, with the emergence of Meg-CFC capable of generating small 
colonies of megakaryocytes in vitro (Tober et al., 2007; Xu et al., 2001). A second 
wave of megakaryocyte progenitors is then found in the YS between E8.5 and 
E10.5, at which point they are also present in the blood stream and in the FL 
(Tober et al., 2007). Since the emergence of these two waves coincide in time and 
space with the emergence of primitive and EMP-derived hematopoiesis, the 
existence of ‘primitive’ and ‘definitive’ megakaryopoiesis has also been postulated 
(Tober et al., 2007; Tober et al., 2008; Xu et al., 2001). However, unlike primitive 
and definitive erythroid cells, which can be mainly distinguished by their 
morphology and globin gene expression; little is known about the differences 
between the ‘waves’ of megakaryocytic activity. It has been demonstrated that 
megakaryocytes derived from the E7.5 YS form colonies more rapidly than those 
derived from the adult BM, arise independently from Runx1 and have limited 
capacity to endoreplicate (Potts et al., 2014; Tober et al., 2007; Xu et al., 2001). 
Also, the initial emergence of megakaryocytes and platelets in the early YS is 
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independent of the cytokine thrombopoietin (TPO), which is later indispensable 
for FL and BM megakaryocytes (Gurney et al., 1994; Potts et al., 2015; Xie et al., 
2003). While the role of embryonic platelets is still elusive, fetal platelets have 
now been recognized to play a critical role in the closure of blood and lymphatic 
vasculatures (Bertozzi et al., 2010; Carramolino et al., 2010).  

Extrinsic regulation of megakaryopoiesis 

Numerous hematopoietic growth factors regulate different aspects of 
megakaryopoiesis. Many of these cytokines have broad effects on all 
hematopoietic lineages, such as granulocyte-macrophage colony-stimulating factor 
(GM-CSF), IL-3, IL-6, IL-11 and IL-12 (reviewed in Pang et al., 2005). More than 
20 years ago, TPO was identified to be the ligand of the c-Mpl receptor and a 
potent promoter of megakaryocyte progenitor expansion and differentiation (de 
Sauvage et al., 1994; Kaushansky et al., 1994; Lok et al., 1994; Wendling et al., 
1994). In mice, deletion of either c-Mpl or TPO decreases megakaryocyte numbers 
in the BM and circulating platelets by 85% (Alexander et al., 1996; Gurney et al., 
1994; Murone et al., 1998). TPO has also been shown to function in early 
hematopoietic progenitors, promoting the expansion of CD34+ progenitor cells 
(Young et al., 1996). TPO is predominantly produced in the liver by hepatocytes, 
and subsequently secreted into the blood. Recently, it was discovered that levels of 
circulating TPO are regulated by binding of aged platelets to the Ashwell-Morell 
receptor in hepatocytes, thereby controlling the expression of TPO mRNA and 
protein, and thus, platelet production (Grozovsky et al., 2015). TPO is highly 
homologous to EPO in its N-terminus, indicating a close evolutionary relationship 
between the two signaling pathways. Defects in TPO:c-Mpl signaling are present 
in several human disorders. For example, c-Mpl mutations causing frameshifts 
occur in congenital amegakaryocytic thrombocytopenia, a rare megakaryocyte 
deficiency in infancy (Ballmaier et al., 2001; Ihara et al., 1999), and activating 
mutations in the TPO gene promoter and the c-Mpl protein are found in some 
patients with familial essential thrombocythemia (Ding et al., 2004; Ghilardi and 
Skoda, 1999). 

Stromal cell-derived factor-1 (SDF-1), on the other hand, has an important 
TPO-independent effect on megakaryopoiesis. SDF-1 binds to the CXCR4 
receptors in megakaryocyte progenitors and enhances their chemotactic activity, 
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possibly regulating their movement from the “osteoblastic niche” to the “vascular 
niche” for platelet formation (Avecilla et al., 2004). 

Intrinsic regulation of megakaryopoiesis 

During megakaryopoiesis, a series of transcription factors form complexes that 
coordinately activate megakaryocyte-specific genes and/or simultaneously repress 
gene expression that supports other cell types. Most of these factors have been 
identified in loss-of-function studies in mice and analysis of human diseases. 
Important players are discussed below. 

GATA-1, GATA-2 and FOG-1  
GATA-1 is a central transcription factor directing megakaryocyte development. 
While targeted disruption of Gata1 in mice causes embryonic lethality due to 
anemia, a megakaryocyte-specific knock down of GATA-1 expression leads to 
thrombocytopenia and increased numbers of immature megakaryocytes (Fujiwara 
et al., 1996; Shivdasani et al., 1997). GATA-2, a closely related transcription 
factor, is expressed earlier in the hematopoietic hierarchy and is believed to have 
some overlapping functions with GATA-1 (Fujiwara et al., 2004; Weiss and 
Orkin, 1995a). GATA-2 is also expressed during early megakaryopoiesis, which 
may explain the partial ability for platelet formation in the GATA-1 knockdown 
mouse. Similarly, GATA-2 knockdown in wild-type (WT) BM progenitors causes 
a reduction in the CFU-Meg activity (Huang et al., 2009). 

The association of GATA-1 with its cofactor FOG-1 is critical for embryonic 
hematopoiesis and megakaryocytic development. Targeted disruption of Fog-1 in 
mice markedly inhibits erythroid development and causes an early block to 
megakaryocytic development with no identifiable precursors (Tsang et al., 1997). 
Also, GATA-1 and FOG-1 synergistically enhance the expression of the 
megakaryocyte-specific aIIb gene (Gaines et al., 2000). GATA-1 N-terminal zinc 
finger mutations that impair binding to FOG-1 cause CDA and/or 
thrombocytopenia, highlighting the importance of this association (Campbell et 
al., 2013; Mehaffey et al., 2001; Nichols et al., 2000; Yu et al., 2002). 

An important role for GATA-1 in controlling megakaryopoiesis is further 
evidenced by the discovery that expression of GATA1s contributes to Down 
syndrome-associated transient myeloproliferative disorder or acute 
megakaryoblastic leukemia (Greene et al., 2003; Wechsler et al., 2002). 
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FLI-1 
The Ets family of transcription factors reside in close proximity to GATA 
sequences in megakaryocyte-specific promoters, suggesting functional interactions 
between these two classes of factors (Lemarchandel et al., 1993). This is the case 
for Fli-1, an Ets transcription factor that binds to the proximal promoter of 
megakaryocyte-specific genes together with GATA-1/FOG-1 (Wang et al., 2002). 
Overexpression of Fli-1 induces megakaryocytic features in undifferentiated 
hematopoietic cell lines (Athanasiou et al., 1996), while homozygous loss of 
functional Fli-1 alleles in mice leads to embryonic lethality because of severe 
defects in fetal megakaryopoiesis and embryonic hemorrhaging (Spyropoulos et 
al., 2000). Hemizygous deficiency of Fli-1 expression causes thrombocytopenia in 
patients with Paris-Trousseau syndrome (Raslova et al., 2004).  

NF-E2 
Nuclear factor erythroid 2 (NF-E2) is a leucine zipper transcription factor that 
controls terminal megakaryocyte maturation, proplatelet formation and platelet 
release by regulating a battery of genes that are crucial in the process of platelet 
production (Lecine and Shivdasani, 1998). NF-E2 deficient mice have profound 
thrombocytopenia with megakaryocyte maturation arrest, disorganized internal 
membranes and reduced granule numbers, among others (Shiraga et al., 1999).  

RUNX-1 
Acute myeloid leukemia/runt-related transcription factor 1 (RUNX-1) is a 
hematopoietic/vasculogenic-specific protein mostly known for its involvement in 
several leukemic chromosomal translocations, particularly t(8;21), which 
generates the AML1-ETO fusion protein (Nucifora and Rowley, 1995). RUNX-1 
is expressed in MEPs, but is lost during erythroid differentiation (Lorsbach et al., 
2004; North et al., 2004). RUNX-1 has been shown to participate in the 
programming of megakaryocytic lineage commitment through functional and 
physical interactions with GATA-1 (Elagib et al., 2003). Also, it was recently 
reported that RUNX-1 epigenetically represses KLF1 and shifts the KLF1:FLI-1 
ratio toward FLI-1. Thus, RUNX-1 represses the erythroid gene expression 
program during megakaryocytic differentiation (Kuvardina et al., 2015). 
Haploinsufficiency of CBFA2, the DNA-binding subunit of RUNX-1, causes a 
rare, dominantly inherited thrombocytopenia associated with an increased risk of 
developing acute myeloblastic leukemia (Michaud et al., 2002; Song et al., 1999).  
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Figure 5. Schematic overview of adult megakaryopoiesis 
Formation of platelets from HSCs comprises a series of steps that are regulated at multiple levels. Bipotential 
megakaryocyte/erythroid progenitors (MEP) give rise to unipotential megakaryocyte progenitors (Meg-CFC), which in 
turn form immature megakaryocytes (MK). MK maturation involves nuclear endoreplication and cytoplasmic 
expansion. Large mature MKs eventually form thick pseudopods called proplatelets, from which individual platelets 
are released. The nucleus is eventually extruded. Cytokines and transcription factors that influence this process are 
depicted in red and black, respectively.   
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Cellular Reprogramming 
During development, cells progress through a path of decreasing potential and 
increasing specialization. It was long thought that the acquisition of specialized 
cellular functions was coupled to a permanent exhaustion of developmental 
potency and a permanent inactivation of genes irrelevant for terminal 
differentiation, like Waddington depicted in his famous epigenetic landscape 
(Waddington, 1957). However, over the past 60 years, several discoveries 
employing somatic cell nuclear transfer (SCNT) (Figure 6A), cell fusion (Figure 
6B) and transcription factor-mediated nuclear reprogramming (Figure 6C), have 
firmly established that differentiated cells are not irreversibly committed to their 
fate. This chapter will summarize the critical discoveries to date and highlight the 
progress made in reprogramming cell types into blood.  

Historical outlook 

In the late 1950s, John Gurdon and colleagues made the groundbreaking discovery 
that the nucleus of a differentiated tadpole cell, when transferred into an 
enucleated oocyte, could be reprogrammed back to the totipotency of a zygote and 
then give rise to a mature fertile frog (Gurdon et al., 1958). This technique, termed 
SCNT, had successfully been developed six years before by Briggs and King using 
Rana pipiens (Briggs and King, 1952). Gurdon’s findings demonstrated for the 
first time that differentiated cells retain the genetic information necessary to 
support the generation of whole new organism, in this case an entire tadpole. 
Moreover, they indicated that the oocyte contains trans-acting reprogramming 
factors that can erase epigenetic marks in differentiated cells and return them to a 
pluripotent state. It took however thirty years more and lots of failed experiments 
to make the leap from Xenopus to mammals. In 1997, Ian Wilmut and colleagues 
reported the birth of Dolly the sheep, cloned from the nuclei of epithelial cells 
(Wilmut et al., 1997), and a year later, the first mice were cloned (Wakayama et 
al., 1998). It is now known that the key to success was to use an unfertilized 
recipient egg at the meiotic stage II or a zygote at the mitotic stage of metaphase, 
so that the nuclear membrane would be disrupted and the nuclear factors would be 
available in the cytoplasm to enable nuclear reprogramming (reviewed in Egli et 
al., 2007). A gnawing doubt persisted, however, that the reprogramming event was 
due to contaminating stem cell-like cells among the donor cells. This speculation 
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was eventually ruled out when Rudolf Jaenisch and Konrad Hochedlinger reported 
the generation of mouse blastocysts and ESCs derived from the nuclei of adult B 
and T cells, yielding viable mice containing immunoglobulin or T cell receptor 
rearrangements in all tissues (Hochedlinger and Jaenisch, 2002). 

It was initially unclear whether reprogramming was due to the unique molecular 
features of the oocyte or to the inherent developmental plasticity of somatic cells. 
Pioneering studies by Ernst Hadorn in Drosophila showed that when imaginal 
discs –larval structures meant to become appendages in the adult, such as wings, 
legs, genitals or antennae– were dissociated into single cells and transplanted to 
ectopic sites in larvae, they could change their fate; i.e. a leg disc could then form 
a wing (Hadorn, 1968). This suggested that “committed” cells of the embryo are 
plastic, because they are susceptible to environmental cues that can alter their fate. 
Early attempts to examine the developmental plasticity of somatic cells also 
included cell fusion, i.e. the union of two cells to form a single mononucleated 
entity (synkaryon) or multinucleated entity (heterokaryon). Helen Blau found that 
in heterokaryons formed by fusing human amniocytes and mouse muscle cells, the 
expression of several human muscle-specific genes was reactivated without DNA 
replication (Blau et al., 1983). She subsequently showed that the direction of 
differentiation, i.e. whether nuclear genes were silenced or activated, was 
determined by the nuclear ratio of the fused cells (Blau et al., 1985). Altogether, 
these observations provided conclusive evidence that reprogramming activity was 
not unique to the oocyte, and that the terminally differentiated state was dictated 
and maintained through the balance of trans-acting factors. 

In 1987, Weintraub and colleagues showed that the bHLH transcription factor 
MyoD was sufficient to convert dermal fibroblasts into contracting myocytes 
(Davis et al., 1987), demonstrating that a single transcription factor is sufficient to 
instruct cell fate changes. The concept of transcription factor-directed cell fate 
conversion, coupled to the establishment of mouse and human ESC lines (Evans 
and Kaufman, 1981; Martin, 1981; Thomson et al., 1998), encouraged Yamanaka 
to postulate that specific pluripotency-inducing factors could be identified. Indeed, 
they showed that ectopic expression of a combination of four transcription factors 
(Oct4, Sox2, Klf4 and c-Myc, collectively referred to as OSKM) was sufficient to 
reprogram mouse and human fibroblasts to pluripotent stem cells, termed induced 
pluripotent stem cells (iPSC) (Takahashi et al., 2007; Takahashi and Yamanaka, 
2006). This was a major breakthrough that opened up a wide range of new 
research lines and raised great hope for regenerative medicine, with applications 
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including cell replacement, drug screening and disease modeling (reviewed in 
Yamanaka and Blau, 2010). The discovery of iPSCs won Yamanaka the 2012 
Nobel Prize in Physiology and Medicine, which was also awarded to John Gurdon 
for his SCNT experiments in Xenopus (Jaenisch, 2012). Furthermore, iPSCs 
reignited the field of reprogramming and prompted many scientists to start 
screening for factor combinations that could instruct lineage conversion without 
reaching pluripotency first. This approach, called direct lineage reprogramming, or 
transdifferentiation, has been shown to yield a wide variety of medically relevant 
cell types, such as cardiomyocytes, hepatocytes and neurons (Huang et al., 2011; 
Ieda et al., 2010; Vierbuchen et al., 2010), and has emerged as a promising 
approach for obtaining functional cell types for therapy. 
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Figure 6. Approaches to nuclear reprogramming  
(A) Somatic cell nuclear transfer consists in transplanting the nucleus of a somatic cell (2n, diploid) into an enucleated 
oocyte. Trans-acting factors present in the cytoplasm of the oocyte reprogram the nucleus of the somatic cell, so that 
the resulting cells are pluripotent. A blastocyst is then generated, from which embryonic stem cell (ESC) lines, or an 
entire organism, can be derived. (B) Cell fusion involves the combination of two distinct cell types into a single entity. 
The resulting cells can be heterokaryons (multinucleated) or synkaryons/hybrids (single nucleus), depending on 
whether cell division and DNA replication occurs. (C) Nuclear reprogramming can also be achieved by ectopic 
expression of transcription factors in somatic cells, resulting in induced pluripotent stem cells (iPSC) or other somatic 
cell types depending on the factors introduced (adapted from Yamanaka and Blau, 2010). 
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Induced pluripotent stem cells 

Takahashi and Yamanaka sought to find specific factors that, when expressed in 
fibroblasts, could convert them back to pluripotent stem cells. They performed a 
systematic screening approach using a retroviral library expressing 24 candidate 
genes expressed in ESCs. Pluripotency was assessed by examining the activation 
of reporter genes into the promoter of Fbx15, a ESC-specific gene (Tokuzawa et 
al., 2003). Co-expression of these 24 factors in mouse fibroblasts activated 
Fbx15´s expression and induced the formation of colonies with characteristic ESC 
morphology. They then used a reductive “leave one out” strategy to determine the 
minimal set of factors required for iPSC formation, and the four-factor OSKM 
cocktail was defined (Takahashi and Yamanaka, 2006). Importantly, iPSCs 
formed teratomas –tumors that include cells of all three germ layers– following 
subcutaneous transplantation into immune deficient nude mice, but initially failed 
to produce adult chimeric mice, thus raising doubts about their ESC-like 
properties. However, within a year, two independent groups showed that iPSCs 
could indeed form adult chimaeras and functional germ cells (Okita et al., 2007; 
Wernig et al., 2007). Subsequent studies demonstrated that pluripotency could be 
induced from human fibroblasts (Takahashi et al., 2007), without c-Myc 
(Nakagawa et al., 2008), with a different cocktail of factors (Yu et al., 2007) and 
even with a combined genetic and chemical approach (Huangfu et al., 2008; Shi et 
al., 2008). Also, a wide variety of starting cell types and species have been 
successfully reprogrammed and non-integrating factor delivery methods have been 
employed (Li et al., 2009; Liu et al., 2008; Singh et al., 2015). 

Extensive investigation has also been carried out on the underlying mechanisms 
of reprogramming. It has been described that the OSKM reprogramming can be 
subdivided in three phases termed initiation, maturation and stabilization 
(reviewed in Buganim et al., 2013). The initiation phase is characterized by 
increased proliferation, downregulation of somatic genes, initiation of 
mesenchymal-to-epithelial transition and activation of RNA processing and DNA 
repair (Buganim et al., 2013; Samavarchi-Tehrani et al., 2010). The reprogrammed 
cells then enter an intermediate or maturation phase, during which cells 
stochastically activate pluripotency markers and activate glycolysis (Buganim et 
al., 2012; Hansson et al., 2012). This second phase is the rate-limiting step that is 
responsible for the low efficiency of the reprogramming process (from 0.001% to 
4.40% depending on the delivery method) (reviewed in Singh et al., 2015). In the 
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final phase, the cells stabilize into the pluripotent state, in which transgenes are 
silenced, the cytoskeleton remodeled to an ESC-like state, the epigenome reset and 
the endogenous pluripotency network activated, yielding fully reprogrammed 
iPSCs (Buganim et al., 2012; Golipour et al., 2012; Hansson et al., 2012; Polo et 
al., 2012). Apart from transcriptional changes, the epigenetic signature of the 
somatic cell needs to be erased during reprogramming in order to acquire a stem-
cell-like epigenome. These changes include chromatin reorganization, DNA 
demethylation of promoter regions of pluripotency genes such as Oct4, Sox2 and 
Nanog, global histone modifications and X chromosome reactivation (Maherali et 
al., 2007; Wernig et al., 2007).  

Applications of induced pluripotent stem cells in blood research 
The ability to generate iPSCs from patient-specific cells offers great potential for 
regenerative medicine and disease modeling. These cells can be expanded 
indefinitely in vitro while still maintaining the potential to give rise to any cell 
type in the body, and unlike ESCs, offer hope for a truly personalized therapy 
(reviewed in Robinton and Daley, 2012). Since the number of reports on 
applications is too broad to summarize here, only a few examples in the field of 
hematology are described. 

In 2007, a groundbreaking study by Jaenisch and colleagues provided proof-of-
principle for the therapeutic use of iPSCs. They used homologous recombination 
to repair the genetic defect in iPSCs derived from a humanized mouse model of 
sickle-cell anemia. They then differentiated the repaired iPSCs into hematopoietic 
progenitors and transplanted them into affected mice, rescuing the disease 
phenotype (Hanna et al., 2007). Similarly, another study by Raya et al. showed 
that iPSCs can be derived from Fanconi anemia-corrected somatic cells, and they 
can subsequently give rise to disease-free hematopoietic progenitors (Raya et al., 
2009).  

Significant effort has also been made in differentiating iPSCs towards the 
hematopoietic lineage. To date, nearly all mature blood cell types have been 
generated from either ESCs or iPSCs, such as erythrocytes (Lapillonne et al., 
2010; Ma et al., 2008), platelets (Nakamura et al., 2014), dendritic cells (Vodyanik 
and Slukvin, 2007), osteoclasts (Grigoriadis et al., 2010), T cells (Kennedy et al., 
2012; Timmermans et al., 2009), B cells (Carpenter et al., 2011), NK cells (Woll 
et al., 2005) and myeloid cells (Choi et al., 2011). Despite this success, the biggest 
and still unfulfilled quest in this field is to differentiate pluripotent stem cells into 
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HSCs capable of long-term reconstitution of a patient’s blood system. iPSCs could 
provide an unlimited source of patient-specific HSCs, circumventing graft-versus-
host disease and shortages of certain human leukocyte antigen-matched donors for 
stem cell transplants.  

Most attempts for HSC derivation via directed differentiation of pluripotent 
stem cells have sought to recapitulate hematopoietic development using 
morphogens and/or stromal cell co-cultures (reviewed in Rowe et al., 2016). Since 
HSCs only derive from a definitive hematopoietic program, some studies have 
devised strategies to distinguish the emergence of primitive-like from definitive-
like hematopoietic cells in differentiating pluripotent stem cell cultures (Kennedy 
et al., 2012; Sturgeon et al., 2014). Lymphoid differentiation capacity and an EHT-
like process have been proposed as key criteria to mark the onset of definitive 
hematopoiesis in these culture systems. Although hematopoietic progenitors have 
been obtained that have the potential to express adult-like T cell markers and 
polyclonal TCRab rearrangements, and acquire definitive globin expression, they 
have yet not yielded cells capable of engrafting and reconstituting the blood 
system in vivo (Kennedy et al., 2012; Sturgeon et al., 2014). A radically different 
approach was taken by Tenen’s group directly injecting human iPSCs to 
immunocompromised mice, which gave rise to teratomas containing transplantable 
hematopoietic stem/progenitor cells (HSPC) with multilineage potential (Amabile 
et al., 2013). This study highlighted the importance of the in vivo environment in 
specifying true HSCs.  

Direct lineage reprogramming 

Since the advent of iPSCs, the field of direct lineage reprogramming has seen 
tremendous progress. The number of different cell types derived using this 
strategy in both mice and humans has substantially increased, alternative 
reprogramming factors have been identified and assays to characterize induced 
cells have been developed (reviewed in Xu et al., 2015a). This section will 
summarize the major advances in this field. 

Novel reprogramming strategies 
In addition to lineage-specific transcription factors, recent findings have 
demonstrated that epigenetic regulators, microRNA and small molecules can also 
induce lineage conversion (Figure 7). Since lineage reprogramming fundamentally 
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involves the transition between different epigenetic states, it is not surprising that 
epigenetic modifiers participate in this process. For example, the cardiac-specific 
subunit of BAF chromatin remodeling complexes, Baf60c, permits the binding of 
Gata4 to cardiac genes and enables the transdifferentiation of non-cardiac 
mesoderm in mouse embryos into cardiomyocytes (Takeuchi and Bruneau, 2009). 
On the other hand, microRNAs have been shown to drive neural and cardiac 
lineage conversion, among others (Ambasudhan et al., 2011; Jayawardena et al., 
2012; Yoo et al., 2011), although the efficiency is not as high as with transcription 
factors. Small molecules have also been reported to promote the efficiency of 
lineage conversion, to replace the requirement for exogenous factors or to directly 
induce fate changes, mainly in neural conversion (Cheng et al., 2014; Ladewig et 
al., 2012; Liu et al., 2013b; Sayed et al., 2015). The latter is potentially a very 
promising approach for the clinical application of lineage reprogramming, since it 
would not raise safety concerns related to genetic manipulation. Moreover, small 
molecules are cell permeable and cost-effective, and their effects can be fine-tuned 
by varying concentrations.  

Another strategy that has lately gained a lot of interest is the use of pluripotency 
factors for indirect lineage reprogramming. This is based on the notion that 
pluripotency-factor-driven lineage conversion is dependent on the presence of an 
epigenetically unstable population during early and intermediate stages of 
reprogramming, which can then be directed towards the desired cell fate under the 
proper signaling conditions (reviewed in Ma et al., 2013). Several cell types have 
been induced using this strategy, including hepatocytes (Zhu et al., 2014), 
pancreatic cells (Li et al., 2014) and cardiomyocytes (Efe et al., 2011). This is also 
the case for one of the first studies on direct conversion by Szabo et al., reporting 
that hematopoietic progenitors can be directly induced from human fibroblasts by 
ectopic expression of Oct4 and a specific cytokine treatment (Szabo et al., 2010).  

Molecular mechanisms 
Elucidating how the GRN of the target cell type is reactivated in reprogrammed 
cells has also been subject of intense study. Perhaps the most in-depth exploration 
in this regard has been done in neuron induction from fibroblasts by Ascl1, Brn2, 
and Mytl1. In this setting, Ascl1 acts as a pioneer factor, i.e. it binds to its target 
genomic sites in closed chromatin at the early phase of induction and enables the 
recruitment of other factors, such as Brn2, to their binding sites in later stages 
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(Wapinski et al., 2013). This study also showed that even though reprogramming 
factors are overexpressed simultaneously, they function in a hierarchical manner.  

Several reports have also pointed out that reprogramming factor stoichiometry 
greatly affects the reprogramming process and the quality of the converted cells. 
For example, higher levels of Mef2c with lower levels of Gata4 and Tbx5 
significantly boosts the efficiency of cardiac reprogramming (Wang et al., 2015a). 
Similarly, fine-tuning the levels of the different OSKM factors results in the 
generation of high-quality iPSCs with the ability of generating mice through 
tetraploid complementation (Carey et al., 2011).  

 

Figure 7. Lineage reprogramming strategies 
Lineage reprogramming can be induced by several means, including lineage-specific transcription factors, small 
molecules, epigenetic regulators, microRNAs and pluripotency factors. Downstream of these factors, the gene 
regulatory network that specifies the target cell type is established (adapted from Xu et al., 2015b). 
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Functional maturation 
Even though direct lineage reprogramming bypasses the multiple steps of lineage 
specification that occur during development, the generation of fully functional 
mature cells remains a major challenge. In many cases, the converted cells fail to 
silence the expression program of the starting cell type, or display a fetal-like 
immature phenotype (Cahan et al., 2014). It has been postulated that cell fate 
determination factors used to activate the GRN of the target cell type may not be 
sufficient for inducing fully functional maturation. Therefore, additional factors 
may be required during lineage conversion. One approach to identify maturation 
factors is to compare global gene expression profiles in immature embryonic/fetal 
cells and mature adult cells (reviewed in Xu et al., 2015a). Du et al. were able to 
identify CEBPA, ATF5 and PROX1 as hepatocyte maturation factors by 
comparing expression patterns of induced hepatocytes, immature fetal hepatocytes 
and freshly isolated primary hepatocytes. The combination of these maturation 
factors with cell fate determination factors resulted in the induction of fully 
functional human induced hepatocytes (Du et al., 2014). 

Other strategies to induce functional maturation have sought to mimic the in 
vivo environment where the target cells develop. Some have attempted to co-
culture the reprogrammed cells with supporting niche cells (Sandler et al., 2014), 
while others have showed that converting the cells directly in their in vivo 
environment could be the most effective way to promote functional maturation 
(Qian et al., 2012). Actually, the fact that lineage reprogramming can be 
conducted in vivo is an obvious advantage over directed differentiation from 
pluripotent stem cells. An increasing number of reports are published using this 
strategy, including conversions in the brain (Guo et al., 2014; Niu et al., 2013; 
Torper et al., 2013) and in the heart (Qian et al., 2012; Song et al., 2012). Despite 
rapid progress, major hurdles need to be overcome such as off-target effects and 
the risk of cellular heterogeneity within the reprogrammed population. 

Large scale production for therapeutic purposes 
A major limitation of direct lineage reprogramming is that the converted cells have 
poor proliferative capacity, posing a major barrier for biomedical applications that 
require large cell numbers. A possible solution is to reprogram somatic cells to 
stem cells or progenitors with engraftment and proliferation capacity. Several 
groups have recently succeeded in inducing neural stem cells or progenitors (Han 
et al., 2012; Kim et al., 2011; Lujan et al., 2012; Ring et al., 2012), hepatic stem 
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cells (Yu et al., 2013), HSCs (Riddell et al., 2014) and oligodendrocyte precursor 
cells (Najm et al., 2013; Yang et al., 2013) by direct lineage reprogramming, 
proving that this is a feasible strategy.  

Another possible solution is to overcome proliferation arrest by overexpressing 
factors such as c-Myc or downregulating p53 in combination with reprogramming 
factors, creating transient intermediate states with proliferation capacity. Once 
expansion is achieved, exogenous factors can be silenced, thus allowing the 
intermediates to fully mature. This has been proven a useful strategy to expand 
human induced hepatocyte progenitors (Du et al., 2014). 

Transcription factor-mediated conversion strategies for blood 
derivation 

Transcription-factor based conversion strategies have been thoroughly explored 
during the past decade as means to derive blood products in vitro. This powerful 
technique has been applied to pluripotent stem cells as well as somatic cells. 
Below, key examples of published methods are discussed (Figure 8). 

From pluripotent stem cells 
In one of the earliest studies, it was shown that overexpression of HoxB4 in 
murine ESCs can specify differentiation and generate HSPCs with multilineage 
engraftment potential in primary and secondary recipient mice (Kyba et al., 2002). 
This gene was later found not to have the same effects in human cells (Wang et al., 
2005) and researchers focused on other transcription factors.  

A more recent approach from George Daley’s lab incorporated aspects of 
morphogen-directed differentiation of human iPSCs with transcription factor-
mediated reprogramming. They showed that hematopoietic progenitors derived 
from directed differentiation can be respecified to definitive progenitors with 
short-term engraftment of myeloid and erythroid lineages by forced expression of 
HoxA9, Erg, Rora, Sox4 and Myb (Doulatov et al., 2013). Another study from 
Slukvin and colleagues demonstrated that overexpression of Gata2 and Etv2 or 
Gata2 and Tal1 specifies endothelial fate in human ESCs and iPSCs. With Gata2 
and Etv2, hemogenic endothelium (HE) develops with subsequent generation of 
myeloid-biased hematopoietic cells. With Gata2 and Tal1, on the other hand, HE 
gives rise to hematopoietic cells with erythroid-megakaryocytic potential (Elcheva 
et al., 2014). Similarly, another group reported that Gata2, Lmo2, Mycn, Pitx2, 
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Sox17 and Tal1 overexpression converts ESCs (also fetal liver cells) to 
expandable hemangioblasts. Once released from the control of ectopic factors and 
cultured with fibroblast growth factor (FGF), these hemangioblasts give rise to 
endothelial cells, smooth muscle and leukocytes, but not erythrocytes (Vereide et 
al., 2014). Still, neither this report nor the one by Elcheva and colleagues 
demonstrated the production of cells capable of multilineage engraftment.  

In 2017, another study from Daley’s lab was published reporting the production 
of HSCs from human pluripotent stem cells (Sugimura et al., 2017). They 
employed a previously published protocol to derive HE from pluripotent stem cells 
(Ditadi et al., 2015), and they subsequently identified seven transcription factors 
(Erg, HoxA5, HoxA9, HoxA10, Lcor, Runx1 and Spi1) that were sufficient to 
convert HE into immature HSCs. These HSCs were then transplanted into adult 
mice, where they engrafted and produced myeloid, B and T cells in primary and 
secondary recipients. Interestingly, two of these seven factors (Erg and HoxA9) 
were also used in their 2013 study. 

Finally, a report focusing on the molecular mechanisms controlling the 
progression from hematopoiesis to erythropoiesis found that five transcription 
factors (Scl, Lmo2, Gata2, Ldb1 and E2A), together with inhibition of the FGF 
pathway, convert pluripotent epiblast cells from the chicken embryo to YS-like 
erythrocytes, highlighting the role of these factors in the specification of primitive 
erythropoiesis (Weng and Sheng, 2014).  

From somatic cells  
Multiple efforts have also been made to derive blood cells directly from other 
somatic cells without going through a pluripotent state. As previously mentioned, 
a study by Bhatia’s lab showed that ectopic expression of Oct4 and cytokine 
treatment generated CD45+ hematopoietic cells from human fibroblasts, giving 
rise to cells with very limited self-renewal and with myeloid, but no lymphoid 
differentiation potential (Szabo et al., 2010). 

More recently, the Moore lab used a screening strategy to identify transcription 
factors that could activate a CD34 reporter in mouse fibroblasts. Gata2, Gfi1b, 
cFos and Etv6 were found to activate the reporter and reprogram fibroblasts to HE, 
with the subsequent appearance of definitive hematopoietic cells (Pereira et al., 
2013). Similarly, Lacaud and colleagues reported that hematopoietic progenitor 
cells can be induced from mouse fibroblasts by overexpressing Gata2, Scl, 
Runx1c, Lmo2 and Erg via an HE-like intermediate. These cells expressed a 
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mixture of primitive and definitive globins, underwent rearrangement of TCRb 
and immunoglobulin loci, and displayed short-term engraftment in vivo (Batta et 
al., 2014). 

Other groups attempted to use starting cell types that would be developmentally 
closer to hematopoietic cells than fibroblasts. Rossi’s lab demonstrated that murine 
adult pre-/pro-B cells and myeloid progenitors could be directly converted into 
serially transplantable, multilineage-reconstituting HSCs by ectopic expression of 
eight transcription factors, namely Runx1t1, Hlf, Lmo2, Pbx1, Zfp37, Prdm5, 
Mycn and Meis1. Importantly, the expression of the exogenous factors was turned 
on after the cells had been transplanted into mice, allowing the in vivo niche to 
perform the reprogramming (Riddell et al., 2014). Rafii and colleagues have 
instead attempted the feat of producing HSCs in vitro starting from their 
developmental precursors, endothelial cells. Taking into account their previous 
findings that Fosb, Gfi1, Runx1 and Spi1 can directly convert human endothelial 
cells to MPP-like cells (Sandler et al., 2014), they recently showed that these 
factors can also induce HSC-like cells from adult mouse endothelial cells. These 
HSCs are though initially ‘immature’ and need to be grown on a layer of 
supportive endothelial cells in order to fully mature and provide serial primary and 
secondary multilineage reconstitution (Lis et al., 2017). 

Lastly, two studies have described methods for direct induction of erythroid 
cells and megakaryocytes (Ono et al., 2012; Sadahira et al., 2012). Sadahira et al. 
demonstrated that differentiated murine B cells can be reprogrammed to erythroid-
like cells by forced expression of Gata1, Scl and C/EBPa. Gata1 and Scl were 
sufficient for reprogramming, while C/EBPa boosted the efficiency by inhibiting 
Pax6, a critical transcription factor for B cell differentiation (Sadahira et al., 2012). 
On the other hand, direct transdifferentiation of mouse and human fibroblasts to 
mature megakaryocyte-like cells was reported through overexpression of only 
three transcription factors, p45NF-E2, Maf-G, and Maf-K (Ono et al., 2012).  
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Figure 8. Transcription factor-based reprogramming in hematopoiesis 
Summary of published strategies to derive hematopoietic cells using transcription factor overexpression, as described 
in the main text. Transcription factor cocktails are color-coded to the arrows that indicate the outcome of 
reprogramming (adapted from Daniel et al., 2016). 
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Red blood cells and platelets in the clinic 

Transfusion medicine 

RBCs and platelets from blood donors are used in the clinic as transfusion 
products. Transfusions serve as an essential component in emergency medicine, 
major surgical procedures and chemotherapy, and are one of the major treatment 
options for individuals with inherited disorders, such as DBA and Bernard-Soulier 
bleeding syndrome (reviewed in Bouhassira, 2012; Wang and Zheng, 2016). On 
average, one unit of platelet concentrate contains 3 x 1011 platelets, while one unit 
of packed RBCs contains 2.5 x 1012 cells. Transfusions are, at present, totally 
donor dependent. The system is currently sufficient to cover most transfusion 
needs in high-income countries, but supply problems remain in many parts of the 
developing world due to inefficient collection procedures (WHO 2017). Moreover, 
the reliance on blood donors is associated with infectious risks, high costs of 
screening, and supply bottlenecks for rare blood types and for alloimmunized 
patients requiring chronic transfusions (reviewed in Migliaccio et al., 2012; Wang 
and Zheng, 2016). Supply problems are expected to worsen over the next 20 to 30 
years due to an increasing proportion of aged people (Ali et al., 2010). A solution 
to this problem would be to manufacture RBCs and platelets in vitro perfectly 
matched for all blood groups. If successful, this would be a major clinical 
breakthrough providing transfusion dependent patients with non-immunizing safe 
transfusion products. 

In vitro production of RBCs and platelets: current progress  

Considerable progress has been made towards the in vitro generation of RBCs and 
platelets for transfusion. Different sources currently under investigation are 
discussed below.  

Hematopoietic stem and progenitor cell sources 
The idea of using primary stem cell sources to generate RBCs in vitro arose when 
it was realized that discarded umbilical cord blood units have the potential to 
generate sufficient erythrocytes for several transfusions (Neildez-Nguyen et al., 
2002). Since then, primary CD34+ HSPCs derived from umbilical cord blood have 
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been used to study in vitro culture conditions that can efficiently generate 
enucleated mature erythrocytes (Giarratana et al., 2005; Miharada et al., 2006; 
Neildez-Nguyen et al., 2002). Current protocols produce sufficient RBCs for their 
functional evaluation in vivo (107). In 2011, Douay’s lab provided evidence that 
autologous RBCs generated from mobilized CD34+ cells survived in vivo in man 
as long as their natural counterparts (Giarratana et al., 2011). This study provided 
proof-of-principle that transfusion of in vitro-derived RBCs is a safe procedure, 
but the therapeutic application is still unrealistic based on the protocol described.  

Regarding platelet production, several studies have described protocols to 
generate CD41+ CD42b+ polyploid megakaryocytic cells in vitro from CD34+ 
HSPCs derived from BM, umbilical cord blood or peripheral blood (Ivetic et al., 
2016; Matsunaga et al., 2006; Mattia et al., 2002). These megakaryocytes are 
capable of generating platelets in vitro that get activated upon stimulation with 
specific agonists, such as thrombin or fibrinogen. However, these protocols 
demand further improvements before they can be standardized, such as xeno-free 
culture conditions and functional tests for platelets. 

Despite promising advances, the limited availability and restricted expansion 
potential of HSPCs make them a suboptimal source to provide sufficient numbers 
of RBCs and platelets for transfusion at a reasonable cost. 

Pluripotent stem cell sources 
Stem cell sources with unlimited expansion potential, such as ESCs and iPSCs, 
could be an attractive alternative source for large-scale production of transfusion 
products (reviewed in Migliaccio et al., 2012). The potential genomic instability 
and tumorigenicity of these stem cell sources poses a reduced safety concern in 
this context since the final product, RBCs and platelets, do not contain a nucleus. 
Moreover, iPSCs have an additional value, as they can be generated from patients 
with rare blood types.  

In this regard, methods have been established for producing RBCs from ESCs 
(Lapillonne et al., 2010; Olivier et al., 2006; Qiu et al., 2008) and iPSCs (Kobari et 
al., 2012). However, the yields of fully mature cells are still too low and the 
duration of the culture is too long, making the process costly and inefficient 
(reviewed in Rousseau et al., 2014). 

Megakaryocytes have also been successfully produced from human ESCs (Gaur 
et al., 2006; Lu et al., 2011; Takayama et al., 2008) and iPSCs (Feng et al., 2014; 
Liu et al., 2015; Moreau et al., 2016), however, they show a restricted capacity to 
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generate platelets in vitro. Physiologically, one megakaryocyte releases thousands 
of platelets into the circulation. In contrast, these protocols only allow the 
production of up to hundreds of platelets per megakaryocyte (reviewed in Baigger 
et al., 2017). 

Immortalized cell lines 
Ongoing efforts focus also on establishing immortalized cell lines able to produce 
large amounts of RBCs and platelets in vitro. These cell lines would combine the 
desired features of erythroid and megakaryocytic lineage commitment and 
unlimited growth capacity.  

A few years ago, Kurita et al. reported the establishment of immortalized 
erythroid progenitor cell lines derived from human umbilical cord blood and 
iPSCs by overexpressing the human papilloma virus E6/E7 gene. These cell lines 
have infinite growth capacity, express erythroid specific cell surface markers and 
produce erythrocytes with functional fetal hemoglobin. Moreover, they only need 
minimal culture conditions to be maintained (Kurita et al., 2013). Another two 
groups established self-renewing erythroblast cell lines by overexpressing Sox2, c-
Myc and shRNA against TP53 in umbilical cord blood cells (Huang et al., 2014), 
and c-Myc and Bcl-xL in iPSCs (Hirose et al., 2013). Despite producing 
enucleated hemoglobin-containing erythrocytes, the use of these cell lines is 
limited by very low enucleation efficiency and a high rate of cell death upon 
induction of differentiation, hurdles that are currently being addressed in the 
laboratory (Trakarnsanga et al., 2017).  

In the platelet field, Nakamura et al. reported the generation of immortalized 
megakaryocyte progenitor cell lines by stepwise overexpression of c-Myc, Bmi-1 
and Bcl-xL in human ESCs and iPSCs (Nakamura et al., 2014). These lines are 
able to produce functional CD42b+ platelets in vitro once the exogenous factors 
are downregulated. However, these platelets do not perform as well in vivo as 
human endogenous platelets, and further refinements to the protocol need to be 
made. Also, the authors detected that several clones showed karyotypic 
abnormalities after long-term cultivation, leading to leukemogenesis upon infusion 
into immunodeficient mice. This highlights the importance of transplantation 
studies for clone selection.  
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Novel sources 
Revolutionary sources have been proposed as alternatives to the classical 
procedures of platelet and RBC transfusion therapies. For example, two studies 
provided evidence that megakaryocyte progenitors can be directly infused in vivo 
and release functional platelets into the circulation (Fuentes et al., 2010; Wang et 
al., 2015b). Wang et al. also demonstrated that the platelets released by infused 
megakaryocytes closely resembled donor platelets and appeared more physiologic 
in nature than platelet-like particles obtained during ex vivo cultures (Wang et al., 
2015b). On the other hand, erythroblasts have also been suggested as an 
innovative transfusion product. In fact, transfusions in developing countries have 
been successfully carried out with 40-80 mL of matched cord blood containing 4-8 
x 1010 RBCs plus 4-8 x 107 erythroblasts (Migliaccio et al., 2009). Thus, using 
progenitor populations as transfusion products would reduce the cell numbers 
required for transfusion and the costs of production. 
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Aims of the Thesis 

The ultimate goal of the work presented in this thesis is to understand how the 
erythroid and megakaryocytic lineages develop and to translate this knowledge 
into approaches that recapitulate erythropoiesis and megakaryopoiesis in vitro for 
medical purposes. To this end, several specific aims were defined:  

 
- To identify the minimal set of transcription factors capable of instructing 

erythroid cell fate in fibroblasts and characterize the reprogrammed cells 
(Paper I) 
 

- To identify transcriptional cues and/or pathways that are missing in Paper I 
to induce a definitive erythroid program in fibroblasts (Paper II) 

 
- To identify the minimal set of transcription factors capable of instructing 

megakaryocytic cell fate in fibroblasts and characterize the reprogrammed 
cells (Paper III) 
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Summary of Results 

Paper I 

Defining the Minimal Factors Required for Erythropoiesis through 
Direct Lineage Conversion 

Direct lineage reprogramming as a tool to identify erythroid master regulators 
GRNs controlling erythroid lineage commitment and differentiation have been 
well studied (Cantor and Orkin, 2002; Kim and Bresnick, 2007; Swiers et al., 
2006). Essential genes for erythropoiesis have been identified through targeted 
gene disruption strategies, as well as studies of diseases of ineffective 
erythropoiesis. However, the minimal set of factors capable of initiating and 
specifying erythroid cell fate remained elusive. We postulated that direct lineage 
reprogramming could be a good strategy to reveal the master regulators of the 
erythroid lineage for two reasons: (1) it allows genes to be tested in different 
cellular contexts beyond their physiological role, thus enabling the 
characterization of common transcription factor networks, and (2) in contrast to 
loss-of-function studies, where the effects of gene disruption can be masked by 
redundancy, it facilitates the distinction of essential cell fate-inducing factors from 
permissive factors (Capellera-Garcia and Flygare, 2017; Vierbuchen and Wernig, 
2011). This study was therefore conceived to identify the minimal set of 
transcription factors that could convert somatic cells, in this case, fibroblasts, 
directly into erythroid cells. 

A retroviral library was created expressing 63 potential reprogramming factors, 
selected because of their involvement in erythroid and blood development. For the 
screening, we employed an erythroid lineage tracing mouse model, in which the 
Cre recombinase is knocked into one allele of the endogenous EpoR promoter and 
the yellow fluorescent protein (eYFP) is expressed from the Rosa26 (R26) locus 
(Epor-Cre R26-eYFP). When EpoR is expressed, the Cre recombinase excises the 
STOP codon in front of the eYFP coding region, resulting in YFP labeling of all 
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cells that have once expressed the EpoR gene at any time of their development. 
We overexpressed combinations of transcription factors in adult mouse tail-tip 
fibroblasts and cultured them in the presence of murine SCF, murine IL-3, human 
EPO and dexamethasone. We identified seven transcription factors (Gata1, Tal1, 
Lmo2, c-Myc, Klf1, Myb and Nfe2) that could convert adult mouse tail-tip 
fibroblasts into clusters of eYFP+ (EpoR+) round cells that emerged 5 to 8 days 
after transduction and displayed an erythroid progenitor-like morphology. After 
performing a reductive “leave one out” strategy, we found that only Gata1, Tal1, 
Lmo2 and c-Myc (GTLM) were necessary and sufficient for reprogramming. We 
called these cells iEPs, termed for induced erythroid progenitors/precursors. 
Importantly, iEPs could also be obtained from murine embryonic fibroblasts and 
human foreskin fibroblasts.  

Characterization of induced erythroid progenitors 
We observed that iEPs exhibited several properties of erythroid cells: they 
accumulated hemoglobin –confirmed by detection of globin transcripts and 
benzidine staining–, they expressed erythroid-specific genes and erythroid cell 
surface markers such as CD71 and Ter119, and formed visibly red colonies in 
semisolid media. Global gene expression analyses by microarray revealed that iEP 
red colonies were transcriptionally more similar to BFU-Es from E14.5 FL and 
adult BM than to the starting fibroblasts. When analyzing the differences between 
iEP red colonies and bona fide BFU-Es closely, we observed that genes with lower 
expression in iEP red colonies had, on average, lower expression in primitive 
erythroid cells than definitive erythroid cells in data retrieved from the publicly 
available Erythron database (Kingsley et al., 2013). This observation, coupled to 
the facts that iEPs expressed mainly embryonic globins and did not enucleate 
efficiently, suggested that iEPs were more similar to primitive than definitive 
erythroid cells.  

Towards adult-like erythropoieisis 
We hypothesized that while GTLM factors were sufficient to induce erythroid cell 
fate in fibroblasts, additional factors were necessary to instruct an adult-like 
program. We tested transcription factors Sox6, Bcl11a, Klf1 and Myb, all 
previously identified to directly or indirectly downregulate the expression of 
embryonic and fetal globin genes. Moreover, Sox6, Bcl11a and Myb are uniquely 
expressed in definitive erythroid cells (Palis, 2014). We found that only the 
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addition of Klf1 or Myb to the GTLM cocktail increased the expression ratio of 
adult Hbb-b1 over embryonic Hbb-y compared to the GTLM factors alone.  

We finally sought to examine whether iEPs were clonally heterogeneous, i.e. 
some clones were more similar to primitive erythroid cells, while others were 
more similar to definitive erythroid cells; and what the impact of overexpressing 
Klf1 and Myb was at the single-cell level. Thus, we performed qRT-PCR on single 
eYFP+ Ter119+ iEPs and analyzed the expression levels of 64 genes, including 
globin, primitive-specific and definitive-specific genes. We found that: (1) single 
iEPs expressed both embryonic and adult globins, as well as primitive-specific and 
definitive-specific genes, reflecting a mixture between primitive and definitive 
erythroid programs at the single-cell level; and (2) Klf1 and Myb overexpression 
increased the frequency of single cells with adult-like globin expression pattern, 
but did not change the expression of selected primitive and definitive-specific 
genes. 

Paper II 

RNA Sequencing Identifies Potential Missing Factors for 
Reprogramming of Fibroblasts to Definitive Erythropoiesis 

A comprehensive gene expression study 
After Paper I, the question remained what factors and/or pathways need to be 
activated to instruct a fully definitive erythroid program in fibroblasts. We 
proposed that an unbiased, direct comparison between iEPs and bona fide 
erythroid cells from different stages of development was necessary to 
unequivocally assess the transcriptional status of iEPs and identify missing 
reprogramming factors. Moreover, no study has been published to date comparing 
global gene expression in early erythroid progenitors from all three waves across 
development (primitive, EMP-derived and HSC-derived waves).  

We therefore decided to perform RNA sequencing on iEPs and on erythroid 
progenitors obtained from four different sites and time points across development: 
the E9-9.5 YS, where primitive erythropoiesis occurs and the first EMPs emerge; 
the E11-11.5 FL, where EMPs expand and differentiate, the E14.5 FL, where 
HSCs expand and differentiate, and the adult BM, where HSC-derived 
hematopoiesis takes place. We hypothesized that the erythroid lineage tracing 



62 

mouse Epor-Cre R26-eYFP would be a good tool to afford the capture of 
phenotypically equivalent erythroid progenitors, since Epor is continuously 
expressed throughout development (Kingsley et al., 2013). Indeed, eYFP+ (EpoR+) 
cells were found in all time points analyzed. Early erythroid progenitors (eYFP+ 
Ter119-) were isolated by excluding late erythroid progenitors and precursors 
(eYFP+ Ter119+) and further purified using ckit. cKit has been established to be 
the earliest and most specific marker of definitive hematopoietic commitment, 
distinguishing Runx1-dependent EMPs (ckit+) from maturing hematopoietic 
lineages (ckit-) in the E8.5 and E9.5 YS (Frame et al., 2016). Consistent with these 
findings, we detected and isolated two populations, ckit- and ckit+, within the 
eYFP+ Ter119- subset in the E9-9.5 YS (YS9ckit- and YS9ckit+). As for the FL 
and BM samples, the majority of cells expressed ckit (FL11ckit+, FL14ckit+ and 
BMckit+), while all iEPs were ckit- (iEPckit-). 

Potential missing reprogramming factors identified  
Principal-component analysis revealed that the iEPckit- was the most 
transcriptionally distinct group, as it clustered farther away from the bona fide 
samples. A clear distance was also observed between YS9 samples and FL and 
BM samples, denoting major differences among bona fide cell sources. We 
identified previously recognized definitive-specific genes Bcl11a, Myb and ckit to 
be expressed in EMP-derived and HSC-derived (YS9ckit+, FL11ckit+, FL14ckit+ 
and BMckit+) but not iEP (iEPckit-) and primitive (YS9ckit-) erythroid cells, 
validating our isolation strategy. Following a similar expression pattern, we 
identified transcription factors Runx3 and Ikzf1, which have previously been 
implicated in the establishment of definitive hematopoiesis in zebrafish and in the 
regulation of g globin gene expression, respectively (Bottardi et al., 2009; Bottardi 
et al., 2011; Kalev-Zylinska et al., 2003; Landry et al., 2008). Similarly, 
expression of IL-17 and IFN-g receptors was at least five times higher in EMP-
derived and HSC-derived cells than in primitive cells and iEPs, consistent with the 
molecular signature for inflammatory signaling regulating definitive, but not 
primitive, erythropoiesis (Greenfest-Allen et al., 2013). In contrast, hedgehog 
pathway modulator Gli3 and Hippo pathway effectors Yap1 and Tead1 displayed 
an inverse expression pattern, being mostly expressed in iEP ckit- and primitive 
YS9 ckit-. 

These findings set the ground for a future screening of candidate genes that can 
modulate developmental programming in iEPs. For this purpose, it will be 
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fundamental to define a method to check the developmental status of iEP after the 
secondary screening. One possibility would be to use cell surface markers that are 
uniquely expressed in definitive cells, such as ckit, CD43, CD44 or Cxcr4, some 
of which have been identified in the present study. Another option would be to 
employ a Runx1 reporter system, assuming that reprogramming of fibroblasts to 
definitive erythropoiesis would involve EHT. In addition, it will be important to 
determine the lineage potential of each of the sorted populations to check if they 
are truly erythroid-restricted, as well as increase the number of biological 
replicates for some sample sets. 

Paper III 

Direct Conversion of Fibroblasts to Megakaryocyte Progenitors 

Skewing transdifferentiation towards the megakaryocytic lineage 
Considering Paper I’s findings in the context of transcription factors known to be 
important for differentiation of MEPs, we hypothesized that the 
transdifferentiation process could be skewed to favor the megakaryocytic lineage 
given the appropriate culture conditions. We started by transducing human 
fibroblasts with the GTLM cocktail and cultured them in media containing both 
EPO and TPO. This resulted in the emergence of both erythroid and 
megakaryocytic cells, marked by the expression of CD235 and CD41, 
respectively, starting at day 4 post-transduction. Importantly, removal of any of 
the four factors was enough to completely block the generation of reprogrammed 
cells. This encouraged us to search for additional transcription factors that could 
enhance the megakaryocytic output. We decided to test Gata2 and Runx1, since 
they play an essential role in both the progression of MEPs towards the 
megakaryocytic lineage and subsequent megakaryocyte maturation (Kuvardina et 
al., 2015; Tijssen et al., 2011). Indeed, addition of both Gata2 and Runx1 to the 
GTLM cocktail doubled the percentage of CD41+ cells by day 12 post-
transduction. We could also generate CD41+ megakaryocyte-like progenitors from 
mouse embryonic fibroblasts (MEF), both with the GTLM and the 
GTLM+Gata2/Runx1 cocktails. Remarkably, only the CD41+ population produced 
by overexpression of the six-factor cocktail could be kept and expanded in culture 
for at least 2 weeks.   
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Characterization of induced megakaryocyte progenitors 
Human CD41+ cells obtained from GTLM+Gata2/Runx1 reprogramming 
resembled in vitro-derived MK progenitors from cord blood CD34+ cells in terms 
of morphology, gene expression and megakaryocyte colony-forming ability. 
Specifically, they expressed megakaryocyte-specific marker tubulin beta 1 class 
VI, displayed polylobulated nuclei (with ploidies reaching 8N), and formed 
proplatelet-like structures in culture. We could also detect vital platelet-like 
particles in the supernatant of these cultures, confirmed by electron microscopy 
and calcein staining. Importantly, CD41+ cells obtained from reprogramming 
human fibroblasts with only GTLM factors failed to form megakaryocyte colonies 
in semisolid media and express tubulin beta 1 class VI.  

To evaluate the in vivo functionality of the megakaryocyte-like progenitors, we 
added a GFP retrovirus to the reprogramming factor cocktail and intravenously 
injected 1 x 105 CD41+/GFP+/CD42- cells into sub-lethally irradiated NOD.Cg-
PrkdcscidIL-2Rtm1Wjl (NSG) mice. After a week, we detected a CD41+/ GFP+/CD42+ 
population in the peripheral blood of 75% of transplanted mice (16.7% of the total 
CD41+ population). After two weeks, a cluster of CD41+/GFP+ cells was detected 
in the BM and lungs (2.2% and 7.2% of total CD41+ population, respectively), and 
some of these cells also expressed CD42, indicating that the megakaryocyte-like 
progenitors are able to differentiate into megakaryocytes in vivo. Notably, these 
engraftment percentages decreased over time, and were almost undetectable from 
three weeks post-transplantation.  

Clinical relevance 
Lastly, we provided proof-of-principle that our transdifferentiation protocol could 
be applied in a clinical setting by reprogramming fibroblasts from Fanconi anemia 
(FA) patients, which suffer from thrombocytopenia and require frequent platelet 
transfusions. We used both uncorrected and gene-corrected FA fibroblasts, and 
evaluated their reprogramming ability. Both fibroblast sources could be 
reprogrammed and generate CD41+ cells, but the conversion efficiency was 
significantly higher in gene-corrected sources. Also, only fibroblasts that had been 
gene-corrected gave rise to large cells with polylobulated nuclei, proplatelets, 
CFU-MKs and platelet-like particles upon reprogramming.  
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General Discussion and Future 
Perspectives 

1. Activating erythro-megakaryocytic gene regulatory 
networks – roles of reprogramming factors 
Although the difference in global gene expression between erythroid cells and 
megakaryocytes involves hundreds of genes, the core GRN that determines a 
specific cell fate is comprised by relatively few transcription factors. Some factors 
are specifically expressed in either erythroid cells or megakaryocytes, such as 
KLF1 and FLI-1, respectively; but most factors (GATA-1, GATA-2, TAL1, 
GFI1b and FOG-1) are shared between the two lineages with unique roles in each 
(Hu et al., 1997; Kerenyi and Orkin, 2010; Miyamoto et al., 2002; Ng et al., 2009; 
Novershtern et al., 2011; Zandi et al., 2010). Combinatorial interactions between 
these master regulators ultimately controls cell type-specific chromatin binding 
and gene expression.  

In HSCs, GATA-2 functions in large part within the context of LDB1-
complexes –comprising LMO2, TAL1 and E2A– to control expression of genes 
responsible for HSC maintenance (Li et al., 2011). As HSCs differentiate and 
commit to the erythro-megakaryocytic lineage, GATA-1 is induced and gradually 
replaces GATA-2 at GATA occupancy sites, in a process referred to as a “GATA 
switch” (Bresnick et al., 2010; Dore et al., 2012; Kaneko et al., 2010; Snow et al., 
2011; Weiss et al., 1994). In megakaryocytes, GATA-2 expression persists and 
most of these sites continue to be occupied by either GATA-1 or GATA-2. In 
contrast, in erythroid cells, GATA-1 completely replaces GATA-2 and only a 
minority of the sites originally occupied by GATA-2 in HSCs are bound by 
GATA-1 in erythroblasts (Pimkin et al., 2014; Visvader and Adams, 1993). These 
complexes function as primary mediators of global erythroid and megakaryocytic 
gene activation. 
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Considering these data, it is not surprising that induction of erythroid and 
megakaryocytic cell fate in fibroblasts (Paper I and Paper III) occurs through 
overexpression of several members of the aforementioned complexes. Our results 
are also in accordance with the extensive role of GATA-2 in megakaryopoiesis, 
but not in erythropoiesis. In line with that, it has recently been shown that GATA-
1 and GATA-2 regulate distinct gene sets in megakaryocytes –GATA-1 tends to 
activate megakaryocyte/platelet-specific genes, while GATA-2 tends to repress 
genes expressed by HSCs and alternate lineages (Pimkin et al., 2014). Pimkin et al 
also showed that an HSPC-expressed transcription factor heptad involving GATA-
2, RUNX1, LYL1, TAL1, FLI1, ERG and LMO2, occupies an extensive set of 
megakaryocyte-specific genes in HSPCs. Binding of this heptad is associated with 
low-level gene expression in HSPCs, and subsequent further induction in 
committed megakaryocytes, indicating the existence of a robust mechanism of 
megakaryocytic lineage priming. Furthermore, the fact that RUNX-1 promotes 
megakaryocytic reprogramming is consistent with the finding that RUNX-1 
represses the erythroid gene expression program during megakaryocytic 
differentiation by inhibiting KLF1 (Kuvardina et al., 2015). 

The role of oncogene c-Myc in our reprogramming strategies is less obvious. c-
Myc is involved in a variety of cell behaviors, including cell-cycle progression, 
proliferation and differentiation, and has been found deregulated in many cancers 
(Hoffman et al., 2002). As one of the four Yamanaka factors, c-Myc has been 
shown to enhance early steps of reprogramming to iPSC by repressing fibroblast-
specific genes and up-regulating the metabolic program of the embryonic state 
(Sridharan et al., 2009). Additionally, c-Myc is a universal amplifier of any given 
transcriptional state a cell finds itself in at the time of c-Myc activation (Nie et al., 
2012). Although c-Myc was found to be dispensable for iPSC generation 
(Nakagawa et al., 2008), it was always required in our reprogramming strategies. 
Several lines of evidence have emerged indicating that c-Myc has a role beyond 
that of promoting cell proliferation and enhancing reprogramming efficiency. For 
example, epiblast-restricted c-Myc disruption causes apoptosis of primitive 
erythroblasts and severely impairs definitive hematopoiesis, leading to embryo 
demise at E12 due to severe anemia (Dubois et al., 2008). It has also been 
demonstrated that MEPs from c-Myc-/- mice can differentiate to both 
megakaryocyte and erythroid progenitors; however, erythroid differentiation is 
blocked at the progenitor stage, and thus more MEPs differentiate to 
megakaryocyte progenitors and form platelets (Guo et al., 2009). Still, these 
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megakaryocytes are significantly smaller in size and lower in ploidy than their WT 
counterparts (Guo et al., 2009). All these data support the notion that c-Myc is 
likely to have more than just a cell proliferation function during erythro-
megakaryocytic reprogramming. Future studies on c-Myc’s chromatin occupancy 
during reprogramming will be needed to determine its precise role in this setting. 

2. Inducing a primitive or a definitive program? 
One of the remaining concerns regarding the use of pluripotent stem cell-derived 
blood cells is the failure to recapitulate the final wave of hematopoiesis involving 
transplantable HSCs and production of adult-like blood cells (reviewed in Peters et 
al., 2010). Most culture systems appear to recapitulate YS hematopoiesis, 
consisting of a wave of primitive hematopoiesis followed by the emergence of 
distinct EMP-derived populations (McGrath et al., 2015a). Our results in Paper I 
and II suggest that this is also the case in GTLM reprogramming –iEPs 
predominantly express embryonic globins, form small EryP-CFC-like colonies, 
are unable to expand and enucleate in culture, and retain a primitive-like 
expression signature. Although single iEPs express a mixture of primitive- and 
definitive-specific genes, the process and molecular mechanisms by which they 
emerge are unclear. Unpublished data show that ckit is not expressed at any time 
during GTLM reprogramming (Figure 9A). Likewise, RNA sequencing data 
reveals that Runx1 is expressed at very low levels in iEPckit- compared to all other 
bona fide sources (Figure 9B), suggesting that GTLM reprogramming does not 
occur via an EHT and therefore, does not result in definitive hematopoiesis. 
Another interesting observation is that a CD41+ population is detected already at 
day 2 post-transduction and peaks at day 4, preceding the peak of erythroid output 
(Ter119+) (Figure 9A). Apart from being a marker for the megakaryocytic lineage, 
CD41 has been claimed to serve as the earliest marker of primitive erythroid 
progenitors cells in the E7.0 YS (Ferkowicz, 2003). Ferkowicz et al. also showed 
that high-level expression of this integrin identifies essentially all E8.25 YS 
definitive hematopoietic progenitors, indicating that differing levels of CD41 
distinguish between primitive and definitive hematopoiesis in the YS. This also 
fits with the recent findings from the Palis’ lab, where they characterize distinct 
sources of hematopoietic progenitors in the early mouse embryo using CD41 
(McGrath et al., 2015a). Similarly, the CD41dim but not CD41bright population was 
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identified as the immediate precursor of primitive erythroid cells in ESC 
differentiation cultures (Otani et al., 2005). Although we do not seem to 
distinguish CD41dim and CD41bright populations in our cultures, the fact that ckit is 
not expressed at any time during reprogramming suggests that the CD41 
population could represent an immediate precursor of primitive erythropoiesis 
(Figure 9A). Future colony assays and morphological inspection of sorted CD41 
populations during reprogramming will be required to answer this question. 

This discussion also has important implications in the context of 
megakaryocytic reprogramming. In Paper III, we found that CD41+ cells could be 
induced from fibroblasts by overexpressing both four factors (GTLM) and six 
factors (GTLM+Gata2+Runx1), but only the cells generated with the six-factor 
cocktail could be expanded in culture for at least two weeks and possessed features 
of megakaryocyte function. This raises the question of whether these two cocktails 
induce fundamentally different genetic programs, or whether Gata2 and Runx1 are 
only required to promote functional maturation of megakaryocyte progenitors. 
Since clusters of ckit+ EMPs emerge in the YS in a Runx1-dependent manner 
(Frame et al., 2016), it is tantalizing to think that overexpression of Runx1 may 
induce ckit expression, and thus a definitive program, in fibroblasts. A closer 
examination of the chromatin binding profiles of these factors and their impact on 
global gene expression in both overexpression contexts will shed light on this 
question. 

Elucidating the molecular mechanisms behind blood formation during ontogeny 
is critical if we wish to faithfully recapitulate HSC-derived hematopoiesis in vitro 
and manufacture transfusion products. To recapitulate the final wave of 
hematopoiesis is important because embryonic blood cells possess different 
properties than adult cells –i.e. primitive RBCs are substantially larger in size and 
have altered cell surface protein expression, which may result in an impaired 
ability to circulate in the adult body (Van Handel et al., 2010). Also, fetal 
megakaryocytes have lower ploidy and generate fewer platelets compared to adult 
megakaryocytes (Ferrer-Marin et al., 2013; Ma et al., 1996; Sola-Visner, 2012). 
Therefore, it is imperative to identify discriminatory surface markers or gene 
expression signatures for primitive and definitive blood cells. In Paper II, side-by-
side comparisons of early committed erythroid progenitors across ontogeny and 
iEPs allowed us to identify transcription factors that could potentially induce a 
definitive program in fibroblasts, as well as cell surface markers that distinguish 
the different hematopoietic waves. Although these candidates still need to be 
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validated, this study provides a good foundation to elucidate ontogenic differences 
in erythropoiesis and translate this knowledge into in vitro production of blood 
cells.  

Finally, we will need to determine whether the timing of factor overexpression 
impacts the reprogramming outcome. Should these “definitive”-specific 
transcription factors be induced before, together or after GTLM factor 
overexpression? Are erythroid programs (primitive, EMP-derived and HSC-
derived) intrinsically different from each other, or GRNs are conserved and 
additional factors can be overexpressed to reprogram primitive erythroblasts to 
definitive erythroblasts? iEPs provide a very good platform to answer these 
questions. 
 



70 

 
Figure 9. Unpublished data 
(A) Related to Paper I, time-course flow cytometry analysis of untransduced mouse adult fibroblasts (day 0) and bulk 
GTLM-transduced mouse adult fibroblasts harvested at day 2, 4, 6 and 8 showing CD41, ckit and Ter119 expression. 
(B) Related to Paper II, normalized read counts for Runx1 in the different populations examined. 
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3. Functional assessment of induced erythroid 
progenitors 
Although phenotypic traits such as morphology and lineage-specific gene 
expression are valid indicators of cellular identity, they may not be directly linked 
to the function of converted cells. Thus, an effective functional assay is required 
and clearly missing in Paper I. In the context of RBCs, functionality can be 
evaluated by several assays measuring parameters such as oxygen carrying and 
releasing ability, membrane deformability and hemoglobin content. However, the 
gold standard assay to evaluate functionality is to transplant cells into recipients 
and check how they perform in vivo. It is important to consider that iEPs are 
progenitor/precursor cells, therefore, they do not possess stem cell properties (i.e. 
they cannot be assessed in a long-term reconstitution assay) and they are not fully 
mature RBCs (i.e. cell number for a transfusion assay is limited). Moreover, 
erythroid cells lose CD45 expression upon maturation, so the use of the 
CD45.1/CD45.2 congenic system to track the contribution of donor cells in the 
recipient (Spangrude et al., 1988) is not possible. We attempted several in vivo 
experiments reprogramming fibroblasts from Kusabira Orange (KuO) mouse, 
which stably expresses the KuO fluorescent protein throughout the body, including 
erythrocytes and platelets (Hamanaka et al., 2013). In one set of experiments, we 
induced acute anemia in WT mice by injecting phenylhydrazine (60 mg/kg body 
weight), a chemical compound that induces hemolysis, and intravenously 
transplanted 2 million bulk day 5 KuO-iEPs a day after. We did not detect any 
KuO-derived cells in spleen, BM or peripheral blood, 3 or 8 days after 
transplantation. There could be several mutually non-exclusive explanations for 
this observation: (1) cells get eaten up by both circulating and tissue-resident 
macrophages; (2) iEPs do not engraft; and (3) it is a suboptimal in vivo assay. 
Also, we observed that several mice suffered sudden death right after intravenous 
injection, probably because transplanted cells were sticky and formed clots in the 
lungs. To circumvent all these issues, we attempted a second set of experiments, 
where we used sub-lethally irradiated NSG mice pretreated with clodronate 
liposomes, a drug encapsulated in liposomes that induces macrophage apoptosis 
(Su and Van Rooijen, 1989). We then transplanted 1 million bulk day 5 KuO-iEPs 
directly into the femurs of these mice. Three days after transplantation, we 
detected a small KuO+ Ter119+ population (0,00047% of total live cells) in the 
BM of mice injected with iEPs, and no cells in mice injected with KuO fibroblasts. 
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Although this does not unequivocally demonstrate iEP’s functionality, it shows 
that they can survive in vivo. Further experiments are required to assess if iEPs can 
mature into reticulocytes in vivo and survive as long as their bona fide 
counterparts.  

4. Towards therapeutic implementation of induced 
progenitors 
One major hurdle of direct lineage reprogramming strategies is that converted cells 
typically have poor proliferative capacity, posing a major barrier for applications 
that require large cell numbers, such as cell replacement therapies. Also, it is 
necessary that these protocols achieve therapeutic-scale production at a reasonable 
cost.  

One possibility would be to couple our transcription factor-mediated 
reprogramming approaches with immortalization methods to generate erythroid 
and megakaryocyte progenitor cell lines that could be expanded at high density 
and be synchronously induced to differentiate. This could provide an infinite 
source of “universal” donor RBCs and platelets, as well as simplify culture 
conditions to reduce production costs (Capellera-Garcia and Flygare, 2017). 

A major limitation of our current reprogramming approaches is the use of non-
selectable single-factor retroviral vectors with constitutive expression of 
transgenes. This results in genetically heterogeneous cell populations and high 
variability in reprogramming efficiency, which limits the experiments that can be 
performed afterwards. Additionally, the constitutive expression of reprogramming 
factors, such as c-Myc, is likely to be an impediment for erythroid and 
megakaryocyte progenitors to undergo terminal maturation (Brewer, 2000; Jayapal 
et al., 2010; Kirsch et al., 1986). The development of a robust inducible system 
will thus be necessary to improve scalability and maturation.  

We are currently designing new reprogramming vectors with doxycycline-
inducible polycistronic configurations, which have been shown to increase 
reprogramming efficiency in other studies (Riddell et al., 2014). By including two 
or three reprogramming genes in each vector, we could reduce the number of final 
vectors to only two. Upon doxycycline administration, exogenous factors would 
be induced and reprogramming achieved. iEPs or induced megakaryocyte 
progenitors could be then immortalized by overexpression of a doxycycline-
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inducible human papilloma virus 16 (HPV16)-E6/E7 gene, which has been 
previously used to transform erythroid progenitor cells (Kurita et al., 2013; Wong 
et al., 2010). Established cell lines would then be grown and maintained in the 
presence of doxycycline, which could be removed from the culture media when 
differentiation is desired. We envision that this method can establish erythroid and 
megakaryocyte progenitor cell lines that grow infinitely and can be timely pushed 
to differentiate. Likewise, it would offer the scalability we need to test these cells 
in vivo. 
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Concluding Remarks 

Towards the goal of defining and inducing the genetic programs that instruct 
erythro-megakaryocytic cell fate, the work presented in this thesis contributes with 
the following: 

 
- the identification of the minimal sets of transcription factors capable of 

directly converting mammalian fibroblasts into erythroid (Paper I) and 
megakaryocyte progenitors (Paper III), and 

 
- the interrogation of gene expression changes during erythroid ontogeny to 

identify master regulators of adult erythropoiesis and improve the 
reprogramming outcome (Paper II) 

 
We envision that the transcription factor cocktails identified here can constitute 

the foundation of future protocols to manufacture erythrocytes and platelets in 
vitro for personalized transfusion medicine.  
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Populärvetenskaplig sammanfattning 
på svenska 

Blodet, en livsnödvändig vävnad i ryggradsdjur, består av flytande plasma och tre 
huvudsakliga celltyper: vita blodkroppar, röda blodkroppar och blodplättar. De 
vita blodkropparna utgör kroppens immunförsvar mot patogener, röda blodkroppar 
transporterar syre samt underlättar gasutbytet i lungor och i perifer vävnad, och 
blodplättar reparerar skadad vävnad för att förhindra blodförlust. Eftersom alla 
mogna celltyper, såsom de i blodet, har en begränsad livslängd behöver de 
konstant ersättas av nya celler, vilka bildas i en dynamisk process som kallas 
hematopoes. Denna påbörjas från de sällsynta blodstamcellerna som finns i 
benmärgen hos vuxna människor. Blodstamceller har förmågan att göra ett 
obegränsat antal kopior av sig själva och kan dessutom bilda alla olika typer av 
blodceller, en process som är minutiöst reglerad av både kroppens yttre faktorer 
såsom hormoner och cellens egna inre faktorer exempelvis proteiner som binder 
till DNA (transkriptionsfaktorer). Hur blodstamceller förbinder sig till att bilda en 
specifik celltyp är ett ämne som det intensivt forskas på. Inom mina 
doktorandprojekt har vi haft som mål att besvara följande frågor: Vilka gener 
behövs för att initiera den process som leder till bildning av röda blodkroppar? 
Och till blodplättsbildning? 

Frågorna ovan är också av medicinsk relevans. Röda blodkroppar och 
blodplättar från donatorer används regelbundet i kliniken som 
transfusionsprodukter inom akutsjukvården och för att behandla patienter med 
olika typer av blodsjukdomar, inklusive kroniska anemier och 
benmärgsbristsjukdomar. I industrialiserade länder beräknas en enhet blod 
användas per 20 personer per år. Trots dess prevalens och standardiserade 
förfarande är det donatorbaserade insamlingssystemet associerat med risk för 
infektioner samt problematik med låg tillgång av ovanliga blodtyper. Dessutom 
kan transfusionspatienter komma att utveckla immunreaktioner mot transfunderat 
blod. Med en ökande äldre population förväntas dessa problem att förvärras de 
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kommande 20 till 30 åren. Därför finns ett behov av alternativa källor till 
blodprodukter för transfusion. En lösning som har föreslagits är produktion i 
labmiljö av röda blodkroppar som är perfekt matchade för alla olika blodtyper.  

För att uppnå detta mål har vi använt oss av en metod som kallas cellulär 
reprogrammering, genom vilken en cells identitet kan ändras till en annan via 
artificiell tillförsel av gener (vanligtvis transkriptionsfaktorer) till cellens 
genomiska DNA. Med denna teknologi kan man förändra i princip vilken celltyp 
som helst, exempelvis hudceller, till en annan celltyp såsom en embryonal 
stamcell eller en nervcell. Utöver möjligheten att generera olika celltyper för 
regenerativa behandlingar är cellreprogrammering också användbart för att utröna 
vilka gener som är essentiella för en cells identitet. I den första artikeln har vi 
identifierat fyra gener – Gata1, Tal1, Lmo2 och c-Myc (från de över 20 000 gener 
som utgör det mänskliga genomet) – som har förmågan att konvertera 
mammaliska hudceller direkt till celler som är föregångare till röda blodkroppar. 
Vi observerade att dessa artificiellt genererade celler uppvisade kännetecken för 
äkta röda blodkroppar: de hade liknande utseende, uttryckte gener som har att göra 
med röd blodkroppsfunktion och cellerna ackumulerade också hemoglobin, det 
viktigaste proteinet för syretransporten. När det gällde genttryck märkte vi dock att 
de reprogrammerade cellerna jämfört med vuxna röda blodkroppar istället var mer 
lika röda blodkroppar som bildas under den embryonala utvecklingen i 
gulesäcken. I den andra artikeln utförde vi därför en så kallad screen för att 
identifiera ytterligare gener som skulle behövas för att reprogrammera en hudcell 
till en röd blodkropp mer lik vuxna sådana. Vi har hittat ett flertal kandidater som 
ska testas i framtiden. Slutligen, i den tredje artikeln, har vi visat att två 
transkriptionsfaktorer, Gata2 och Runx1, tillsammans med de fyra faktorerna ovan 
konverterar hudceller till celler som är föregångare till megakaryoyter (dvs de 
celler som bildar blodplättar). Dessutom har vi visat att dessa 
megakaryocytföregångare kan transplanteras till möss och där bilda funktionella 
blodplättar. 

Sammanfattningsvis tillhandahåller våra resultat en ny plattform för att studera 
de genetiska program som styr utvecklingen av röda blodkroppar och blodplättar. 
Vi tror dessutom att våra resultat i framtiden kan utgöra grunden till protokoll för 
laboratorisk produktion av röda blodkroppar och blodplättar i syfte att användas 
till individualiserad transfusionsbehandling.  
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Resum en Català 

La sang és un teixit líquid essencial per la vida dels animals vertebrats. Està 
formada per una part líquida, anomenada plasma, i tres tipus cel•lulars: els glòbuls 
blancs, els glòbuls vermells (també anomenats eritròcits) i les plaquetes. Els 
glòbuls blancs intervenen en la resposta immunitària contra patògens; els glòbuls 
vermells s’encarreguen de transportar oxigen des dels pulmons fins als teixits 
perifèrics; i les plaquetes participen en el procés de coagulació per evitar la pèrdua 
excessiva de sang en cas d’hemorràgia. Com que les diferents cèl•lules de la sang 
tenen una vida útil limitada, s’han de renovar constantment a través d’un procés 
dinàmic anomenat hematopoesi. Aquest procés de formació comença a partir d’un 
precursor cel•lular comú i no especialitzat conegut com a cèl•lula mare 
hematopoètica, que en humans adults es troba en la medul•la òssia. Aquestes 
cèl•lules mare tenen la doble capacitat de multiplicar-se per formar més cèl•lules 
mare i de diferenciar-se per donar lloc a tots els altres tipus cel•lulars de la sang. 
Aquests dos processos estan regulats per factors extrínsecs a la cèl·lula, com ara 
hormones; i factors intrínsecs a la cèl·lula, com ara proteïnes que s’uneixen a 
l’ADN (factors de transcripció). Els mecanismes que les cèl•lules mare 
hematopoètiques fan servir per donar lloc a un tipus cel•lular especialitzat, per 
exemple un glòbul vermell, és una pregunta que ha intrigat els científics durant 
dècades. Durant el meu doctorat, hem treballat per resoldre dues preguntes: quin 
són els gens necessaris per iniciar el procés de producció dels glòbuls vermells? I 
per iniciar el procés de formació de les plaquetes? 

Aquestes preguntes també tenen una rellevància clínica. Els glòbuls vermells i 
plaquetes de donants es fan servir diàriament als hospitals per a transfusions de 
sang en casos d’emergències mèdiques i per tractar pacients amb malalties com 
ara l’anèmia o la plaquetopènia. Es calcula que en països industrialitzats, de 
mitjana, 1 unitat de sang és transfosa per 20 persones per any. Malgrat ser una 
pràctica habitual i protocol·litzada, el sistema de donants està associat al risc 
d’infeccions i a la manca de donants per grups sanguinis poc freqüents o per 
pacients que han desenvolupat immunitat contra la sang transfosa. A més a més, 
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s’estima que aquests problemes s’agreujaran en les pròximes dècades a causa de 
l’envelliment general de la població. Per tant, esdevé una necessitat imperativa 
trobar fonts alternatives de productes sanguinis per transfusions. Una de les 
solucions que es plantegen és produir, al laboratori, glòbuls vermells i plaquetes 
que siguin perfectament compatibles amb tots els grups sanguinis.  

Amb aquesta fita en ment, vam decidir utilitzar un mètode anomenat 
reprogramació cel•lular, que consisteix en canviar la identitat d’una cèl•lula 
mitjançant la introducció artificial de gens exògens en el genoma. Utilitzant 
aquesta tecnologia, els científics poden convertir qualsevol tipus cel•lular, com ara 
una cèl•lula de la pell, en un altre, com ara una cèl•lula mare embrionària o una 
neurona. A part de proporcionar un mètode per generar cèl•lules a la carta amb 
finalitats terapèutiques, la reprogramació cel•lular també és útil per identificar els 
gens essencials que estableixen la identitat d’una cèl•lula especialitzada. En el 
primer estudi, vam identificar quatre gens, Gata1, Tal1, Lmo2 i c-Myc, que podien 
convertir cèl•lules de la pell directament en cèl•lules precursores dels glòbuls 
vermells. Les cèl•lules reprogramades posseïen característiques típiques de 
cèl•lules eritroides: tenien una mida i forma similar, expressaven gens relacionats 
amb les funcions del glòbuls vermells i acumulaven hemoglobina, la proteïna 
responsable de transportar oxigen. No obstant això, pel que fa a l’expressió gènica, 
les cèl•lules reprogramades s’assemblaven més als eritròcits que apareixen durant 
el desenvolupament embrionari que no pas als eritròcits que es troben en la sang 
del cos adult. Per aquesta raó, en el segon estudi vam decidir portar a terme un 
cribratge genètic per trobar gens addicionals que poguéssim introduir en el 
genoma de les cèl•lules de la pell perquè es convertissin en glòbuls vermells 
“adults”. Vam trobar diversos gens candidats que seran posats a prova en futurs 
experiments. Finalment, en el tercer estudi, vam identificar dos gens, Gata2 i 
Runx1, que en combinació amb els quatre gens definits en el primer estudi, podien 
convertir cèl•lules de la pell en progenitors megacariocítics, els precursors 
cel•lulars de les plaquetes. A més a més, vam demostrar que aquests progenitors 
megacariocítics poden ser trasplantats per via intravenosa en ratolins, on es 
diferencien i donen lloc a plaquetes. 

Per concloure, els resultats presentats en aquesta tesi proporcionen una nova 
eina per estudiar els gens que governen el desenvolupament dels glòbuls vermells i 
les plaquetes. A més, anticipem que serviran de fonament per a futurs protocols 
encarats a produir glòbuls vermells i plaquetes en el laboratori per oferir una 
medicina de transfusió personalitzada. 
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Switching identities I-III
These pictures, illustrating the direct reprogramming of spindle-shaped fibro-
blasts into round hemoglobin-containing erythroid progenitors, were part of 
the exhibition “The invisible body” at Sven-Harry’s art museum in Stockholm 
during Autumn 2017. 
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