Ärftlighet vid AML

Panagiotis Baliakas, MD-PhD

Dept of Immunology, Genetics and Pathology Science for Life Laboratory, Uppsala University Clinical Genetics, University Hospital, Uppsala

Genes reported in TWIST panel Mars 2021-Clinical genetics Uppsala

ABL1	FIT3	PPM1D
ANKRD26 (inklusive 5'-UTR)	GATA1	PTEN
ASXL1	GATA2 (inklusive intron 4)	PTPN11
ATRX	GNAS	RAD21
BCOR	HRAS	RUNX1
BCORL1		SAMD9
BCL2		SAMD9L
ВТК	IK7E1	SBDS
BRAF		SETBP1
CALR	IAK3	SF3B1
CBL		SMC1A
CBLB	KIT	SMC3
CDKN2A	KRAS	SRSF2
СЕВРА	KNAT2 A	SRP72
CSF3R		STAG2
CUX1		STAT3
CXCR4	NE1	STAT5B
DDX41		TERT
DNMT3A		TET2
ETV6/TEL		TP53
EZH2	DCEPA	U2AF1
PHF6		WT1
FBXW7	r LUUZ	ZRSR2

Genetic terms

Penetrance: Frequency (%) of carriers who have symptoms-disease risk

Expressivity: The phenotypiv variation among individuals with a specific variant

Genetic terms

Anticipation: Earlier age at diagnosis and more severe symptoms in the next generations

WHO 2016 classification

Myeloid neoplasm classification

Myeloid neoplasms with germ line predisposition without a preexisting

disorder or organ dysfunction

AML with germ line CEBPA mutation

Myeloid neoplasms with germ line DDX41 mutation*

Myeloid neoplasms with germ line predisposition and preexisting platelet disorders

Myeloid neoplasms with germ line RUNX1 mutation*

Myeloid neoplasms with germ line ANKRD26 mutation*

Myeloid neoplasms with germ line ETV6 mutation*

Myeloid neoplasms with germ line predisposition and other organ dysfunction

Myeloid neoplasms with germ line GATA2 mutation

Myeloid neoplasms associated with BM failure syndromes

Myeloid neoplasms associated with telomere biology disorders

JMML associated with neurofibromatosis, Noonan syndrome or

Noonan syndrome-like disorders

Myeloid neoplasms associated with Down syndrome*

Acta Medica Scandinavica. Vol. CXXVII, fasc. I-II, 1947.

From the University Institute for Human Genetics, Copenhagen, (Director: Tage Kemp, M. D.) and The University Institute of Pathological Anatomy, Copenhagen. (Director: Professor J. Engelbreth-Holm, M. D.)

Familial Leukemia.¹

A Preliminary Report.

Ву

AAGE VIDEBÆK. (Submitted for publication August 6, 1946.)

1861

First publication
RUNX1
CEBPA
GATA2
ANKRD26
SRP72
ETV6
DDX41
ATG2B
SAMD9

1999

2004

SAMD9L

2015

2012

Why have we missed them?

- 3 generations **detailed pedigree**
- Rare?
- Denovo mutations, incomplete penetrance, variable expressivity
- Not unusual among older patients

Why should we recognize them?

Family members

- As part of the family investigation
- To explain symptoms/signs
- To avoid unnecessary medication
- To identify patients who may be candidates for Allo-HSCT
- To identify healthy individuals
- Follow-up

Patient with AML/MDS

- Offer an explanation
- Choice of donor (engraftment failure, donor-derived leukaemia)
- Define risk for other family members
- Choice of conditioning (Fanconi anemi, telomeropathies)
- Follow up (even after allo-SCT)

WHO 2016 classification

Myeloid neoplasm classification

Myeloid neoplasms with germ line predisposition without a preexisting

disorder or organ dysfunction

AML with germ line CEBPA mutation

Myeloid neoplasms with germ line DDX41 mutation*

Myeloid neoplasms with germ line predisposition and preexisting platelet disorders

Myeloid neoplasms with germ line RUNX1 mutation*

Myeloid neoplasms with germ line ANKRD26 mutation*

Myeloid neoplasms with germ line ETV6 mutation*

Myeloid neoplasms with germ line predisposition and other organ dysfunction

Myeloid neoplasms with germ line GATA2 mutation

Myeloid neoplasms associated with BM failure syndromes

Myeloid neoplasms associated with telomere biology disorders

JMML associated with neurofibromatosis, Noonan syndrome or

Noonan syndrome-like disorders

Myeloid neoplasms associated with Down syndrome*

MNs with germline DDX41 mutations

- Dubbel *DDX41* mutations
 - Truncating germline variant-missense somatic the usual patern

- High penetrance
- Advanced age at diagnosis
- Favorable prognosis
- Pre-existing cytopenia is usual

MNs with germline DDX41 mutations

Only 0.5% of the cohort carried isolated *DDX41* somatic mutations indicating that <u>DDX41 is rarely involved in the oncogenesis of MNs in the absence of a germline predisposing variant</u>

Sebert M et al. Blood 2020

MNs with germline DDX41 mutations

Whether engraftement is delayed in the Allo-HSCT context is under debate

MNs with germline *RUNX1* mutations (FPD/MM)

- SNVs or large deletions
- Incomplete penetrance (20-60%)
- Early age at diagnosis (30-40 y)
- Anticipation
- High risk even for T-ALL

MNs with germline GATA2 mutations

- SNVs or large deletions
- High penetrance (90%)
- Early age at diagnosis
- Anticipation
- Enrichment for aberrations involving chromosome 7

MNs with germline GATA2 mutations

Case 1

We need guidelines

- Whom to test
- Which test
- Management

AML national guidelines 2018

11.6 Misstanke om ärftlig leukemisjukdom

Rekommendation

Patienter med misstanke om ärftlig form av leukemi bör diskuteras med och vid behov remitteras till en klinisk genetisk verksamhet för ytterligare utredning samt ev. genetisk vägledning (+). Det är viktigt att patienten är fullt införstådd med utredningens syfte. Den kliniska handläggningen bör ske i samråd med hematologisk expertis som är förtrogen med handläggning av ärftliga former av leukemi.

Who, how, when

Genetic counseling

Significance for the whole family

Nordic Working Group on Myeloid Neoplasms with Germline Predisposition

Finland	Kirsi Jahnukainen
	Ulla Wartiovaara-Kautto
	Outi M Kilpivaara
Sweden	Panagiotis Baliakas
	Bianca Tesi
	Jörg Cammenga
	Eva Hellström-Lindberg
Norway	Astrid Olsnes Kittang
	Ingunn Dybedal
	Randi Hovland
	Cecilie Rustad
Denmark	Kirsten Grønbæk
	Klas Raaschou-Jensen
	Charlotte Kvist Lautrup
	Mette Klarskov Andersen

Nordic Working Group on Myeloid Neoplasms with Germline Predisposition

Nordic Guidelines for Germline Predisposition to Myeloid Neoplasms in Adults: Recommendations for Genetic Diagnosis, Clinical Management and Follow-up

Panagiotis Baliakas¹, Bianca Tesi², Ulla Wartiovaara-Kautto³, Asbjørg Stray-Pedersen⁴, Lone Smidstrup Friis⁵, Ingunn Dybedal⁶, Randi Hovland⁷, Kirsi Jahnukainen⁸, Klas Raaschou-Jensen⁹, Per Ljungman¹⁰, Cecilie F. Rustad¹¹, Charlotte K. Lautrup¹², Outi Kilpivaara¹³, Astrid Olsnes Kittang¹⁴, Kirsten Grønbæk¹⁵, Jörg Cammenga¹⁶, Eva Hellström-Lindberg¹⁷, Mette K. Andersen¹⁸

Whom to test

A: Patients with positive family history or signs/symptoms indicative of a hereditary condition predisposing for myeloid neoplasms (MN) especially MDS/AML.

- A1: Patient with MDS/AML and symptoms/signs of a hereditary condition predisposing for MN development^{*1} diagnosed before the age of 50.
- A2: Two individuals (first or second degree relatives, FDR and SDR, respectively) with MDS/AML or long lasting thrombocytopenia or symptoms/signs indicative of a hereditary condition predisposing for MN development^{*1}, one of whom diagnosed before the age of 50.
- A3: One individual with MDS/AML and two FDR or SDR with a diagnosis of solid tumor malignancy^{*2} one of whom diagnosed before the age of 50.
- A4: ≥3 FDR or SDR with MN or long-lasting thrombocytopenia or symptoms/signs indicative of a hereditary condition predisposing for MN development^{*1}, independently of age.

*¹: excessive toxicities with chemotherapy or radiation, multiple cancer diagnoses, therapy-related leukaemia, poor mobilization of a sibling candidate donor^{28,40}, consanguinity, skin or nail abnormalities, unexplained liver disease, pulmonary fibrosis or alveolar proteinosis, short stature, microcephaly or characteristic skeletal abnormalities or other congenital abnormalities, Café au lait spots, hypopigmented macules, lymphedema, immune deficiencies, atypical infections, excessive warts.

*²: other haematological malignancies or cancer forms suggestive of constitutional mismatch repair deficiency syndrome, Li-Fraumeni syndrome, *BRCA2* related syndromes (such as sarcomas, adrenocortical carcinomas, brain tumors, gastrointestinal, genitourinary, breast, ovarian and pancreas cancer)

Whom to test

B: Patients with MN where the diagnostic work-up for the determination of the somatic genomic background has detected variants suspected to be germline (near heterozygous or near homozygous).

C: Patients not fulfilling the criteria A and B diagnosed with MDS/AML before the age of 50 carrying aberrations of chromosome 7 [monosomy 7/del(7q)/der(7)].

How to test

*1: If no pathogenic/likely pathogenic variant is detected consider functional studies such us measurement of telomere length, chromosomal breakage analysis etc. In case of variants of unknown significance (VUS) perfom segregation analysis

How to monitor "healthy" carriers

	Baseline	Follow-up
Complete blood count (CBC)	YES	Every six months
Bone marrow biopsy	YES	Only in case of change in CBC
NGS-myeloid gene panel	YES (bone marrow)	Once a year* (blood)
Control of other relevant organs	As indicated depending on the	As indicated depending on the
	underlying condition	underlying condition

*The emergence of a clone should not solely be an indication for action. The gene, the variant allele frequency (VAF), the number of pathogenic variants as well as the dynamics over time should be taken into account.

Recommendations for Allo-HSCT

- Indications for allo-HSCT
- Timing for allo-HSCT
- Choice of donor
- Conditioning
- Follow-up after allo-HSCT

We still have a long way to go....

- Update of the guidelines
- Involve other specialists
- Educate hematologists/geneticists
- Report our findings in the databases
- Active research
- •

ClinGen is a National Institutes of Health (NIH)-funded resource dedicated to building a central resource that defines the clinical relevance of genes and variants for use in precision medicine and research.

ClinGen

← → C ☆ ♠ clinicalger	nome.org/affiliation/50034/ 🙋 Nyheter - UNT.se 🏼 iı Lexin 🌻 Sı	renskt-engelskt le 🛐 Thesauru	is.com M 💲 Synonymer.se - Lexi	uppsala university li SS SchoolSoft - Guardi »
Myeloid Ma Affiliated to Hereditary Cance Membership O Dcumen	lignancy Variant	Curation Exp	ert Panel	Chairs Lucy A. Godley, M.D., Ph.D. David Wu, M.D., Ph.D.
This Expert Panel co-supp malignancies. This panel <i>GATA2</i> and <i>ETV6</i>) as well ClinVar submitter page fo	Coordinators Please contact a coordinator if you have questions. Xi Luo, PhD xi.luo@bcm.edu			
Expert Panel Statu Step 1 Define Group Completed Jun. 2018	IS Step 2 Develop Classification Rules Completed Jan. 2019	Step 3 Pilot Rules Completed Jul. 2019	Step 4 Expert Panel Approval Completed Jul. 2019	
	A hereozo 20100025 adf 6	A har 020 20100025		Send Feedback
E ∧ ∐t C □			•	へ III (余 句) SWE 13:02 2019-09-25 早

ClinGen

American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 Phone: 202-776-0544 | Fax 202-776-0545 bloodadvances@hematology.org

ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants

Similar approach for GATA2 is ongoing

Why is it important with national/international consensus?

MYELOID NEOPLASIA

High frequency of germline *RUNX1* mutations in patients with *RUNX1*-mutated AML

KEY POINTS

 Up to 30% of RUNX1 mutations in the Leucegene AML cohort were confirmed to be germline.

RUNX1

germline–mutated AML shows a high frequency of NRAS mutations and other mutations known to activate various signaling pathways.

Why is it important with national/international consensus

Table 1. Comparison of RUNX1 variant curation between Simon et al and the MM-VCEP.

ID	Variant (cDNA/protein)	Described in MDS/ AML	Described in <i>RUNX1</i> -FPD	Functional impact on RUNX1	MM-VCEP ACMG/AMP criteria code	MM-VCEP <i>RUNX1-</i> specific criteria	Further explanation of criteria	MM-VCEP classification
1	c.44_45delAG/ p.Q15fsX	-	-	Truncated RUNT	PVS1_moderate, PS4_supporting, PM2	PS4_supporting, PM2	PVS1 cannot be used for an early truncating variant only affecting RUNX1 isoform C.	VUS
2	c.179C>T/ p.A60V	PMID 12399980	Lorente NP (thesis, 2002)	-	BS1	BS1, BS3	This variant meets the calculated BS1 threshold (Latino subpopulation) and BS3 (normal transactivation and normal DNA binding/subcellular localization, PMID 22012064). The presence of the variant in patients with a <i>RUNX1</i> -phenotype is not sufficient to call a variant pathogenic, in particular not if the variant is present in gnomAD at a MAF incompatible with disease prevalence.	BEN
3+4*	c.421T>G/ p.S141A	-	RUNX1db	Normal transactivation (PMID 12807883)	PS4_supporting, PP3, BS3_supporting	PS4_supporting, PM1_supporting, PP3	Variant not present in RUNX1db. While there is no effect on heterodimerization ability with CBF (PMID 12807883), data from an additional secondary assay or transactivation assay are missing, thus not permitting application of any BS3 strength level.	VUS
5	c.427G>T/ p.E143X	-	-	Truncated RUNT	PVS1, PS4_supporting, PM2	PVS1, PS4_supporting, PM2		PATH
6	c.454_456insA/ p.K152fsX	PMID 20421268	-	Truncated RUNT	PVS1, PS4_supporting, PM2,	PVS1, PS4_supporting, PM2	Nomenclature is not HGVS conform. We assume this variant is not present in gnomAD (PM2) and leads to NMD (PVS1).	PATH
7	c.496C>T/ p.R166G	PMID 11049997	-	LOF/dominant negative (PMID 11049997)	PS4_supporting, PM2, PM5, PP3,	PS4_supporting, PM5, PM1, PM2, PP3	R166Q has been curated by the MM-VCEP as PATH.	LPATH
8	c.496C>T/ p.R166X	PMID 11023523	PMID 29146883	Truncated RUNT	PVS1, PS4, PM2, PP1	PVS1, PS4, PM2, PP1_strong		PATH
9+10	c.610C>T/ p.R204X	PMID 10068652	PMID 10508512	LOF (PMID 10068652)	PVS1, PS4, PM2, PP1	PVS1, PS4, PM2, PP1		PATH
11	c.619C>T/ p.R207W	PMID 28927163	-	-	PS4_supporting, PM2, PP3	PS4_supporting, PM2, PP3	In-silico prediction alone (e.g. in this case pathogenic predictions by using SIFT, Polyphen, VEST, CHASM, and REVEL) is only supporting evidence and insufficient to classify a variant as pathogenic.	VUS
12	c.1243_1244insC/ p.Q415fsX	-	-	Elongated RUNX1 isoform	PVS1_strong, PS4_supporting, PM2	PVS1_strong, PS4_supporting, PM2		LPATH

The part highlighted in green stems from the Simon *et al* study (PMID 32315381), the part highlighted in purple and surrounded by a black box is the MM-VCEP assessment. *Patients are related.

Abbreviations: ACMG: American College of Medical Genetics and Genomics, AML: acute myeloid leukemia, AMP: Association for Molecular Pathology, BEN: benign, FPD: familial platelet disorder, HGVS: Human Genome Variation Society, LOF: loss-of-function, LPATH: likely pathogenic, MAF: minor allele frequency, MDS: myelodysplastic syndrome, MM-VCEP: Clinical Genome Myeloid Malignancy Variant Curation Expert Panel, NMD: nonsense-mediated decay, PATH: pathogenic, VUS: variant of unknown significance.

New indications-new routines

referrals clinical genetics Uppsala

Prospective clinical study

*: Arm A/Arm B. Arm B (reserach cohort): MDS/AML <50y without any clinical indication for germline background

Follow the guidelines....

If there are no guidelines..make them

Do not be afraid to think out of the box

Thank you for your attention

panagiotis.baliakas@igp.uu.se panagiotis.baliakas@akademiska.se Tel: 0186171538

Panagiotis Baliakas, MD-PhD

UPPSALA UNIVERSITET

Dept of Immunology, Genetics and Pathology Science for Life Laboratory, Uppsala University Clinical Genetics, University Hospital, Uppsala