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ABSTRACT 
Myelodysplastic syndromes with ring sideroblast (MDS-RS) is a clonal hematological 

malignancy characterized by accumulation of iron filled erythroblasts called ring sideroblasts in 

the bone marrow, and recurrent somatic mutations in the splicing factor gene SF3B1. The disease 

mainly affects elderly individuals, causing severe anemia in patients for which no curative 

treatment exists. An important requisite to develop new treatments for MDS-RS is to identify the 

cell population that propagates and sustains the disease clone, as well as its functional 

downstream effects on erythropoiesis. Modelling the ineffective erythropoiesis of MDS-RS has 

been problematic both in vitro and in vivo, in particular the generation of ring sideroblasts, which 

has hampered functional studies of the disease. The focus of this thesis was to determine at which 

stage of the hematopoietic hierarchy SF3B1 mutations originate in MDS-RS patients, and to 

provide experimental models recapitulating the disease phenotype, allowing for functional studies 

and testing of new therapeutic options. 

In study I we demonstrated that SF3B1 mutations in MDS-RS patients originate in the 

hematopoietic stem cell (HSC) compartment, before division into the myeloid and lymphoid 

lineages. We found clonal involvement in B-cell progenitors resulting in a negative effect on 

lymphoid development. Furthermore, we found that only HSCs and no other investigated 

progenitor populations isolated from MDS-RS patients could propagate the SF3B1 mutated clone 

both in vitro and in vivo. Transplantation of HSCs from MDS-RS patients into immunodeficient 

mice resulted in ring sideroblast formation, providing a novel in vivo model to study the disease. 

In study II we established a three-dimensional (3D) culture model capable of recapitulating 

healthy and aberrant terminal erythropoiesis. Suspension cultures of CD34+ progenitor cells from 

MDS-RS patients had thus far failed to generate mature erythroid cells, including ring 

sideroblasts. We therefore decided to compare long term cultures of CD34+ cells and 

mononuclear cells (MNCs) from healthy individuals and MDS-RS patients either in suspension 

(2D) or in 3D scaffolds that mimic the structure of the bone marrow. We found that the scaffolds 

provided the CD34+ cells with proliferative advantage and enabled them to preserve their self-

renewal potential. By comparison, the same cells did not survive beyond three weeks in 2D 

cultures. Additionally, the CD34+ 3D cultures predominantly facilitated erythropoiesis, including 

enucleation and erythroid island generation. MNC cultures maintained stable proliferation for the 

four-week culture period, supporting multi-lineage hematopoietic differentiation and cytokine 

secretion relevant to erythropoiesis and MDS-RS. The CD34+ 3D, MNC 3D and MNC 2D 



 

 

cultures maintained the SF3B1 mutated clone and generated ring sideroblasts de novo from the 

second week of culture, providing a novel in vitro model to assess therapeutic compounds aiming 

to alleviate the anemia in MDS-RS patients. 

In study III we treated primary cells from healthy individuals and MDS-RS patients with 

luspatercept, a relatively new treatment option for MDS-RS, in the 3D model established in study 

II. Luspatercept is a transforming growth factor beta family ligand trap that has been shown to 

alleviate anemia in MDS-RS patients although its mechanism has not been elucidated. We found 

that luspatercept enhances proliferation and erythroid output of CD34+ cells and MNCs from 

healthy individuals in vitro, demonstrating that it can have a direct effect on hematopoietic 

progenitor cells. By contrast, luspatercept had no direct effect on hemopoiesis in the MDS-RS 

cultures, nor did it inhibit the SF3B1 mutated clone or ring sideroblast generation. This indicates 

that the drug may not directly target the disease clone although this will have to be confirmed in 

a larger population of responding patients. Interestingly, we found that luspatercept completely 

inhibited IL-6 secretion of CD34+ cells from healthy individuals in vitro, indicating that the drug 

can affect cytokine secretion. Since IL-6 can have a negative effect on erythropoiesis and is 

upregulated in a proportion of MDS patients it is worth exploring if it is upregulated in MDS-RS 

patients that respond to the drug.  
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1 INTRODUCTION 

1.1 HEMATOPOIESIS 

Hematopoiesis is classically defined as a stepwise process of the formation of all morphologically 

and functionally distinct blood cells originating from hematopoietic stem cells (HSCs) and 

essentially takes place within the bone marrow of adult human’s. HSCs are pluripotent stem cells 

that can be divided into two sub-groups, long-term HSCs (LT-HSCs) and short-term HSCs (ST-

HSCs) [1-3]. The LT-HSCs are a rare, mostly dormant population that can continuously self-

renew, while ST-HSCs can self-renew for a short time (8-12 weeks) before they differentiate into 

multipotent progenitors (MPPs), a population with a reduced self-renewal potential [4]. Further 

down the hierarchy the MPPs differentiate into common lymphoid progenitors (CLPs), which 

give rise to T lymphocytes, B lymphocytes and natural killer-cells [5], or common myeloid 

progenitors (CMPs), which give rise to the myeloid lineage, including the megakaryocyte 

erythroid progenitors (MEPs) and the granulocyte macrophage progenitors (GMPs) (Figure 1) 

[6].  

 

Figure 1 The classical hierarchy of adult human hematopoiesis. Long term hematopoietic stem 
cell (LT-HSC), short term hematopoietic stem cell (ST-HSC), multipotent progenitor (MPP), 
common lymphoid progenitor (CLP), common myeloid progenitor (CMP), 
granulocyte/macrophage progenitor (GMP), megakaryocyte/erythroid progenitor (MEP), natural 
killer cells (NK cells), early T-cell progenitor (ETP), B-cell progenitor (proB). The figure is 
adapted from Meyer 2017 [7]. 

ST-HSC

ETP

MPP

CMPCLP

proB

T-cell

GMP MEP

B-cell Monocyte Granulocyte Erythrocyte Megakaryocyte

LT-HSC

NK cells



 

 2 

The notion of hematopoiesis as a set, stepwise process has continuously been debated. As an 

example, megakaryocytes have been reported to directly differentiate from HSCs, indicating that 

they can bypass the stages of MPPs, CMPs and MEPs [8, 9]. Additionally, it has been suggested 

that hematopoiesis is a continuous rather than step-wise process [10-12] and that the physiological 

conditions during experimentation, such as stress as a result of in vitro culture or hematopoietic 

reconstitution during transplantation, might differ from steady state hematopoiesis (as reviewed 

by Crisan and Dzierzak, 2017) [13].  

 

1.2 ERYTHROPOIESIS  

Erythropoiesis is the differentiation and maturation of erythroid cells originating from the HSCs 

and takes place successively in the yolk sac, the fetal liver and the bone marrow during 

mammalian development.  The first committed erythroid progenitor cells derive from MEPs and 

are distinguished by their capacity to generate colonies in vitro. The earliest erythroid precursor 

is the BFU-E (burst-forming unit, erythroid), which generates multi-clustered colonies in 

semisolid medium, followed by the CFU-E (colony-forming unit, erythroid), which can generate 

a smaller cluster of erythroid cells that mature into erythrocytes [14, 15]. Additionally, BFU-Es 

and CFU-Es can be distinguished based on growth factor requirements where the former depend 

on stem cell factor (SCF) and interleukin-3 (IL-3) signaling and the latter depend on 

erythropoietin (EPO), the major factor regulating erythropoiesis. The first morphologically 

distinct erythroid cells are pro-erythroblasts that derive from the CFU-Es and are succeeded by 

basophilic erythroblasts, polychromatic erythroblasts and orthochromatic erythroblasts that 

enucleate to form reticulocytes, which are released into the blood stream where they finally 

mature into erythrocytes (Figure 2). 
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Figure 2 Erythroid maturation. Arrows represent cell surface marker/receptor expression and 
hemoglobin production. GATA1 and GATA2 are transcription factors and SCF, IL-3, IL-6 and 
EPO are required growth factors. Proerythroblasts (PRO-EB), basophilic erythroblasts (BASO-
EB), polychromatic erythroblasts (POLY-EB), orthochromatic erythroblasts (ORTHO-EB), 
reticulocytes (RETIC) and enucleated erythrocytes/red blood cells (RBC). 

 

These cells are less reliant on EPO than the BFU-Es and CFU-Es, demonstrated by the loss of the 

EPO receptor, and strongly iron dependent [16]. Additionally, erythropoiesis is heavily 

influenced by secreted factors such as insulin, insulin-like growth factor, activin, interleukin 10 

(IL-10) and angiotensin II which have been reported to have a positive effect on erythropoiesis 

[17-20]. On the other hand transforming growth factor b (TGFb), growth and differentiation 

factor 11 (GDF11), interferon-g, tumor necrosis factor a (TNFa) and tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) have a negative effect on erythropoiesis [21, 22]. 

Transcription factors also play an important role, where GATA2 is highly expressed in 

hematopoietic stem and progenitor cells and regulates their proliferation and maintenance [23, 

24], while GATA1 drives terminal erythroid differentiation [25-27]. During this maturation 

process the cells go through morphological changes where they gradually decrease in size, go 

through chromatin condensation, hemoglobin synthesis, enucleation, lose organelles and gain the 

biconcave disk shape [14, 15, 28].  

Dividing the different maturation stages via cell surface marker or receptor expression is a 

common practice when studying erythropoiesis. BFU-Es have been found to express the 
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glycoprotein CD34, the protein tyrosine phosphatase CD45 and the transferrin receptor (CD71) 

while CFU-Es are negative for CD34 and rather express the glycoprotein CD36 and CD71 to a 

higher extent [29]. Pro-erythroblasts can be distinguished by endoglin (CD105), CD45 and c-kit 

(CD117) expression while being negative for CD34. Basophilic, polychromatic and 

orthochromatic erythroblasts are negative for CD45 but express CD36, CD71 and glycophorin a 

(CD235a) [30, 31]. Distinguishing between the different erythroblasts with cell surface markers 

has not reached consensus but using Ter119 (mouse equivalent to CD235a) coupled with the 

glycoprotein CD44 and forward scatter (FSC) intensity has been a successful method in mice [32, 

33]. In humans adding CD36 and CD235a to the CD44/FSC expression analysis allows for a 

similar distinction [34]. Enucleated erythrocytes can be distinguished using a membrane based 

viability dye coupled with CD235a positivity and lack of nuclear staining [35], but distinguishing 

between reticulocytes and enucleated red blood cells (RBCs) remains problematic. The strategies 

for distinguishing between erythroid cells are evolving, with varying combination of cell surface 

markers being reported, and hopefully future studies of overlapping markers will enable a purer 

isolation of each and every step. 

 

1.3 THE BONE MARROW MICROENVIRONMENT  

The bone marrow is a spongy tissue made out of interlocked pores of different sizes, facilitating 

the formation of diverse cellular niches. It is a complex hematopoietic inductive 

microenvironment that relies on the interplay of many different cell types as well as acellular 

components. In addition to cells of the hematopoietic lineage the bone marrow includes cells of 

the mesenchymal stem cell lineage, such as the bone forming osteoblasts, the bone resorbing 

osteoclast, the cartilage forming chondrocytes, the lipid-storing adipocytes and the collagen fiber 

producing fibroblast. Other cells found in the bone marrow microenvironment are vascular 

endothelial cells, CAR (CXCL12 abundant reticular cells, a chemokine required for HSC 

maintenance and retention in the bone marrow [36]) cells and sympathetic neurons. These cells 

play an important role in providing ligands and cytokines for inducing proliferation, survival and 

differentiation. A crucial cellular component for erythropoiesis found in the bone marrow 

microenvironment is the erythroblastic island, where 5-30 maturing erythroblasts surround a 

central macrophage (Figure 3) [37, 38]. 
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Figure 3 An erythroblastic island from a bone marrow biopsy composed of a macrophage 
surrounded by maturing erythroid cells. Figure generously provided by Birgitta Sander. 

 

These islands are thought to play an important role in terminal erythroid differentiation where 

extruded nuclei from developing erythroblasts are phagocytosed by the macrophage [37]. It has 

been shown that they enhance erythroid proliferation and suggested that the macrophage 

functions as a nurse cell that provides nutrients and iron for heme synthesis to the erythroblasts 

[39-41]. Although macrophage ablation experiments have shown that steady state erythropoiesis 

is not completely reliant on erythroblastic islands, a quick response to increase erythroid output, 

for an example in the case of anemia, seem to depend on their presence [42]. In addition to the 

cellular components a variety of acellular factors contribute to the bone marrow 

microenvironment. These include growth factors and cytokines, extracellular matrix proteins like 

collagen and fibronectin, minerals like calcium, blood vessels and physical factors like shear 

stress, oxygen tension and temperature (as reviewed by Panoskaltsis et al, 2005 and Wang et al, 

2011) [43, 44]. On top of that the structure of the bone marrow, and the position of different cell 

types within the pores of the bone marrow, contribute to concentration gradients of secreted 

factors that can have an effect on hematopoietic proliferation and differentiation [45, 46].  

Failure of the bone marrow microenvironment and its niches to maintain functional 

hematopoiesis is thought to contribute to pathological conditions. It has been shown that 
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manipulation of osteoblasts in mice can induce myelodysplastic syndrome (MDS) and acute 

myeloid leukemia (AML) like phenotypes and that patient derived stromal cells can promote 

malignant behavior of human MDS cells [47, 48]. Ageing also has an effect, where age related 

inflammation of the bone marrow microenvironment can induce ineffective erythropoiesis [49]. 

 

1.4 IN VITRO MODELS OF ERYTHROPOIESIS 

Oxygen carrying RBCs are the most abundant cell type in the body. In adults, more than two 

million erythrocytes are released from the bone marrow into the bloodstream every second [50]. 

Despite this robust generation in vivo the in vitro modelling of terminal erythropoiesis has 

remained a challenge in regards of limited proliferation, difficulties in producing red cells that 

express adult hemoglobin and low amounts of enucleated erythrocytes [51]. To overcome these 

hurdles, both intrinsic and extrinsic factors regulating erythropoiesis have to be coordinated. The 

in vitro models of erythropoiesis that are most commonly used today can be divided into cultures 

using hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs) or human 

induced pluripotent stem cells (hiPSCs), where immortalized cell lines and three-dimensional 

(3D) cultures represent exciting options for future studies (Table 1).  

Table 1: Overview of erythroid culture models 

 
*Feeder layer or stromal cells traditionally used. ER= maximum reported enucleation rate, 
references are given for ER. Adapted from Sun et al, 2018. 

 

1.4.1 In vitro erythropoiesis from HSPCs 

HSPCs used in erythroid cultures usually originate from the bone marrow, peripheral blood (PB) 

or umbilical cord blood (UCB). Using UCB in cultures facilitates higher production of progenitor 

cells than using HSPCs derived from PB or bone marrow. However, the cells produced from 

Cell type Source *Feeder 
cells Hemoglobin ER Reference 

HSPCs BM, PB, UCB Yes Fetal and/or adult >90% Huang et al, 
2018 

ESCs ESC lines Yes Fetal and adult >60% Lu et al, 2013 

hiPSCs Somatic cells Yes Fetal and/or adult 26% Kobari et al, 
2012 

Immortalized 
cell lines 

hiPSCs, UCB, 
HSPCs, ESCs No Fetal and/or adult 30% Trakarnsanga 

et al, 2017 

3D culture hiPSCs, UCB, 
HSPCs, ESCs No Fetal and/or adult >90% Lee et al, 2015 
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UCB mostly contain fetal hemoglobin (HbF) [52, 53]. Generating mature erythrocytes from 

HSPCs in suspension cultures has been challenging [53, 54] but possible if co-cultured with 

stromal cells [52, 55, 56] or when erythroblastic islands are included in the culture [57]. Co-

culture systems have enabled high production of mature erythrocytes but difficulties in purity of 

isolation, presence of foreign human or animal antigens and variable efficiency of progenitor 

expansion persist [58]. In 2011, Giarratana and associates developed a feeder-free culture system 

enabling production of up to 80% reticulocytes from PB HSPCs capable of maturing to red blood 

cells after injection into immunocompromised mice [59]. Following this, enucleated erythrocytes 

have been produced from HSPCs with >90% enucleation ratio via multiphase protocols with 

complex, optimized growth factor and cytokine combinations, either with stromal co-culture or 

including serum [60-62]. Modelling erythropoiesis by culturing primary HSPCs from patient 

derived PB or bone marrow, preferably in a more simplified medium and without the need for 

stroma, would be ideal to study diseases with dysregulated erythropoiesis 

 

1.4.2 In vitro erythropoiesis from ESCs 

Human ESCs are pluripotent stem cells generated after in vitro fertilization. While these cells can 

be propagated and expanded indefinitely in vitro, ethical issues regarding their origin may arise. 

Expansion and differentiation of ESCs towards erythropoiesis have mostly relied on non-human 

stromal or feeder cell co-cultures, and have resulted in erythrocytes with HbF (as reviewed by 

Christaki et al, 2019) [58]. In 2008, protocols for differentiating human ESCs into enucleated 

erythroid cells capable of adult hemoglobin expression were reported, yet relying on stromal co-

culture [55, 63]. In 2013 a feeder free system for producing hematopoietic cells from human ESCs 

via 3D microcarriers, with potential for further differentiation, was described [64]. While useful 

for studying healthy erythropoiesis, genetic manipulation would be required to mimic diseases, 

making ESCs not the ideal source to study dysregulated erythropoiesis. 

 

1.4.3 In vitro erythropoiesis from hiPSCs 

In 2006, Yamanaka and associates described the generation of iPSCs by reprogramming somatic 

cells from mice into pluripotent stem cells via forced expression of transcription factors Oct3/4, 

Sox2, c-Myc and Klf4 [65]. Since iPSCs can be produced from any cell type, including primary 

cells from patients, these cultures provide a great opportunity to study dysregulated 
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erythropoiesis. Similar to ESCs they are an unlimited cellular resource and their expansion mostly 

relies on stromal or feeder layer co-culture (as reviewed by Christaki et al, 2019) [58]. Lapillonne 

and associates produced mature erythrocytes using hiPSCs derived from human fibroblasts in 

2010, albeit with low enucleation rates (around 10%) and only expressing HbF [66]. In 2012, 

nucleated erythroblasts generated from hiPSCs went through terminal erythropoiesis with adult 

hemoglobin expression when injected into immunodeficient mice [67]. More recently, mature 

erythrocytes expressing adult hemoglobin have been generated from fibroblast-, bone marrow 

stromal cell- and PB erythroid progenitor-derived hiPSCs [68, 69]. This exciting new alternative 

still suffers from low enucleation rates that hopefully will be overcome in the close future. 

 

1.4.4 Immortalized erythroid cell lines 

Another exciting approach is to generate immortalized erythroid cell lines capable of terminal 

erythroid maturation. Production of functional enucleated red blood cells from immortalized 

human erythroid progenitor cell lines derived from hiPSCs and UCB was reported for the first 

time in 2013 [70]. The cell lines mostly facilitated production of erythroid cells with fetal globin 

expression with a low efficiency in enucleation. Following this, ESCs were used to produce 

immortalized erythroid progenitor cell lines, although these cells only expressed fetal hemoglobin 

and could only enucleate after injection into immunodeficient mice [71]. Since then immortalized 

cell lines produced from bone marrow CD34 positive cells, capable of producing reticulocytes 

with adult hemoglobin have been produced [72]. Recently, bioreactor expansion of immortalized 

CD71 and CD235a positive erythroblast from adult PB have been reported [73]. These type of 

cell lines could be a valuable source for ex vivo generation of red cells for transfusion purposes 

in the future. 

 

1.4.5 Ex vivo bone marrow mimicry 

Interestingly, none of the above-mentioned ex vivo models take into account the three-

dimensional structure and interactions of the human bone marrow. The fact that transfusions of 

cultured cells into mice seem to facilitate higher amounts of RBC formation highlights the 

importance of mimicking the in vivo microenvironment when modelling erythropoiesis. Three-

dimensional culture systems consisting of highly porous scaffolds can facilitate hematopoietic 

niche formations by mimicking the biological and mechanical function of the extracellular matrix 

[74, 75]. These scaffolds can be made of natural materials, such as microporous collagen 
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microcarriers shown to facilitate terminal erythropoiesis of CB [76], or synthetic polymers like 

PMVE-alt-MA that can maintain pluripotency of HSPCs in vitro [77]. Additionally, 

biodegradable porous scaffolds such as those made out of polyurethane have been shown to 

sustain cytokine-free expansion of UCB in vitro [78]. Although not well established for erythroid 

culture specifically these types of 3D cultures are an exciting option for mimicking the 

physiological factors present in erythropoiesis in vivo. 

 

1.5 MYELODYSPLASTC SYNDROMES  

Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal myeloid 

neoplasms originating in the HSCs, characterized by ineffective hematopoiesis, morphological 

dysplasia, cytopenia, and bone marrow failure [79]. MDS is associated with risk for developing 

acute AML and survival after diagnosis varies from a few months up to ten years [79, 80]. MDS 

is mainly a disease of the elderly with an increase of incidence after 60 years of age [80]. The 

most common feature of MDS is anemia caused by ineffective erythropoiesis that can range from 

mild to severe [81]. The World Health Organization (WHO) classifies MDS according to degree 

of dysplasia and blast percentage along with morphology, immune-phenotype and genetic, 

molecular and clinical features, into seven different subgroups. These are MDS with single 

lineage dysplasia (MDS-SLD), MDS with multilineage dysplasia (MDS-MLD), MDS with ring 

sideroblasts (MDS-RS), which can be further divided into MDS-RS with single or multilineage 

dysplasia (MDS-RS-SLD or MDS-RS-MLD respectively), MDS with isolated del(5q), MDS 

with excess blasts (MDS-EB), MDS unclassifiable (MDS-U) and refractory cytopenia of 

childhood (Table 2) [82]. 
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Table 2: The 2016 revision to the WHO classification of MDS 

Disease Dysplastic 
lineages Cytopenias* 

RS as % of 
marrow 

erythroid 
elements 

BM and PB 
blasts 

Cytogenetics by 
conventional 

karyotype analysis 

MDS-SLD 1 1 or 2 <15%/<5%** 
BM <5%, PB 

<1%, no 
Auer rods 

Any, unless fulfills 
criteria for MDS with 

isolated del(5q) 

MDS-MLD 2 or 3 1-3 <15%/<5%** 
BM <5%, PB 

<1%, no 
Auer rods 

Any, unless fulfills 
criteria for MDS with 

isolated del(5q) 
MDS-RS      

MDS-RS-SLD 1 1 or 2 ≥15%/≥5%** 
BM <5%, PB 

<1%, no 
Auer rods 

Any, unless fulfills 
criteria for MDS with 

isolated del(5q) 

MDS-RS-MLD 2 or 3 1-3 ≥15%/≥5%** 
BM <5%, PB 

<1%, no 
Auer rods 

Any, unless fulfills 
criteria for MDS with 

isolated del(5q) 

MDS - del(5q) 1-3 1-2 None or any 
BM <5%, PB 

<1%, no 
Auer rods 

del(5q) alone or with 1 
additional abnormality 
except -7 or del (7q) 

MDS-EB      

MDS-EB-1 0-3 1-3 None or any 
BM 5-9% or 
PBv2-4%, no 

Auer rods 
Any 

MDS-EB-2 0-3 1-3 None or any 
BM 10-19% 
or PB 5-9% 
or Auer rod 

Any 

MDS-U      

with 1% blood 
blasts 1-3 1-3 None or any 

BM <5%, PB 
= 1%‡, no 
Auer rods 

Any 

with single 
lineage dysplasia 
and pancytopenia 

1 3 None or any 
BM <5%, PB 

<1%, no 
Auer rods 

Any 

based on 
defining 
cytogenetic 
abnormality 

0 1-3 <15%§ 
BM <5%, 
<1%, no 

Auer rods 

MDS-defining 
abnormality 

Refractory 
cytopenia of 
childhood 

1-3 1-3 None BM <5%, PB 
<2% Any 

 (*) Cytopenias as defined as: hemoglobin,10 g/dl; platelet count, <100 x 109/L; and absolute neutrophil 
count, <1.8 x 109/L. Rarely, MDS may present with mild anemia or thrombocytopenia above these 
levels. PB monocytes must be <1 x 109/L; (**) If SF3B1 mutation is present. (‡) One percent PB blasts 
must be recorded on at least 2 separate occasions. (§) Cases with $15% ring sideroblasts by definition 
have significant erythroid dysplasia, and are classified as MDS-RS-SLD. Adapted from Arber et al, 
2016 [82].  
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These syndromes can be further grouped according to the revised International Prognostic 

Scoring System, which is used to predict risk of leukemic transformation and survival. This 

system is based on percentage of marrow blasts, bone marrow cytogenetics and number and 

degree of cytopenia where MDS can be classified into five different risk groups; very low, low, 

intermediate, high and very high [83]. 

 

1.5.1 Mutational landscape in MDS 

Several large cohorts of MDS patients have been sequenced with next generation sequencing 

approaches. These studies have shown that 80-90% of patients with MDS have oncogenic 

mutations and that leukemia free survival has an inversed correlation with the complexity of 

the sub-clone [84-86]. These recurrent mutations have a prognostic value and mutational 

screening will likely be incorporated into future WHO classification of MDS [87]. Genes that 

are recurrently mutated in MDS are implicated in signal transduction, DNA modification, 

chromatin regulation and RNA splicing and the most commonly mutated genes are SF3B1, 

TET2, SRSF2, ASXL1, DNMT3A, RUNX1, U2AF1, TP53, EZH2 and IDH2 [85-87]. In 2011 it 

was established that mutations of the RNA splicing machinery, like in U2AF1, ZRSR2, SRSF2 

and SF3B1, are frequent and specific to myeloid neoplasms [88, 89]. These mutations most 

likely occur early in MDS development and might therefore be important in determining the 

evolution of the disease [85, 90]. SF3B1 (splicing factor 3B subunit 1) is most commonly 

mutated in MDS-RS while mutations of epigenetic regulators are more prevalent in other 

subtypes of MDS [87]. 

 

1.6 MYELODYSPLASTC SYNDROMES WITH RING SIDEROBLASTS 

The MDS subgroup myelodysplastic syndrome with ring sideroblasts or MDS-RS was first 

described by Bjorkman in 1956 [91] and was consequently categorized as idiopathic acquired 

sideroblastic anemia by the French American British classification [92]. It was redefined by 

the International Agency for Research on cancer in 2011 as refractory anemia with ring 

sideroblasts (RARS) or refractory cytopenia with multi-lineage dysplasia and ring sideroblasts 

(RCMD-RS) [93]. The 2016 revision of the WHO classification of MDS took into account that 

the percentage of ring sideroblasts is not relevant in regards of prognosis. Therefore, patients 
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are now diagnosed with MDS-RS if they have SF3B1 mutations and ring sideroblasts, 

comprising 5% of nucleated erythroid cells in the bone marrow, or at least 15% if no SF3B1 

mutation is detected. MDS-RS is further grouped into MDS-RS-SLD (previously RARS) and 

MDS-RS-MLD (previously RCMD) [82]. MDS-RS is characterized by ring sideroblasts in the 

bone marrow, causing severe anemia and erythroid dysplasia in patients, while they have a 

relatively good survival chance and are at a low risk of progression to AML. Ring sideroblasts 

are erythroblasts in which iron accumulates in the mitochondria in the form of mitochondrial 

ferritin, where at least 5 iron granules are perinuclear and either surround the nucleus or 

encompass one third of the area surrounding it (Figure 3) [79, 94].  

Figure 4 Ring sideroblasts. A) A ring sideroblast fixed and stained with Perl´s Prussian blue 
(scale bar; 20 µm). B) Examples of iron granule distribution in ring sideroblasts where the blue 
circles represent the iron. The figure is adapted from Mufti et al. 2008 [79]. 

 

In earlier studies, we have shown that MDS-RS erythroblasts release cytochrome c from the 

mitochondrial intermembrane space, which results in activation of caspase-9 and apoptosis 

[95]. The resulting erythroid dysplasia is in the form of hyperplastic erythropoiesis, where there 

is an increased percentage of erythroblasts in the bone marrow, followed by apoptosis just 

before terminal maturation into reticulocytes [96]. Here, growth factors such as EPO and 

granulocyte colony-stimulating factor (G-CSF), can both act via inhibition of apoptosis of 

myelodysplastic progenitors or via selection of cytogenetically normal progenitors [95, 97].  

 

1.6.1 SF3B1 mutations in MDS-RS 

The most frequent mutations in MDS-RS patients are in splicing factors (74.5%), DNA 



 

 

 

 13 

methylators (33%), chromatin modifiers (14.4%) and in transcription factor RUNX1 (11.5%) 

[98]. Up to 90% of MDS-RS patients have somatic mutations in the splicing factor gene SF3B1, 

which gives a 97.7% positive predictive value for ring sideroblast formation in the bone 

marrow [98, 99]. SF3B1 wild type patients have a high prevalence of TP53 mutations leading 

to worse outcome [98]. SF3B1 is located at chromosome 2q33 and encodes for a core 

component of the RNA splicing machinery [88]. The most common recurrent mutations of 

SF3B1 in MDS-RS patients affect amino acids K700 (45-68%), H662 (10%), E622 (7%) and 

R625 (6%) and they lead to altered selection of 3´splice sites [85, 88, 99, 100]. Mutations of 

splice factors like SF3B1 can lead to mis-splicing of RNA transcripts and thereby altered gene 

expression. For an example there is a difference between MDS-RS patients and healthy 

individuals in the exon usage of ABCB7, the gene encoding for an iron transporter 

downregulated in MDS-RS patients [94, 101, 102]. Additionally, silencing of SF3B1 in K562 

cells results in ABCB7 down regulation [102]. SF3B1 mutated MDS-RS progenitor cells also 

have impaired splicing of genes involved in hemoglobin synthesis and are associated with 

down regulation of mitochondrial genes [88, 96]. Recently it has been shown that the erythroid 

hormone erythroferrone has an alternative transcript in patients with MDS-RS. This leads to 

generation of a variant protein maintaining suppression of hepcidin transcription, likely being 

the cause of increased iron loading in patients [103]. Furthermore, SF3B1 mutated erythroid 

progenitors from zebrafish display G0/G1 cell-cycle arrest with a normal expression of 

regulators of erythropoiesis, such as gata1, globin genes and heme biosynthetic factors, while 

upregulating genes of the TGFb pathway. Inhibition of TGFb signaling released the cell cycle 

block, leading to enhanced anemia, indicating that the TGFb induced cell-cycle arrest could be 

protective for SF3B1 mutated erythroid cells [104].  

The average variant allele frequency (VAF) of SF3B1 mutations in MDS-RS patients is around 

40% and these mutations provide a competitive clonal advantage over the wild type clone [98]. 

SF3B1 mutations can be found in healthy elderly individuals representing a selection pressure 

for premalignant clonal expansion driven by the aging hematopoietic system [105]. SF3B1 has 

been reported to mutate early in disease progression although it can occur as a secondary event 

[85, 106]. Elucidating at what stage of the hematopoietic hierarchy SF3B1 mutations originate, 

identifying the cell capable of propagating and sustaining the SF3B1 mutated clone and the 

functional down-stream effects on erythropoiesis will be key for understanding aberrant 

erythropoiesis and developing new treatments for MDS-RS (Figure 5). 



 

 

 

 14 

Figure 5 Hematopoiesis in MDS-RS. Yellow lightning represents SF3B1 mutation, gray 
lightning represents possible clonal involvement. Hematopoietic stem cell (HSC), multipotent 
progenitor (MPP), common lymphoid progenitor (CLP), common myeloid progenitor (CMP), 
granulocyte/macrophage progenitor (GMP) and megakaryocyte/erythroid progenitor (MEP). 
The figure is adapted from Meyer 2017 [7]. 

 

1.6.2 Experimental models of MDS-RS 

The most commonly used in vitro models for studying MDS-RS are suspension cultures of 

CD34+ progenitor cells that allow for differentiation to erythroid precursors, but do not 

consistently generate ring sideroblasts or mature erythroid cells [94, 95, 97, 107]. While initial 

mouse studies indicated that SF3B1 haploinsufficiency resulted in increased ring sideroblast 

formation in the bone marrow of mice [108, 109], subsequent SF3B1K700E conditional knock-

in mice did not support this observation [110, 111]. In fact, the murine orthologues of genes 

associated with ring sideroblasts in humans, such as ABCB7, were not mis-spliced, indicating 

a poor conservation of splice sites between the species [110, 111]. With that in mind new 

experimental models that mimic the dysregulated erythropoiesis of MDS-RS, including 

generation of ring sideroblasts, are needed. 
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1.6.3 MDS-RS treatment 

MDS-RS patients that present with moderate to severe anemia are usually treated with 

recombinant human EPO and in some cases in combination with G-CSF. This treatment 

normalizes or improves the anemia and reduces the number of apoptotic bone marrow 

precursors by blocking cytochrome c release during erythroid differentiation [95, 97]. 

However, some patients never respond and almost 50% of patients relapse after a median of 

two to three years. Such patients usually become transfusion dependent which is associated 

with a worsening of survival and quality of life [112-115]. Additionally, chronic transfusion 

therapy can lead to iron overload which is damaging to organs such as the heart and liver [116] 

and results in a need for therapy with iron chelation agents like deferoxamine and deferasirox 

[116]. The mechanism for EPO resistance is unknown but does not seem to be related to disease 

progression to higher-risk MDS or leukemia [114]. EPO enhances the oxygen carrying capacity 

of blood cells through stimulation of the EPO receptor [117], which is important for survival, 

proliferation and differentiation of erythroid progenitors, but not for late stage erythropoiesis 

where the anemia in MDS-RS patients originates [28, 118]. We are therefore in need of 

alternative treatment options targeting mature erythroblasts. 

 

1.6.4 TGFb superfamily ligand traps; new treatment option for MDS-RS patients 

In 2014, two studies were published describing TGFβ superfamily ligand traps as a new 

alternative to alleviate anemia [21, 22]. Ligand traps are molecules that bind and block the 

interaction of ligands to their receptors and therefore inhibit their signaling [119]. These drugs 

were first investigated in order to improve bone mineral density in menopausal women but 

surprisingly resulted in increased levels of RBCs and hemoglobin [119, 120]. An activin 

receptor type IIA ligand trap named sotatercept was shown to alleviate anemia in a b-

Thalassemia mouse model [21], while luspatercept, an activin receptor type IIB (Act-RIIB) 

ligand trap, was shown to alleviate anemia in a high risk MDS mouse model [22]. Luspatercept 

is a fusion protein comprised of the extracellular domain of the human Act-RIIB, modified to 

reduce activin binding, with the Fc domain of the human immunoglobulin G1 antibody (Figure 

5) [22, 119]. 
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Figure 6 The TGFb superfamily ligand trap luspatercept. Activin receptor type IIB (ActRIIB) 
and human immunoglobulin G1 (IgG1). The figure is adapted from Fenaux et al, 2019 [121]. 

 

Treatment with a combination of luspatercept and EPO in wild type mice has been reported to 

give enhanced maturation of basophilic erythroblasts compared to administering the drugs 

separately [22]. A phase II trial of MDS patients treated with luspatercept demonstrated that 

the drug is well tolerated and effective in lower-risk MDS, with a greater response rate in MDS-

RS patients [122]. Preliminary results reported at the 2018 ASH meeting from an ongoing 

phase III trial demonstrated significantly decreased transfusion burden in MDS-RS patients 

with 37.9% of patients becoming transfusion independent [123].  

Both sotatercept and luspatercept have been shown to bind to GDF11 [21, 22], a cytokine 

reported to be elevated in the serum of MDS patients [22, 124]. GDF11 is thought to be a key 

player in erythropoiesis where it inhibits differentiation but maintains survival of erythroid 

progenitors [22]. Previously, it was speculated that GDF11 expressing erythroid progenitors 

accumulated and maintained their own survival in MDS-RS patients, and that luspatercept 

binding GDF11 would allow the erythroid progenitors to mature and thereby alleviate anemia 

in patients [22]. Recently this hypothesis has been questioned since the positive effect of 

luspatercept on erythropoiesis can also be found in healthy humans and mice, where GDF11 

overexpression has not been reported [22, 119]. Indeed in 2019 Guerra and associates 

demonstrated that a pan cellular deletion of GDF11 in a b-Thalassemia mouse model did not 

have any effects on erythropoiesis and that treating said mice with RAP-536 (the mouse analog 

Extracellular 
domain of ActRIIB 
modified to reduce 

activin binding

Fc domain of the 
human IgG1 

antibody

Luspatercept
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of luspatercept) resulted in a significant increase in RBCs, hemoglobin and hematocrit, 

showing that luspatercept does not primarily work through binding of GDF11 [125]. In vitro 

studies of luspatercept/RAP-536 have mostly consisted of suspension culture of erythroid 

progenitor cells from healthy individuals and have not succeeded in recapitulating the effects 

luspatercept has on erythropoiesis [22, 125]. This might be explained by the fact that these 

cultures are suboptimal at reproducing terminal erythropoiesis. Luspatercept may also have a 

secondary effect on erythropoiesis by binding cytokines secreted by the bone marrow stroma. 

This seems to be the case for sotatercept, where media extracted from stromal cells treated with 

the drug could restore the disrupted erythropoiesis of conditioned CD34+ cells in vitro [126]. 

Additionally, the effect luspatercept has on the SF3B1 mutated disease clone and ring 

sideroblast generation have not been reported. Therefore, investigations into the functional 

effect of luspatercept on MDS-RS erythropoiesis are needed. 
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2 AIM OF THE THESIS 
 

The main research topic of this thesis is to study the dysregulated erythropoiesis of MDS-RS 

where the aim was to: 

 

Ø Characterize at what stage of the MDS-RS hematopoietic hierarchy SF3B1 mutations 

originate and identify the cellular compartment capable of propagating and sustaining 

the mutated clone 

 

Ø Establish novel experimental models that mimic healthy and MDS-RS erythropoiesis, 

including generation of ring sideroblasts, to enable functional studies of the 

downstream effects of SF3B1 mutations 

 

Ø Study the effects of luspatercept on MDS-RS erythropoiesis by exploring if the drug 

alters the size of the SF3B1 mutated clone or percentage of ring sideroblasts, and if it 

has a direct effect on erythroid cells or secondary via binding ligands secreted by the 

bone marrow stroma 
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3 METHODOLOGICAL APPROACHES 
 

The experimental techniques used to produce data for this thesis are described in detail in study 

I-III. Therefore, only the principal methods and considerations are described below. 

 

3.1 CELL ISOLATION AND CULTURE CONDITIONS 

Bone marrow aspirates from healthy individuals and MDS-RS patients were collected at 

Karolinska University Hospital, Sweden, after obtaining informed consent from the study 

participants and with approval by the Ethics Research Committee at Karolinska Institutet 

(2010/427-31/1 and 2011/1257-31/1). Mononuclear cells (MNCs) were separated via density 

gradient centrifugation (LymphoprepTM) and a proportion of the MNCs were further purified 

into CD34+ progenitor cells via magnetic-activated cell sorting. To maximize the quantity of 

isolated cells, CD34+ purification was performed using the single separation protocol, resulting 

in purity of around 80%. The isolated MNCs and CD34+ cells were then either seeded into 

suspension cultures (2D) or into polyurethane scaffolds (3D culture). The MNCs were seeded 

at a concentration of 2 million cells per 1.5 ml medium. The CD34+ cells were seeded at 

100.000 cells per ml medium in 2D as previously established for this type of culture [95, 97]. 

When deciding at which concentrations to seed CD34+ cells into 3D culture we decided to use 

numbers enabling us to directly compare MNCs and CD34+ cells in 3D cultures. Therefore, we 

calculated the percentage of CD34+ cells in the MNC fraction used for separation of each 

individual sample and seeded the CD34+ cells at numbers representing two million MNCs in 

each scaffold. This ranged from around 17.000 to 80.000 cells per 1.5 ml medium depending 

on the cell composition of each sample. The cells were cultured for four weeks where the 

medium was optimized for erythroid maturation with three different phases. For the first week 

the medium was supplemented with the serum substitute BIT9500, SCF, IL-3, and interleukin-

6 (IL-6). From the second week EPO and iron saturated human transferrin were added to the 

medium. From the third to fourth week BIT9500, IL-3 and IL-6 were removed and replaced 

with fetal bovine serum (Figure 7). 



 

 

 

 20 

Figure 7 Medium composition throughout 4 weeks of culture. We used Iscove's Modified 
Dulbecco's Media (IMDM) supplemented with stem cell factor (SCF), BIT9500, interleukin 6 
(IL-6), interleukin 3 (IL-3), transferrin, erythropoietin (EPO) and fetal bovine serum (FBS). 

 

This composition was determined for the cells to be able to settle into culture without the stress 

of driving them towards erythropoiesis during the first week of culture, followed by support 

for erythroid maturation in subsequent weeks. Medium was changed every two to three days 

and cells collected at the end of week two, three and four for analysis. 

 

3.2 SCAFFOLD FABRICATION AND STERILIZATION 

Scaffolds were made via thermally induced phase separation followed by solvent sublimation, 

cutting and coating with collagen type I as previously described [78, 127]. This was followed 

by sterilization and washing before cell seeding. The scaffolds were designed by Mortera-

Blanco and associates, who optimized the pore size, cell number concentrations and protein 

coating to be able to sustain long term cytokine free culture of AML cell lines and cord blood 

MNCs in vitro [78, 127]. Collagen can support the localization of myeloid and erythroid 

progenitors and therefore enables the cells to adhere and form niches within the scaffolds [128]. 

This prompted us to use these scaffolds to provide a structural component resembling the bone 

marrow architecture and allowing for cellular niche formations in vitro.  

 

3.3 FLOW CYTOMETRY AND FACS 

Flow cytometry and fluorescence-activated cell sorting (FACS) are techniques used to 

respectively analyze and isolate cells based on expression of surface proteins on the cells’ 

exterior membrane. This is accomplished through staining of the cells with fluorophore-
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SCF + BIT9500 + IL-6 + IL-3

!!Transferrrin

!!Epo

!!FBS + SCF



 

 

 

 21 

conjugated antibodies after which the cells are interrogated by passing through the beam of a 

laser, exciting any fluorophores bound to the cells surface. In the studies included in this thesis 

we used a combination of the surface markers CD45, CD235a, the viability marker Aqua and 

the nuclear stain Draq5TM to determine the stage of erythropoiesis in our cultures. We defined 

non-erythroid hematopoietic cells as Aqua negative, CD45 positive and CD235a negative, 

erythroid progenitors as Aqua negative, CD45 negative, CD235a low and Draq5TM positive, 

intermediate erythroblasts as Aqua negative, CD45 negative, CD235a high and Draq5TM 

positive and enucleated erythrocytes as Aqua negative, CD45 negative, CD235a positive and 

Draq5TM negative. These populations were FACS sorted, spun onto slides and stained for 

morphological confirmation. To be able to detect viable enucleated erythroid cells we decided 

to use a viability marker based on membrane integrity (Aqua) in combination with the erythroid 

marker CD235a and a nuclear stain. Draq5TM unfortunately has a broad excitation and emission 

range which makes it difficult to include far-red fluorochromes, prompting us to keep our panel 

as simple as possible. For compensation purposes we used single stain and fluorescent minus 

one (FMO) controls [129] and the gating strategy was based on FMOs and biologically separate 

populations. Using this strategy, we sorted out the different populations from an MDS-RS 

patient in study I and were able to determine that ring sideroblasts are negative for CD45 and 

positive for CD235a (Figure 8).  

Figure 8 FACS gating strategy for selection of the population including ring sideroblasts (scale 
bar; 20 µm). The figure is adapted from Mortera-Blanco et al 2017 [130]. 
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In studies II and III this strategy was used to define the different stages of erythropoiesis 

throughout culture. To avoid bias as a result of difficulties in extracting every cell from the 

scaffolds, we reported the size of each population as a percentage of the entire analyzed sample. 

 

3.4 PROLIFERATION ASSAY 

In order to measure cellular expansion throughout our cultures we used the one step aqueous 

soluble tetrazolium/formazan MTS assay. In this assay the tetrazolium compound is bio 

reduced into formazan by enzymes found in metabolically active cells and the quantity of 

formazan is then measured by absorbance at 490nm, which is proportional to the number of 

living cells in the culture [131]. We decided to use the MTS assay since we could add the 

compound directly to our cultures enabling measurement of proliferation without removing the 

cells from the scaffolds. This was done to avoid cellular stress and introducing potential bias 

as a result of some of the cells being left behind in the scaffolds. 

 

3.5 FUNCTIONAL STEM AND PROGENITOR CELL ASSAYS 

Long-term culture colony forming cell (LTC-CFC) assays can be used to functionally identify 

and quantify the most primitive hematopoietic progenitor cells with self-renewal capacity in 

vitro [132-135]. The assay is composed of a co-culture of hematopoietic progenitor cells on 

irradiated feeder cells for six weeks followed by two weeks of colony-forming unit cell (CFU-

C) assays, enabling only primitive progenitor cells with self-renewal potential to survive and 

maintain their functional properties [134-136]. In our experiments we used the murine stromal 

cell lines M2-10B4 and Sl/Sl that have been engineered to express the human cytokines SCF, 

IL-3 and G-CSF [137]. Although LTC-CFC assays cannot measure the repopulation capacity 

of HSCs as in long-term transplantation assays, they can be used as a substitute when such 

experiments are not feasible. 

In study I we used the LTC-CFC assay to assess the self-renewal potential of MDS-RS stem 

and progenitor cells compared to healthy controls, and to investigate the cellular origin of the 

SF3B1 mutated clone. In study II we used the LTC-CFC assay to determine if cells with self-

renewal potential were maintained throughout the four weeks of culture in our scaffold system. 

Since the LTC-CFC assay was developed for seeding hematopoietic progenitor cells we tried 
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to optimize well size, and numbers of stromal and seeded hematopoietic cells to be able to seed 

cultured MNCs in LTC-CFC assays. Unfortunately, the difference in cellular composition 

between individual samples of cultured MNCs resulted in such a variation in colony numbers 

that we decided to only record if they were present or not. 

 

3.6 TARGETED SEQUENCING 

Heterozygous SF3B1 single nucleotide mutations were detected in our cohort of MDS-RS 

patients using targeted sequencing of DNA isolated from bulk bone marrow. For this purpose, 

Haloplex selector probes were used as previously described [98] or the TruSight myeloid 

sequencing panel (illuminaâ). Pyrosequencing and droplet digital PCR (ddPCR) were used to 

confirm the presence and quantify the allele burden or VAF of these previously identified 

mutations.  

 

3.6.1 Pyrosequencing 

Pyrosequencing is a targeted DNA sequencing by synthesis method that can identify single 

bases or short stretches of nucleic acid sequence. This works via bioluminescence, where 

pyrophosphate release is converted to light through an enzymatic reaction during incorporation 

of a nucleotide into a growing chain of DNA [138]. This process involves the following steps: 

1) A sequencing primer designed for the target of interest is added to a single strand DNA 

template and incubated with the enzymes DNA polymerase, adenosine triphosphate (ATP) 

sulfurylase, luciferase and apyrase along with the substrates adenosine 5´phosphosulfate and 

luciferin. 2) Deoxynucleotide triphosphates (dNTPs) are added one at a time and the DNA 

polymerase incorporates the complementary dNTP into the DNA template which then releases 

pyrophosphate (PPi). 3) In the presence of adenosine 5´phosphosulfate the ATP sulfurylase 

converts PPi to to ATP, which acts as a substrate for the luciferase-mediated conversion of 

luciferin to oxyluciferin, generating visible light in proportion to the amount of ATP. 4) The 

light produced is detected by a camera and analyzed in a computer program. 5) Unincorporated 

nucleotides and ATP are degraded by apyrase and the reaction starts again with another 

nucleotide. Water was run as a negative control for each reaction and SF3B1 wild type DNA 

both from a healthy individual and from the patients themselves (DNA from isolated T-cells) 

were used as biological controls. In study I we used pyrosequencing to detect SF3B1 mutations 
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in LTC-CFC and CFC colonies and in pro-B cells from MDS-RS patients. Since there was a 

risk of cross contamination between individual colonies we considered colonies to be positive 

with a VAF above 25% and negative with a VAF of 5% or lower (and those in between to be 

inconclusive). For the FACS sorted pro-B cells we used a 5% cutoff. In study II we also used 

pyrosequencing to evaluate if the SF3B1 mutated clone was preserved throughout the different 

MDS-RS cultures with a 5% cutoff for positivity. 

 

3.6.2 ddPCR 

Since the sensitivity of pyrosequencing can vary between different cell types, and false 

negatives can occur after amplification of low amounts of DNA, we decided to move forward 

using a more sensitive method called ddPCR. This method was used to analyze cells from 

xenotransplantation experiments in study I and to follow the size of the SF3B1 mutated clone 

throughout culture in study III (sensitivity set to 0.1%). Digital polymerase chain reaction 

(PCR) is a method where partitioning of individual molecules into many replicate reactions at 

limiting dilutions is used for absolute nucleic acid quantification [139]. In ddPCR, reactions 

are partitioned into thousands of highly uniform, nanoliter-sized, aqueous droplets in oil per 

sample, enabling a precise calculation of concentrations via Poisson correction for multiple 

target molecules per droplet [140]. This process includes the following steps: 1) DNA samples 

and targeted probes specific for the assayed mutation (one for the mutant allele and one for the 

wildtype allele) are loaded into a droplet generator cartridge together with droplet generation 

oil. 2) Vacuum is used to draw the sample and oil through a flow-focusing nozzle where in less 

than two minutes each sample is converted into 20.000 one nanoliter droplets. 3) After droplet 

generation the samples are pipetted into a PCR plate where PCR amplification is performed in 

a thermal cycler. 4) The plate is loaded onto a reader that absorbs the droplets and streams 

about 1000 of them per second in a single-file past a two-color detector. 5) The droplets are 

marked as positive or negative based on fluorescence. Their number in each channel is used to 

calculate the concentration of target and reference DNA sequences and their Poisson-based 

95% confidence intervals (Figure 9) [140].  
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Figure 9 The different steps of the ddPCR workflow (see main text). The plot in stage 5 
represents the measured wild type (HEX) and mutant (FAM) fluorescent signals for each 
droplet. The figure is adapted from Hindson et al 2011 [140]. 

At least a triplicate of DNA samples from healthy individuals were run for every probe/assay 

for validation and water was run as a negative control for each reaction. 

 

1. DNA sample and droplet generation oil loaded into cartridge

2. Droplets generated via vacuum

3. PCR amplification

4. Reader absorbs droplets and reads their fluorescence 

5. Concentration of target and reference DNA sequence calculated
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3.7 MORPHOLOGICAL AND HISTOPATHOLOGICAL EVALUATIONS 

Cells extracted from our cultures were spun onto microscope slides and either stained with 

May-Grünwald Giemsa or Perl´s Prussian blue for ring sideroblast detection using standard 

pathology procedures. The 3D scaffolds themselves are essentially like a sponge which we 

gently squeezed and flushed with buffer to recover as much of the cells out as possible. 

Aspirating all the cells out of the scaffolds proved to be difficult since some cells attached 

strongly to the collagen coated walls of the scaffolds, as could be expected. In study II we 

therefore decided to see if we could treat the scaffolds as bone marrow biopsies or solid tissue 

by fixing them in 4% paraformaldehyde overnight, and then either embedding them in paraffin 

or use cryopreservation. We quickly learned that the scaffolds would easily tare and lose their 

original structure after paraffin embedding (Figure 10A) but in some cases we managed to 

detect erythroid clusters and cells attached to the walls of the scaffolds. We stained paraffin 

sections from already aspirated scaffolds with Haemotoxylin and Eosin and Nestin and 

confirmed that there were some cells left lining the walls of the scaffolds (Figure 10B).  

Figure 10 Paraffin embedded scaffold sections (A) from week 3 of healthy bone marrow 
culture stained with H&E (scale bar; 1000 µm) and (B) from week 4 of healthy bone marrow 
culture where scaffolds were aspirated before embedding and stained with Nestin (scale bar; 
100 µm). 

This we had to take into account when comparing the 2D and 3D cultures and prompted us to 

use an in situ proliferation assay (MTS) to minimize bias.  

The cryopreserved scaffolds did not tear to the same extent as the paraffin embedded ones and 

cells were more easily retained within the scaffolds. We stained sections from cryopreserved 

scaffolds with fluorescently conjugated antibodies which enabled us to detect cellular clusters 
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and erythroblastic islands via confocal microscopy, although unfortunately the 

autofluorescence of the polyurethane scaffolds themselves introduced some limitations. 

 

3.8 CYTOKINE MEASUREMENTS 

To determine if there was a difference in cytokine secretion after 3D culture of MNCs vs CD34+ 

cells, healthy bone marrow vs MDS-RS samples, and if this secretion was affected by 

luspatercept treatment, we froze medium from week one, two and four (representing change in 

medium composition) from our different cultures in studies II and III. For this purpose, we 

measured GDF11 with a sandwich enzyme linked immune-sorbent assay (ELISA) and used a 

commercially available bead-based multiplex assay that uses the Luminexâ technology to 

measure concentration of 19 cytokines that were of interest and available. Those were TGFa, 

G-CSF, Flt-3L, GM-CSF, IFNg, IL-10, MCP-3, IL-13, IL17A, IL-1a, IL-9, IL-6, IL-8, MCP-

1, MIP-1a, MIP-1β, TNFa, TNFβ and VEGF. Standard curves made from measuring 

recombinant human cytokines of known concentrations were used to convert absorbance or 

fluorescent units to cytokine concentration units. The medium was frozen immediately after 

extraction at -80°C and only thawed once directly before usage to minimize degradation [141]. 

Supernatants from empty scaffolds treated identically to scaffolds seeded with cells were used 

as controls. 
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4 RESULTS AND DISCUSSIONS 

4.1 STUDY I 

Although it was well-known that the majority of MDS-RS patients harbor recurrent somatic 

mutations in SF3B1, resulting in a negative impact on erythropoiesis, the primary target of 

these mutations and at which stage of hematopoietic hierarchy the mutated clone gains 

competitive advantage had not been well established at the time of publication of study I. It 

had been implied that SF3B1 mutations target the phenotypic HSCs compartment [142], 

although the lymphoid lineages were thought to not be involved, giving support to the 

possibility that downstream myeloid progenitors could be the cell of origin in MDS-RS [88, 

142, 143].  

 

4.1.1 Investigation 

To investigate if there were differences in the frequency of stem and progenitor cell 

compartments in MDS-RS compared to healthy individuals, HSCs, CMP, GMP and MEPs 

were FACS sorted as previously described [90] with no significant differences detected. These 

populations were further seeded into CFC assays revealing a reduced capacity of GMPs and 

MEPs to generate myeloid and erythroid colonies, with poor hemoglobinization of BFU-Es 

(Figure 1D, Study I). The LTC-CFC assay was used to investigate the self-renewal potential 

of MDS-RS stem and progenitor cells, revealing it to be restricted to the HSC compartment 

and significantly reduced compared to healthy individuals. Next, we used computational 

predictions based on targeted sequencing data to evaluate the order of mutations in patients 

with more than one recurrent driver mutations, showing that SF3B1 mutations were predicted 

to be the first event in most cases. Individual colonies from LTC-CFC assays seeded with 

FACS sorted HSCs and directly FACS sorted HSCs, GMPs and MEPs from MDS-RS patients 

were all found to be SF3B1 mutated while T-cells were negative. To further investigate the 

lymphoid compartment, FACS sorted pro-B cells from MDS-RS patients were found to be 

reduced compared to healthy controls and to harbor SF3B1 mutations, while mature B cells 

were wildtype in all but one case. To assess the propagating ability of MDS-RS stem and 

progenitor cells in vivo we transplanted FACS sorted HSCs, CMPs, GMPs and MEPs from two 

patients into immunodeficient mice and analyzed after 20 to 22 weeks. We found that only the 

HSCs sustained myeloid and B-cell engraftment with clonal involvement of myeloid cells 
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generated from one of the engrafted patients. Furthermore, we showed that ring sideroblasts 

are exclusively CD45 negative and CD235a positive and found ring sideroblasts via 

immunohistochemistry in all mice transplanted with HSCs from SF3B1 mutated MDS-RS 

patients.   

 

4.1.2 Key findings 

In this study we show that the self-renewal capacity of MDS-RS stem and progenitor cells is 

significantly reduced and restricted to the primitive HSC compartment, and that only these 

HSCs can propagate the SF3B1 mutated clone both in vitro and in vivo. These results indicate 

that HSCs from MDS-RS patients do not pass on self-renewal potential to downstream 

progenitors. Importantly we found SF3B1 mutations in the pro-B cell compartment of MDS-

RS patients, thereby proving that recurrent SF3B1 mutations target the multipotent 

lymphomyeloid HSCs and have a negative impact on lymphoid development. We did not find 

clonal involvement in the T-lymphoid lineage, which might be a reflection of lymphoid 

development being incompatible with SF3B1 mutations, or of the longevity of T-cells which 

are not actively produced in the elderly [5, 144, 145] (Figure 11).  
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Figure 11 Origin of SF3B1 mutations in MDS-RS. We showed that the SF3B1 mutations 
originate before division into lymphoid and myeloid lineages. Lightning represent SF3B1 
mutation. Hematopoietic stem cell (HSC), multipotent progenitor (MPP), common lymphoid 
progenitor (CLP), early T-cell progenitor (ETP), B-cell progenitor (proB) 
granulocyte/macrophage progenitor (GMP) and megakaryocyte/erythroid progenitor (MEP). 
The figure is adapted from Meyer 2017 [7]. 

 

Previously it had been reported that no ring sideroblasts were obtained after transplantation of 

HSCs from MDS-RS patients into immunodeficient mice [142]. In that study expression of 

CD45 was used to determine engraftment, which would have excluded detection of ring 

sideroblasts according to our observation that they are CD45 negative. We therefore 

investigated the whole bone marrow of transplanted mice and reported for the first-time ring 

sideroblast generation in immunodeficient mice after transplantation with HSCs from MDS-

RS patients, providing a new methodology to study the dysregulated erythroid development in 

MDS-RS patients. 

 

4.2 STUDY II 

Modelling ineffective erythropoiesis in vitro has thus far been a challenge, limiting our capacity 

to functionally study the regulatory mechanisms involved and to screen for novel therapeutic 
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compounds. Primary suspension cultures of erythroid progenitors from MDS-RS patients have 

been useful to study the early stages of erythropoiesis, with increased mitochondrial ferritin 

and mitochondria mediated apoptosis observed [95-97]. Unfortunately cultures capable of 

consistently generating ring sideroblasts, erythroblastic islands and mature erythrocytes have 

not been reported, which would be required to further elucidate the biological consequences of 

SF3B1 mutations. Although xenograft models are a valuable model for studying MDS-RS 

erythropoiesis, low engraftment and recovery of MDS-RS cells limit the capacity for 

experimental outputs [146, 147]. In this study we therefore wanted to establish an in vitro 

model capable of recapitulating both healthy and MDS-RS erythropoiesis with formation of 

ring sideroblasts and maintenance of the SF3B1 mutated clone. 

 

4.2.1 Investigation 

According to our results in study I, ring sideroblasts could be generated when HSCs from 

MDS-RS patients were provided with the bone marrow microenvironment of the mouse. 

Additionally, including autologous mesenchymal stromal cells was reported to facilitated 

engraftment of MDS hematopoiesis in mice [148]. We therefore decided to culture the whole 

MNC fraction (including stromal cells) or isolated CD34+ cells from the bone marrow of 

healthy individuals and MDS-RS patients, either in suspension (2D) or in polyurethane 

scaffolds (3D). Using flow cytometry, we found that both 3D and 2D culture of MNCs from 

healthy individuals primarily facilitated culture of non-erythroid hematopoietic cells, although 

the percentage of erythroid cells produced was slightly higher in 3D than in 2D cultures. 

Interestingly, while CD34+ cells did not survive four weeks of 2D culture the opposite was 

observed in 3D, where they also generated significantly higher amounts of erythroid cells 

compared to 3D and 2D MNC cultures. Although less pronounced than in healthy individuals, 

erythropoiesis was also favoured in 3D culture of CD34+ cells from MDS-RS patients. The 

CD34+ 3D cultures additionally had the highest proliferative capacity both in healthy and 

MDS-RS cultures, while they completely stopped proliferating after three weeks in 2D culture.  

MNC cultures retained stable proliferation throughout the culture period. We then used LTC-

CFC assays to demonstrate that stem and progenitor cells with self-renewal capacity were 

maintained after four weeks in the CD34+ 3D, MNC 3D and MNC 2D cultures. We also found 

erythroblastic islands in all three culture types after four weeks of healthy and MDS-RS 

cultures. To detect if cells cultured in 3D secreted factors at different concentrations between 
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MNC and CD34+ cultures, and between healthy and MDS-RS cultures, we measured secretion 

of selected cytokines. We found that while 3D CD34+ cultures produced low levels of cytokines 

in general, TGF-β1 - a factor reported to have a negative effect on erythropoiesis and a 

sustained signal activation in MDS [149-153] - was secreted at higher levels after four weeks 

of MDS-RS compared to NBM cultures. GDF11 was only detected in 3D culture of MNCs 

from MDS-RS patients, while secretion of IL-10 was increased and IL-1a secretion lost 

throughout MNC cultures, reflecting erythroid differentiation [20, 154]. Importantly 

pyrosequencing revealed the maintenance of SF3B1 mutated clones throughout CD34+ 3D, 

MNC 3D and MNC 2D cultures with regeneration of ring sideroblasts from the second week 

of culture. 

 

4.2.2 Key findings 

In this study we report for the first time that 3D culture of primary CD34+ cells from healthy 

individuals and MDS-RS patients enables long-term continuous cellular expansion and 

facilitates erythropoiesis, including generation of erythroblastic islands and enucleated red 

cells. Corresponding MNC cultures could also be maintained long-term although with lower 

proliferative capacity and mostly facilitating the expansion of non-erythroid hematopoietic 

cells. This is in line with reports showing that co-culture of CD34+ cells with stromal cells, or 

with conditioned media produced by stromal cells, has a negative effect on erythropoiesis in 

favor of the myeloid lineage [46, 126]. The different capability of the CD34+ cells to survive 

and proliferate in 2D and 3D might be explained by the structural component provided by the 

scaffolds, where the cells have the opportunity to form cellular niches allowing for cell-cell and 

cell-matrix interactions similar to in vivo. We also demonstrated that MNCs and CD34+ cells 

cultured in 3D retained self-renewal capacity throughout culture and generated erythroblastic 

islands which are an essential component for erythropoiesis [39, 40, 155]. Importantly, the 

MDS-RS cultures maintained the SF3B1 mutated clone and consistently generated ring 

sideroblasts. To our knowledge, this is the first report of successful de novo generation of ring 

sideroblasts in vitro. These results support the usage of the CD34+ 3D culture for studying 

healthy and MDS-RS erythropoiesis in a simple and effective way where it is easier to control 

for cellular input and recovery compared to MNC cultures. The MNC cultures on the other 

hand facilitated secretion of cytokines known to have an effect on erythropoiesis and might 

therefore be an alternative model for studying effects of stroma or other non-erythroid 
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hematopoietic cells on erythropoiesis. This model can be used to study physical, molecular and 

cellular components important for erythropoiesis and as an alternative to animal models for 

high-throughput screening of therapeutic compounds aiming to alleviate anemia in patients. 

 

4.3 STUDY III 

While the TGFb superfamily ligand trap luspatercept shows promising results in patients with 

MDS-RS, it still remains unclear if the drug supports terminal erythroid differentiation of the 

SF3B1 mutated disease clone or if it gives the wild type clone a competitive advantage in the 

bone marrow of patients. Recent reports also question if the drug works primarily through 

binding of GDF11 [125] and suspension cultures have not recapitulated the erythroid 

enhancing effect of the drug [22]. This lead us to investigate possible pathways of drug effect 

and if there may exist a secondary effect through MDS-RS stroma. 

 

4.3.1 Investigation 

We cultured MNCs and CD34+ cells from healthy individuals and MDS-RS patients in the 3D 

culture model established in study II and treated them with luspatercept from the second week 

of culture. To determine if luspatercept has a direct or secondary effect on erythropoiesis we 

compared proliferative capacity via the MTS assay and erythropoiesis via flow cytometry in 

cultures from healthy individuals. We found that luspatercept gave a non-significant but 

consistent increase in proliferation and erythroid cell production both for MNC and CD34+ 

cells in 3D culture. In MDS-RS cultures, however, luspatercept did not show an effect on 

proliferation or erythropoiesis. We then measured the VAF of the patient-specific SF3B1 

mutations and counted ring sideroblasts after four weeks of MDS-RS cultures. In the three 

patients studied, no effect was observed after luspatercept treatment. To evaluate if cytokine 

secretion differed between MNC and CD34+ cultures, and between normal BM and MDS-RS 

cultures, and if luspatercept treatment affected this secretion, we measured the concentration 

of cytokines in media extracted from cultures. We found that cytokines involved in 

erythropoiesis; granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, TNFa 

and fms like tyrosine kinase 3 ligand (Flt-3L or CD135) were secreted at higher concentrations 

at the beginning of MNC compared to CD34+ cultures, but that these levels evened out 

throughout the culture period [32, 156-158]. Interestingly monocyte chemoattractant protein 1 
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(MCP-1 or CCL2), a cytokine highly expressed by erythroblastic island macrophages [159], 

followed the same trend although at much higher concentrations. This perhaps represents the 

formation of erythroblastic islands in the CD34+ cultures. Vascular endothelial growth factor 

(VEGF), known to be expressed at increased levels in low-risk MDS [160], was secreted at 

significantly higher concentrations in MDS-RS compared to healthy MNC cultures. On the 

other hand, monocyte chemoattractant protein 3 (MCP-3 or CCL7) was secreted at higher, 

although not significantly, concentrations in healthy cultures. None of these cytokines were 

affected by luspatercept treatment. One of the measured cytokines, IL-6, was secreted at 

significantly higher concentrations during the second week of healthy CD34+ cultures 

compared to all other culture types. Interestingly this secretion was completely lost when the 

cells were treated with luspatercept. To see if there was a difference in IL-6 receptor expression 

on healthy compared to MDS-RS CD34+ cells we searched previously reported RNA 

sequencing genome data [161] and found it to be significantly lower in MDS-RS. 

 

4.3.2 Key findings 

In this study we report that luspatercept enhances proliferation and drives both MNCs and 

CD34+ cells from healthy individuals towards erythropoiesis, indicating that the drug has a 

direct effect on erythroid progenitors in 3D culture. With respect of the hitherto limited 

observations, we did not see the same effect in luspatercept treated MDS-RS cultures, nor could 

we find differences in SF3B1 mutated clone size or ring sideroblast percentage following 

exposure. These results imply that luspatercept does not directly inhibit the disease clone, 

although we cannot exclude that luspatercept might act by reducing erythroid apoptosis or that 

we hitherto may have included only non-responders in our study. Therefore, we will address 

these uncertainties in a larger cohort of patients. We also demonstrated that luspatercept may 

have an effect on cytokine secretion by showing that the drug completely inhibited the secretion 

of IL-6 from CD34+ cultures of healthy bone marrow. There are contradicting reports with 

regards to expression levels of IL-6 in MDS patients [162-164], although this might be the 

result of pooling measurements from different MDS subgroups. We therefore demonstrated 

that the expression of the IL-6 receptor is downregulated on CD34+ cells from MDS-RS 

patients. Interestingly, IL-6 has been found to impair mitochondrial function in maturing 

erythroid cells in vitro and to have a negative effect on erythroid cells through capsase-3 

activation and apoptosis [49, 165]. Only 25% of MDS patients are reported to have elevated 
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levels of IL-6 [166] and 37.9% of MDS-RS patients achieve transfusion independence after 

luspatercept treatment [123]. Therefore, it may be worth exploring if luspatercept responders 

have elevated levels of IL-6 compared to non-responders. 
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5 CONCLUDING REMARKS AND FUTURE OUTLOOK 
More than 80% of patient with MDS-RS harbor recurrent somatic mutations in the splicing 

factor gene SF3B1 [98] where the downstream ramifications on erythropoiesis have yet to be 

elucidated. In study I we demonstrated that only the HSCs from MDS-RS patients could 

propagate and sustain the SF3B1 mutated clone in vitro and in vivo, and that the clone originates 

in the multipotent lymphomyeloid HSCs. We provided definite evidence that SF3B1 mutations 

were present at the pro-B cell stage and have a negative effect on lymphoid development. These 

results are particularly interesting in light of recent publications where age related inflammation 

of the bone marrow microenvironment has been shown to induces ineffective erythropoiesis 

[49].  Furthermore, elevated levels of damage associated molecular patterns S1008/S1009 have 

been found in the serum of MDS patients, creating an immunosuppressive microenvironment 

[167]. We also demonstrated that transplanting immunodeficient mice with HSCs from MDS-

RS patients resulted in ring sideroblast generation in the mouse bone marrow in all cases. 

Interestingly, genetic mouse models allowing conditional expression of SF3B1 mutations have 

not been reported to generate ring sideroblasts [110, 111]. This might result from the lack of 

additional mutation found to co-occur with SF3B1 mutations in MDS-RS patients, or from 

unresolved differences in mitochondrial iron metabolism between human and mice [110]. 

Recently formation of ring sideroblasts has been reported in a cytokine-humanized MDS 

patient derived xenotransplantation model, circumventing the downstream differences between 

mice and man [168]. The MDS xenotransplantation model represents a novel in vivo platform 

for exploring the cellular and molecular basis as well as therapeutic targets in MDS-RS.  

In study II we established a 3D in vitro culture system using primary cells from MDS-RS 

patients, capable of mimicking dysregulated erythropoiesis including formation of ring 

sideroblasts and maintenance of the SF3B1 mutated disease clone. This model provides the 

opportunity to study the physical, molecular and cellular components involved in terminal 

erythropoiesis. It could also be a valuable method for high-throughput screening of drugs aimed 

to alleviate anemia in patients in an easier and cheaper way than using mouse models. 

Producing hiPSCs that recapitulate different combinations of mutations found to co-occur with 

SF3B1 mutations in MDS-RS patients and to establish MDS-RS derived cell lines capable of 

producing ring sideroblasts could be the next important step in modelling the disease. Recently 

some ring sideroblast generation has been reported from hiPSC cultures derived from an MDS-

RS patient, but only after genetic manipulation to induce expansion of hematopoietic 
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progenitor cells [106]. Since CD34+ hematopoietic progenitor cells grew extremely well while 

maintaining their self-renewal potential in our culture system, using the 3D scaffolds to culture 

MDS-RS derived hiPSCs might help to overcome the limited hematopoietic potential of MDS 

hiPSCs. Additionally, the system might be of value to study stromal effect on erythropoiesis 

via co-culture of healthy stroma with MDS hematopoietic cells, and vice versa, and to model 

other erythroid failure disorders.  

In study III we tested the effect of TGFb superfamily ligand trap luspatercept on MNCs and 

CD34+ cells from healthy individuals and MDS-RS patients cultured in the 3D model 

established in study II. We found an increase in proliferation and erythropoiesis in cultures 

from healthy individuals treated with luspatercept, while similar effects were not detected in 

MDS-RS cultures. Moreover, the SF3B1 mutated clone size and ring sideroblast percentage 

was not affected by treatment. It is possible that the drug allows for terminal maturation of 

erythroid cells from the disease clone, although we cannot exclude the possibility that 

luspatercept might reduce erythroid apoptosis. This will have to be further investigated in a 

larger cohort of MDS-RS patients, preferentially known to respond or not to luspatercept 

treatment. With regard to cytokine secretion, we found that IL-6 secretion by healthy CD34+ 

cells in 3D culture was completely prevented with luspatercept treatment. As previously 

mentioned ring sideroblasts have iron filled mitochondria inducing caspase-9 activation, 

cytochrome c release and apoptosis [95]. Interestingly IL-6 impairs mitochondrial function in 

maturing erythroid cells in vitro [165] and reduces erythroid colony formation through caspase-

3 activation and apoptosis in vivo [49]. Further investigation into IL-6 secretion and its effect 

on MDS-RS erythropoiesis might therefore be of interest. Additionally, only 25% of MDS 

patients are reported to have elevated levels of IL-6 [166]. We therefore plan to explore 

cytokine patterns in MDS-RS patients in vitro with different clinical outcome after luspatercept 

treatment. 
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