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Preface 

Biology in the 21st century is merging more and more with other disciplines. 
Mathematics, physics, engineering and computational sciences are playing an 
increasingly important role in biological research. Advances in sequencing and 
genotyping technologies are prime examples of this integration. With these high-
throughput genomic technologies, it is now possible to sequence large amount of 
DNA and RNA in shorter periods of time and at a reasonable cost. Today, we have 
the biological facilities and computational power needed to read the genome and 
find out the differences between the genetic make-ups of individuals. 

Genome-wide association study (GWAS) serves to detect genetic variants that 
associate with a given disease or trait. GWA studies have proven a powerful 
technique for identifying genetic variations that predispose for complex diseases. 
Yet, the heritability of many diseases and traits remain incompletely explained. 
Even though our ability to read the genome is increasing, our understanding of the 
functional consequences of DNA sequence variants that have been identified by 
GWAS has not matured enough. 

This thesis provides an overview of four years of research at the Division of 
Hematology and Transfusion medicine at Lund University. The focus of the thesis 
is on multiple myeloma (MM) which is the second most common hematologic 
malignancy. This disease is characterized by an uncontrolled growth of plasma cells 
in the bone marrow. By GWAS, we have identified DNA sequence variants that 
predispose for MM and, by combining in vitro and in silico methods, we have tried 
to understand how some of these variants promote MM development. 

The thesis is organized as follows: Chapter 1 covers the general concepts and 
background of the study. Chapter 2 focuses on the identification of genetic variants 
through GWAS. Chapter 3 provides a brief overview of different methods used for 
characterization of GWAS-identified variants. Chapter 4 describes our original 
work on MM predisposition, and the ELL2 risk allele. Finally, Chapter 5 
summarizes the conclusions of the articles on which this thesis is built up on. 

Lund, June 2018 
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Chapter 1 
Introduction and conceptual 
background 

The study of genetics and biological basis of diseases is an active and productive 
area of research. DNA sequence variations are underlying causes of phenotypic 
differences in and among species. The haploid form of human genome, which is 
found in germ cells consists of three billion DNA base pairs, while the diploid form 
is found in the somatic cells and has twice the DNA content as the haploid form. 
Humans are identical in the 99.5 % of their genome1. Variation in the remaining 
0.5% of the genome is what makes each of us unique. Genetic variation can divided 
into different forms according to the size and type of genomic variation. The 
frequency of variations decreased when size of variation increased2. The most 
common genetic variation in the human genome is single base-pair differences 
called single nucleotide variations (SNVs). In comparison to the human reference 
genome, around 85 million SNVs have been discovered3.  Other types of variation 
are insertions and deletions (INDELs), where strings of base-pairs are inserted in or 
deleted from the genome of an organism. This can range from two to hundreds of 
base-pairs in length. The largest type of variation is structural variation which refers 
to changes in structure of chromosomes. The five most common types of structural 
variants are insertion, deletion, inversion, duplication and copy number variation 
(loss or gain) (CNV). 

Advances in genomic technologies have made a significant impact on biomedical 
and biological researches. Two international scientific research projects are behind 
these rapid changes, the Human Genome Project and the International HapMap 
Project. The Human Genome Project is the world’s largest collaborative project in 
biology to date. It was started in 1990 and was declared completed in 20034. Its main 
goals were to determine the accurate sequence of the 3 billion DNA base pairs that 
make up human genome and to map all the human genes within the 23 pairs of 
chromosomes5. The International HapMap Project is another scientific effort to 
identify common genetic variations among people6. The aim of the International 
HapMap Project was to validate the millions of genetic variations that were 
identified during and after the completion of the Human Genome Project, and to 
characterize their correlation patterns in populations of European, Asian and 
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African ancestry6,7. Data from these projects are stored in computerized databases 
and are available worldwide. 

Following the Human Genome and HapMap Projects, companies like Illumina (San 
Diego, CA) and Affymetrix (Santa Clara, CA) developed cost-efficient high-
throughput genotyping platforms with capacity of over one million SNV assays. 
These efforts together with reducing time of genome sequencing made it feasible 
to read the genome of individuals and accelerated the identification of genes and 
genetic variants that associated with developing diseases. By utilizing this 
technology, GWAS aims to scan the entire genome to detect variants that differ 
between a group with a particular trait and the control group. 

Published GWASs have been catalogued by the National Human Genome Research 
Institute (NHGRI) and the European Bioinformatics Institute (EBI) 
(http://www.ebi.ac.uk/gwas/)8. For inclusion in the catalogue, studies must include 
an analysis of at least 100,000 variants with genome-wide coverage and SNV-trait 
associations must have a P-value <1 × 10-5 8,9. It is also possible to search for GWAS 
information in the Database of Genotypes and Phenotypes (dbGap, 
http://www.ncbi.nlm.nih.gov/gap) which is a National Institutes of Health-
sponsored repository charged to archive, curate and distribute information produced 
by studies investigating the interaction of genotype and phenotype10,11. As of April 
2018, the GWAS Catalogue contains 59,967 unique SNP-trait associations from 
3,349 publications8. 

An example of early GWAS is the one undertaken in the British population 
published by Wellcome Trust Case Control Consortium (WTCCC) in 200712. By 
using a chip that allowed for genotyping of 500,000 variants , they genotyped 2,000 
patients for each of seven complex human diseases of public health importance 
including bipolar disorder, Crohn’s disease, coronary artery disease, hypertension, 
rheumatoid arthritis, type 1 and type 2 diabetes. For control, they used the genotype 
information of 3,000 healthy individuals. Following case-control comparisons they 
could identify 24 independent association signals12. Since then, GWAS became a 
popular tool and leaded to continuous identification of new susceptibility genes and 
variants in common, complex diseases.  
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Chapter 2 

Identification of genetic variants 
through GWAS 

GWAS serves to find out if any genetic variant is associated with a trait. In the 
context of predisposition for human diseases, GWAS employs a case-control setup 
that uses high-throughput genotyping technologies (typically SNP microarrays) to 
compare the genome of two large groups of individuals: one healthy control group 
and one case group affected by a disease. By examining the allele frequency of 
single-nucleotide variations (SNVs) across the genome, it finds variations that occur 
more frequently in people with a particular disease than in people without the 
disease13. Development of cost-efficient high-throughput genotyping platforms 
together with the development of biobanks and large-scale population-based 
registries (e.g., in Iceland and the United Kingdom) has enabled GWASs 
comprising many thousands of cases and controls, and, as a result, around 60,000 
disease-related genetic variants have been identified so far8. 

2.1 How to conduct a GWAS? 

To carry out a case-control GWAS, germline DNA from affected patients and 
unaffected controls needs to be obtained, purified, and analysed14. Statistical tests 
for association are then applied to identify DNA sequence variants that are carried 
more frequently by cases than by controls. 

Several factors need to be considered when designing a GWAS. Firstly, the sample 
size needs to be sufficiently large, in order for the study to have adequate power to 
detect. Secondly, the choice of genotyping technology will determine the number of 
variants analyzed in the study. Thirdly, the procedure of quality control on samples 
and genotypes needs to be considered. Fourthly, to increase the genomic resolution, 
untyped variants can be statistically predicted using a suitable set of reference 
haplotypes. Fifthly, a suitable statistical method needs to be selected for association 
testing. Finally, downstream of the discovery step, having access to a suitable 
replication set is essential for validating candidate variants identified in the 
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discovery step, and if several independent studies existed, meta-analysis of results 
is a good strategy to increase the statistical power and to reduce false positive 
findings. In the rest of this chapter, each step has been discussed in more detail. 

2.1.1 Quality Control 

The ability of GWASs to identify true genetic associations depends on the quality 
of the data, sample sizes, geographical matches between case and control and minor 
allele frequency of variants. A number of quality control (QC) measures should be 
applied both on sample and SNV basis. QC procedures for GWAS have been 
described in many reviews15-19. 

For QC at the genotype level, SNV assays that failed on a large number of samples 
(>5%) are poor assays and should be removed from the study. It is also important 
to filter SNVs based on minor allele frequency. The suitable threshold depends on 
the size of the study and the expected effect sizes. At least for the sample sizes used 
in this study, statistical power is very low for rare SNVs (<1% MAF). Power 
calculation software can be used for power calculations and inform the allele 
frequency below which the study becomes underpowered. Checking for Hardy-
Weinberg Equilibrium (HWE) is another important factor. Under Hardy-Weinberg 
assumptions, allele and genotype frequencies in a population will remain constant 
from generation to generation in the absence of other evolutionary influences such 
as selection, mutation and genetic drift. Departure from this equilibrium can be due 
to genotyping errors, technical batch effects, population stratification, or actual, 
strong association with the phenotype being studied20. 

For QC at the sample level, samples with low genotype efficiency or call rate and 
duplicated samples should be removed. Further, it is better to exclude Samples from 
closely related individuals because their genotype information is correlated and this 
could affect the statistical association analysis. Level of relatedness can be measured 
through the probabilities that two individuals share zero, one or two pairs of alleles 
that are identical-by-descent (IBD) 21,22. Another source of bias can be due to 
population stratification which is the presence of a systematic difference in allele 
frequencies between subpopulations, possibly due to different ancestry23. Principal 
components analysis (PCA) is widely used to correcting for cryptic differences in 
population structure between cases and controls (e.g., differences in geographic 
origin)24. It converts a set of correlated variables into a set of uncorrelated variables 
called principal components. The first component explains the most variation in the 
data, and each subsequent component accounts for another, smaller part of the 
variability. In our work, we used PCA to exclude samples of non-European origin. 

2.1.2 Imputation 
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Imputation is the statistical prediction of genetic markers that are not directly 
genotyped. It increases the genomic resolution of association studies, and is useful 
for combining GWAS results generated from different genotyping platforms with 
different SNV content25. Imputation makes use of the fact that the human genome 
is arranged in blocks of high LD, separated by hotspots of recombination26. LD is 
the non-random association between alleles at different loci27. Two variants are said 
to be in LD if their genotypes show higher correlation than would be expected by 
chance. The correlation is measured by the r2 statistic, which is the proportion of 
variation of one SNP explained by the other28. LD is influenced by physical genomic 
distance between markers, as well as by evolutionary forces such as rate of mutation, 
selection, genetic drift and rate of recombination between markers29. 

Imputation makes use of LD to interpolate sequence variants that detected in recent 
whole-genome sequencing efforts (e.g., 1,000 Genomes3 or the UK10K project30) 
into the SNP microarray data. For imputation to be effective, the reference 
haplotypes (e.g., imputation training set) needs to be sampled in a geographic 
population that is at least closely related to the population from which the GWAS 
cases and controls come from. Algorithmically, imputation first requires phasing of 
the genotype data 31,32. Phasing refers to the process where per-chromosome 
genotype patterns are reconstructed statistically from diploid genotype data. 
Genotype measures the unordered combination of alleles at each site, whereas 
haplotypes are the two sequences of alleles on the maternally and paternally 
inherited chromosomes, respectively. In essence, phasing amounts to first 
estimating reference haplotypes (typically done using an external data set), and then 
using reference haplotypes as models for decomposing the genotype data recorded 
in the study into per-chromosome genotype patterns (phased haplotypes). Once 
these patterns have been extracted, imputation algorithms essentially interpolate in-
between genotypes33,34. 
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2.1.3 Association testing 

After quality control and imputation, the next step will be association analysis. 
Selection of suitable statistical test depends on the type of phenotypes. Case-control 
GWASs are analysed by either contingency table methods or logistic regression. In 
this work, we used the SNPTEST program which implements a logistic regression 
method that is essentially an extension of linear regression where the outcome of a 
linear model is transformed using a logistic function that predicts the probability of 
having case status given a genotype class35,36. For quantitative traits, generalized 
linear model (GLM) and the analysis of variance (ANOVA) can be used 35. ANOVA 
is similar to linear regression model with categorical predictor variables (genotype 
classes) with the null hypothesis of there is no difference between the trait means of 
any genotype group. The assumptions of GLM and ANOVA are 1) the trait is 
normally distributed; 2) the trait variance within each group is the same and 3) the 
groups are independent35. 

Furthermore, the choice of test for association depends on the assumed inheritance 
model. Most commonly, association testing is carried out using logistic regression 
under the assumption of additive effects on the log-odds scale, and multiplicative 
effects on the odds scale. In additive model there is a uniform, linear increase in risk 
for each copy of the allele, whereas in multiplicative model the risk of disease is 
increased n-fold with each additional disease risk allele. Other models including 
dominant and recessive also existed35,36. 

2.1.4 Replication and meta-analysis 

Because of large numbers of genotype-phenotype association tests performed in 
GWA studies, multiple hypothesis testing is important35,37,38. Bonferroni correction 
is a commonly used solution39. However, the use of Bonferroni tends to lead to 
overly conservative results, as it assumes independent hypotheses, but in context of 
GWAS variants in LD are correlated to some degree. Other criteria like weighted 
Bonferroni approach have been suggested. In this approach variants are divided into 
different classes based on their anticipated functional impact, and association testing 
in then done within each class40. For minimizing this effect, results of association 
testing should be tested in an additional independent sample set drawn from the 
same population as the GWAS38. Replication of results in an additional population 
helps ensure that a genotype-phenotype association observed in a (GWA) study is a 
valid association and is not a false discovery35,41. 

Meta-analysis of GWASs is a good strategy to increase the statistical power, reduce 
false-positive findings and increase effect size of the GWASs42. There are several 
meta-analysis methods for GWA studies. Methods based on P values are the 
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simplest approaches which combine p-values of independent statistical tests using 
methods such as Fisher’s combined probability test, although they ignore 
heterogeneity in parameters like genetic effect size and sample size42. Fixed 
effects meta-analysis is the most popular approach for combining case-control 
GWAS data42,43. It assumes that all studies have a similar genetic effect for all 
risk variants and differences between study findings are due to variation in 
sampling44 however it is not a good approach in  presence of heterogeneity. In 
case of heterogeneity, random effects meta-analysis can be used, as it assumes 
each study population has its own genetic effect size and the average effect over 
all potential populations is considered, however it will bias the P-values and is 
not suitable in discovery efforts42,44. 

2.2 What GWAS can do and what it cannot do? 

The role of GWAS in identification of disease susceptibility genes is undeniable. 
Yet, this approach is not free from limitations. 

Firstly, GWAS is biased towards common variants, as a result of how genotyping 
chips are designed. Commercial genotyping arrays primarily include variants with 
at least 5% minor allele frequency (MAF). This is suitable for studying diseases or 
traits where many common genetic variations contribute to a person’s risk with low 
or moderate effect size35,45. However, GWAS is less powerful approach when it 
comes to identifying rare variants. Such variants are not represented on the 
genotyping chips, but need to be imputed based on the local patterns of common 
variants. This works well for some rare variants, but not for all, and the accuracy of 
the imputation is dependent on the quality and geographic representativeness of the 
reference haplotypes used with the imputation algorithms34,46. 

Secondly, SNVs in genotyping arrays are chosen based on the LD structure or 
pairwise correlation between variants. Therefore, it is common that variants 
identified by GWAS are not causal, but merely tag the real causal variant(s) 46,47. In 
some cases, the detected variants can be considered causal (e.g., if the association 
signal is represented by a single variant or if the LD block contains a variant with 
obvious functional impact such as a frame-shift variant). More often, however, 
multiple correlated variants are detected, and it is not clear which variant is causal. 
Thus, while LD significantly reduces the number of SNVs that needs to be 
genotyped directly and allows imputation of in-between variants45, LD also makes 
it more complicated to interpret GWAS results, as sets of statistically inseparable 
variants are detected instead of single causal variant. 

Thirdly, GWAS has limited ability to discover structural variants, including long 
insertions and deletions48. This is a result of difficulties in variant calling, as the 
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detection of long INDELs is algorithmically more complicated than the detection of 
single-nucleotide polymorphisms or short INDELs, due to the limited read length 
available with Illumina technology. While other next-generation sequencing 
technologies allow for longer read lengths (e.g., Nanopore or PacBio), these have 
not yet been used to generate any major sets of reference haplotype for imputation, 
and efforts are still needed to expand the ability of GWASs in identification of other 
structural variants48. 

Fourthly, evaluation of gene-environment interactions is usually ignored. Possible 
reasons for this can be the lack of information on environmental exposures and other 
(non-genetic) risk factors13. Having this type of information could increase our 
chance to detect genetic effects that only occur if the individual is exposed to a 
particular environmental factor. 
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Chapter 3  

Characterization of variants 
discovered by GWAS 

As mentioned, DNA sequence variants identified in association studies may not be 
the actual causal variants, because of LD and technical limitations. More follow-up 
studies are needed to identify causal variants and their biological consequences. 
Large consortia such as the 1000 Genomes Project49 and the Encyclopedia of DNA 
Elements (ENCODE) 50 aim to survey the entire human genome and build a 
comprehensive description of common genetic variation in the human genome. 

3.1 Fine mapping of associated loci 

The SNVs represented on genotyping microarrays are chosen based on the LD 
structure or pairwise correlation. Consequently, the probability that the GWAS-
identified variants be in LD with the real causal variant is high46,47,51. Identification 
of causal variants at risk loci is an active area of research51,52. The aim of fine 
mapping is to identify the truly functional variants underlying observed association 
signals. Imputation methods together with the reference panels such as 1,000 
Genomes3 and UK10K30, can fill the gaps for variants that are not existed in the 
initial genotyping platform47, but are limited by allele frequency, and by the quality 
and geographic representativeness of the reference haplotypes53.  Another approach 
for fine-mapping is to sequence the locus in better detail in risk allele carriers in 
order to detect underlying causal variants that are not detected on the genotyping 
microarrays, or by imputation (c.f., ref54). 
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3.2 Analysis of expression quantitative trait loci 

The vast majority of variants identified by GWAS (~93%) map to non-coding 
regions, and likely exert their effect by altering gene expression rather than amino 
acid sequences. For example, variations in the regulatory sequences can affect the 
timing, tissue specificity and level of gene expression, or transcript structure. CNVs 
can alter the level of gene expression by changing the number of copies of a gene 
that is present in the genome or they can alter the regulatory elements like deletion 
or duplication of an activator or deactivation of a repressor55.Variants that influence 
gene expression are termed to have Expression Quantitative Trait Loci (eQTLs) 
effect. These variants are usually located close to the gene they regulate (typically 
in the promoter or clusters of regulatory elements inside the gene), but may also be 
located farther away (e.g., in long-range enhancer elements) 56. 

To perform eQTL analyses, the common approach is to use microarray or RNA 
sequencing data from a relevant tissue, collected in individuals who have also been 
genotyped for the variants of interest57. Statistical methods are then used to associate 
genotypes with gene expression58. By now comprehensive sets of eQTL data have 
been made publicly available in online databases, including Genotype-Tissue 
Expression (GTEx)59, Blood eQTL60, GEUVADIS  project61, MuTHER studies62 
and SNP and CNV Annotation (SCAN)63. 

3.3 Analysis of regulatory variants 

Variations that map to regulatory regions (e.g., promoters, enhancers) are likely to 
explain eQTLs. Regulatory regions are typically associated with some 
characteristics such as open chromatin accessibility (as evidenced by DNAase 
hypersensitivity or ATAC-seq), clustering of transcription factor binding sites and 
specific histone modifications (detected by chromatin immunoprecipitation). 
Consortia such as the ENCODE50 and the Roadmap Epigenomics Mapping 
Consortium (REMC)64 have used a variety of genome-wide methods to study the 
chromatin state of non-coding regions in the human genome in hundreds of different 
cell types. 

Chromatin immunoprecipitation (ChIP) with high-throughput sequencing is used to 
identify  protein binding sites along the chromosomal DNA65. Immunoprecipitation 
is a method of isolating a specific protein from a complex mixture such as a cell 
lysate or blood sample. To perform ChIP-seq chromatin is isolated from cells and 
fragmented. Immunoprecipitation is done by using an antibody that is specific to a 
transcription factor (TF) or other DNA-binding protein of interest (e.g., histones 
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with specific modifications). The DNA is recovered, sequenced and aligned to a 
reference genome to determine specific protein binding loci66. 

To identify genomic regions with open chromatin, hence more likely regulatory, 
DNA hypersensivity or ATAC-seq can be used67,68. In ATAC-seq, a hyperactive 
Tn5 transposase is utilized to insert sequencing adapters into open chromatin 
regions. Transposases are enzymes catalyzing the movement of transposons to other 
parts in the genome and naturally they have a low level of activity. The mutated 
transposase employed in ATAC-seq has high activity which allows for efficient 
cutting of exposed DNA and simultaneous ligation of adapters69. Adapter-ligated 
DNA fragments are then isolated, amplified by PCR and used for High-throughput 
sequencing67. 

To understand how remote enhancers communicate with coding genes, techniques 
to map the 3D structure of chromatin are available, including Chromosome 
conformation capture (3C)-based methods that provide information about 
organization of chromatin within the three-dimensional nuclear space70-74. 

To test the impact of candidate regulatory variants on transcriptional activity, 
reported assays can be used (e.g., luciferase assays). Today, it is also possible to 
assess the transcriptional activity of thousands of variants in parallel using 
massively parallel reporter assays (MPRAs)75 and by using technologies such as 
CRISPR-Cas9 it is possible to do genome editing such as adding, removing, 
modifying or replacing DNA at particular locations in the genome. 
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Chapter 4 

Original work 

The overall objective of this thesis is to identify DNA sequence variants that 
predispose for multiple myeloma (MM) and to understand how these variants 
promote MM development. The thesis is built up on four papers: 

Paper I represents a GWAS on MM in Nordic populations. We used one case–
control data set from Sweden and Norway, and one from Iceland. We identified one 
novel MM risk locus related to the ELL2 (Elongation Factor for RNA Polymerase 
II 2) gene and a promising association with the TOM1-HMGXB4 locus at 22q13. 
We confirmed all other loci (eight variants) that were known at the time. 

Paper II represents a meta-analysis of association data on MM from our lab and five 
other research centres in the United Kingdom, Germany, Netherlands, the United 
States, and Iceland. Eight new MM risk loci were discovered and previously 
reported loci were confirmed. 

Paper III focuses on the functional consequences of the ELL2 MM risk allele. ELL2 
encodes a key component of the super elongation complex (SEC) and plays an 
important role in the production of Ig by plasma cells76,77. Paper III aims to 
understand its mechanism of action and provide mechanistic insight into MM 
predisposition. We show that the ELL2 MM risk allele has a strong negative effect 
on ELL2 expression as well as a positive, possibly compensatory, effect on the 
expression of genes involved in ribosome biogenesis. 

Finally, Paper IV aims to understand whether inborn genetic variations could 
influence the survival of MM patients. While our data set was not large enough for 
a discovery GWAS, we tried to replicate two previously reported associations 
related to MTHFD1L-AKAP12 and FOPNL loci. These loci were not robustly 
replicated in the original studies. In our data, which represent a population-based 
series of MM patients from Sweden, we did not see any evidence of association. 
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4.1 Multiple Myeloma 

Multiple myeloma (MM) is the second most common hematologic malignancy. It 
originates in plasma cells, which develop from B cells and are responsible for 
producing immunoglobulins (Ig).  In MM, malignant plasma cells accumulate in 
the bone marrow at the expense of normal haematopoiesis. Unlike normal plasma 
cells, which produce polyclonal Ig, the malignant MM plasma cells produce a 
monoclonal immunoglobulin (“M protein”)78. According to the International 
Myeloma Working Group (IMWG) criteria, MM is defined by >10% monoclonal 
plasma cells in the bone marrow or >30 g/L M protein. MM is preceded by 
monoclonal gammopathy of undetermined significance (MGUS)79, which is a 
common pre-malignant condition (3% of ≥50 year olds)80 that is defined by the 
presence of the M-protein  but without other signs or symptoms of MM, and  
progresses to MM at an annual rate of approximately 1% 80,81. Clinically, MM is 
characterized by bone marrow failure, lytic bone lesions, hypercalcemia, and kidney 
failure. Major genetic subgroups include hyper-diploid MM and MM with 
translocations involving the immunoglobulin heavy chain (IgH) gene82,83, for 
example t(11;14), t(4;14), t(6;14), t(14;16) and t(14;20) translocation84. Other 
common somatic genetic changes include point mutations in BRAF, DIS3, 
FAM46C, KRAS, NRAS and TP5385. The risk of developing MM is influenced by 
geographic origin (more common among Africans and African Americans)86, age 
(more common above 65 years old) and gender (more common among men)87. 
While survival can be extended, MM remains an incurable and fatal disease88. 

Some cases of MM are thought to have an inherited background. Family studies 
indicate that first-degree relatives of patients with MM and MGUS have 2 to 4 
times higher risk for MM, plus a higher risk of certain other malignancies89-93. 
These observations hint at the existence of DNA sequence variants that predispose 
for MM. At the start of my Ph.D. project, recent genome-wide association studies 
had identified eight common sequence variants that associate with MM94-96. 

4.2 Paper I 

To identify DNA sequence variants that associate with MM in Nordic populations, 
we carried out a GWAS, based on one case–control data set from Sweden and 
Norway, and one from Iceland. For the Swedish-Norwegian discovery sample set, 
we obtained 1,668 and 157 samples from the Swedish National Myeloma Biobank 
(Skåne University Hospital, Lund, Sweden) and the Norwegian Biobank for 
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Myeloma (Trondheim, Norway). The samples were banked between 2003 and 2013, 
and we genotyped them using Illumina OmniExpress-Exome chips. For controls, 
we obtained SNV microarray information from previous studies on schizophrenia 
(n=3,754)97 and from a population-based Swedish study of twins where we only 
used one individual from each pair of twins (n=9,835; TWINGENE, 
http://ki.se/sites/default/files/twingene_gwas_basic_info.pdf). We excluded 
SNVs showing >5% missing data, significant deviation from Hardy-Weinberg 
equilibrium, or discrepancies in allele frequency between genotyping batches. We 
excluded samples showing >5% missing data or excess heterozygosity, and samples 
from closely related individuals. Unobserved genotypes were imputed using phased 
haplotypes from the Phase I (b37) release of the 1,000 Genomes Project49. To avoid 
artifacts of cryptic population stratification, we included five principal components 
of the identity-by-state matrix. For the Icelandic discovery sample set, we used 480 
patients from deCODE database diagnosed with MM from 1955 to 2013 and to 
increase power we expanded that with 251 cases of non-IgM MGUS patients from 
Landspitali University Hospital and the Icelandic Medical Center Laboratory in 
Mjodd. Association testing was performed using logistic regression under an 
additive genetic model. 

For meta-analysis, we performed association testing in each discovery set separately 
and combined the results for variants that were shared by the Icelandic and Swedish 
data. The meta-analysis was done with a fixed effect model. After meta-analysis, 
we could identify seven MM associated loci at P<5×10-8   (Table 4.1). Four of these 
loci were previously known and three including 5q15 (ELL2), 5q31 (ARHGAP26), 
and 22q13 (HMGXB4-TOM1) were novel.  

For replication, we obtained additional 223 MM cases from the Swedish National 
Myeloma Biobank and 363 MM cases from the University Hospital of Copenhagen. 
As controls in the replication sets, we used Swedish blood donors and randomly 
ascertained individuals from Denmark and Skåne County in Sweden. These samples 
were genotyped by qPCR for the lead variants at the novel loci. After replication, 
the ELL2 remained genome-wide significant and the TOM1 variant remained 
borderline significant. 
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Table 4.1:  
MM risk loci identified through GWAS in Sweden-Norway and Iceland 

Locus Variant A1/A2* RAF 
MM+MGUS MM Only 

Candidate Gene 
P OR P OR 

3p22 rs73071352 A/G 0.13 3.1× 10-8 1.32 5.2 × 10-7 1.32 ULK4 

5q15 rs56219066 C/T 0.72 1.4×10-8 1.23 6.5×10-8 1.23 ELL2 

5q31 rs74735889 C/T 0.003 5.9×10-10 4.06 8.2×10-8 3.85 ARHGAP26 

6p21 rs6919908 T/C 0.23 6.3 ×10-10 1.19 3.8 ×10-10 1.19 HLA 

7p15 rs57104699 A/C 0.66 2.3 × 10-8 1.38 3.5 × 10-8 1.38 CDCA7L 

17p11 rs57968458 A/G 0.098 2.8 × 10-10 1.26 5.7 ×10-11 1.26 TNFRSF13B 

22q13 rs138740 C/T 0.38 1.3×10-7 1.19 1.7×10-8 1.22 TOM1 

*: Risk alleles underlined. 
RAF: risk allele frequency;  P: meta-analyzed P values;  OR: odd ratio 
Novel Loci are shown in grey. 

ELL2 is a key component of the SEC, which enhances the catalytic rate of RNA 
polymerase II transcription by suppressing its transient pausing activity along the 
DNA98,99. Conditional B-lineage ELL2 knock-out mice show curtailed humoral 
immune responses, reduced numbers of plasma cells, and abnormal plasma cell 
morphology76,100,101. In addition to normal and malignant plasma cells, ELL2 is also 
expressed in other cell types, including red blood cell precursors, salivary gland, 
and pancreatic islets. Similar to plasma cells, these cell types also produce large 
amounts of protein such as haemoglobin, amylase, and peptide hormones. 

We did an eQTL study in peripheral blood and lymphoblastoid cell lines, but 
couldn’t detect any MM risk allele-associated effect on ELL2 expression. We noted 
that one of the LD variants of the ELL2 MM risk allele encodes a Thr298Ala 
missense variant in an ELL2 domain required for transcription elongation, though 
we could not say for certain whether this variant was causal. However, because 
ELL2 has been implicated in Ig synthesis, we tested for associations with IgA, IgG 
and IgM levels in 24,279, 21,981 and 20,413 Icelanders without MM or MGUS. We 
found that risk allele confers lower IgA and IgG levels. We saw similar effects in 
an independent set of 1,012 Swedish blood donors. These results indicated to us that 
the ELL2 risk allele has a hypomorphic effect. Finally, we screened deCODE’s 
database for associations between the ELL2 risk allele and other diseases and 
quantitative traits. Although we did not find any association with other B-lymphoid 
proliferative or malignant diseases apart from MGUS, we saw a potential 
association with an increased risk of bacterial meningitis (which could 
hypothetically be caused by the lower Ig levels). 
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4.3 Paper II 

To increase statistical power in detecting MM risk loci, we and five other teams 
from the United Kingdom, Germany, Netherlands, the United States and Iceland 
carried out a joint meta-analysis of MM association data. After filtering, we reached 
a total of 7,319 discovery cases, which our lab contributed the second largest data 
set. 

Quality control of samples and variants was as in paper I, although untyped variants 
were imputed using combination of 1,000 Genomes Project2 and UK10K30 and for 
Iceland, the in-house developed reference genome from deCODE Genetics was 
used. Association testing was done independently for each data set using logistic 
regression and then the results were meta-analyzed under the fixed-effects model. 
Promising associations were replicated using additional case–control series from the 
United Kingdom, Germany, Denmark and Sweden/Norway. 

We confirmed nine known risk loci and discovered eight new loci with variants 
localize in or near JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 
and PREX1 genes (Figure 4.1 and Table 4.2). 

 

Figure 4.1: Manhattan plot from Paper II.  
Genome-wide P-values (two sided) of 12.4 million successfully imputed autosomal variants in 7,319 cases and 
234,385 controls from the discovery phase. Labelled in blue are known MM risk loci and labelled in red are newly 
identified risk loci. 

Except for rs34229995, which is located 2.2 kb 5′ of JARID2, the other lead variants 
were found to map to the intragenic part of their transcribed genes. The only coding 
variant is rs7193541 in exon 10 of RFWD3. Expression quantitative trait loci 
(eQTL) analysis using gene expression profiles of CD138+ MM plasma cells from 
the United Kingdom, Germany and the United States identified significant 
associations between rs2790457 and decreased expression of WAC and between 
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rs6066835 and increased expression of PREX1. WAC and PREX1 also showed 
strong cis-methylation quantitative trait loci (meQTLs) with rs2790457 and 
rs6066835.We also noted that some of the identified genes like WAC, ATG5 and 
MYC have role in autophagy102-104. 

Table 4.1:  
Novel MM risk loci identified through meta-analysis 

Locus Variant A1/A2* RAF Odd ratio P-value Candidate Gene 

6p22.3 rs34229995 C/G 0.029 1.37 1.31 × 10−8 JARID2 (5’ telomer) 

6q21 rs9372120 G/T 0.218 1.18 9.09 × 10−15 ATG5 

7q36.1 rs7781265 T/C 0.125 1.19 9.71 × 10−9 SMARCD3 

8q24.21 rs1948915 T/C 0.345 1.13 4.20 × 10−11 CCAT1 

9p21.3 rs2811710 G/A 0.657 1.15 1.72 × 10−13 CDKN2A 

10p12.1 rs2790457 A/G 0.739 1.12 1.77 × 10−8 WAC 

16q23.1 rs7193541 C/T 0.585 1.13 5.00 × 10−12 RFWD3 

20q13.13 rs6066835 C/T 0.083 1.26 1.36 × 10−13 PREX1 

*: Risk alleles underlined. 
RAF: risk allele frequency 

4.4 Paper III 

To understand the role of ELL2 risk alleles in developing MM, we performed eQTL 
analysis in CD138+ plasma cells from 1,630 MM patients from four populations. 
We showed that the MM risk allele lowers ELL2 expression in these cells, but not 
in peripheral blood or other tissues. The ELL2 MM risk loci is represented by about 
67 single-nucleotide polymorphisms and 5 small insertions/deletions in tight LD 
(r2>0.8). Hypothetically, only a few of these variants are causal, while the rest are 
linked tag variants with an effect of their own. To identify causal variants, we 
considered variants showing r2>0.8 with rs9314162 that associate with both ELL2 
expression and MM and map to regulatory regions. To delineate regulatory regions, 
we used ChIP-seq data from ENCODE and Roadmap Epigenomics databases64,105 
and generated ChIP-seq data for H3K4me3 histone marks in the L363 plasma cell 
leukemia cell line. We identified eight candidate variants and to analyse their effect 
on transcriptional activity, we made luciferase vectors which were transfected into 
three MM plasma cell lines (L363, OPM2, and RPMI-8226) and two cell lines 
representing other hematologic lineages (K562 and MOLM-13). Three of the 
candidate variants (rs3777189-C, rs3777185-C and rs4563648-G) yielded lower 
luciferase activity relative to their corresponding protective variants in plasma cell 
lines, but not in non-plasma cell lines. Furthermore, gene set enrichment analysis 
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with the Swedish-Norwegian mRNA sequencing data revealed that the MM risk 
allele associates with upregulation of gene sets related to ribosome biogenesis. To 
understand whether the association with ribosomal gene expression reflects a cause-
effect relationship, we knocked out ELL2 in L363 cells using CRISPR-Cas9 and 
analysed knockout and wild type cells by mRNA sequencing. L363-ELL2-KO cells 
showed a significant enrichment of increased expression for RPGs and other gene 
sets related to ribosome biogenesis and function. To exclude off-target effects, we 
did rescue experiments where ELL2 expression was reconstituted in the L363-
ELL2-KO cells, leading to downregulation of ribosomal genes in ELL2-transfected 
cells. 

4.5 Paper IV 

Recently, two meta-analyses by Johnson et al.106and Ziv et al.107 reported 
associations between MM overall survival and inborn sequence variants at the 
MTHFD1L-AKAP12 and FOPNL loci, respectively. In Johnson et al., no replication 
of the MTHFD1L-AKAP12 locus was done after the initial discovery meta-analysis. 
In Ziv et al., replication analysis of the FOPNL locus was done, but the positive 
replication result was driven by a small sample subset (n=109) from Spain whereas 
six other replication subsets did not confirm the association. 

Given that the two loci were not robustly replicated, we wondered if the MTHFD1-
AKAP12 and FOPNL associations can be detected in independent data. We therefore 
analysed a population-based series of 871 Swedish patients with MM, who had 
previously been genotyped in genome-wide association studies in Paper I and Paper 
II. We did not see any evidence of association between MM survival and the two 
reported loci. 

Identifying predictive biomarkers is an important clinical goal, but is complicated 
by heterogeneity in treatment and other patient characteristics (e.g., age). Our 
findings motivate the collection of larger data sets to understand the impact of 
inborn genetic variation on clinical outcome in MM and other hematologic 
malignancies. 
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Chapter 5 
Concluding remarks 

In all, the work carried out in this Ph.D. project contributed to our understanding of 
genetic predisposition for MM. The main conclusions are: 

Paper I 

• We identified a novel MM risk locus at 5q15 (ELL2) and a promising 
MM risk locus at 22q13 (HMGXB4-TOM1) (later validated in Paper II). 

• We confirmed previously reported loci at ULK4, HLA, CDCA7L and 
TNFRSF13B.   

• We found that the ELL2 MM risk allele associates with decreased IgA and 
IgG in healthy carriers, indicating that it has a hypomorphic effect. 

Paper II 

• We identified eight new loci at JARID2, ATG5, SMARCD3, CCAT1, 
CDKN2A, WAC, RFWD3 and PREX1. 

• We confirmed all previously discovered risk loci plus HMGXB4-TOM1. 

Paper III 

• We showed that the MM risk allele lowers ELL2 expression in plasma cells, 
consistent with its hypomorphic effect on Ig levels seen in Paper I. 

• We identified candidate causal variants for the effect on ELL2 expression. 

• We identified upregulation of gene sets related to ribosome biogenesis as a 
downstream effect of the ELL2 MM risk allele.  

Paper IV: 

• We tried to replicate two reported associations between the MTHFD1L-
AKAP12 and FOPNL loci and MM overall survival, as these two loci were 
not robustly replicated in the original studies. 

• We could not see any evidence of association with survival at the two loci. 
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For future work, a number of questions remain to be addressed. Firstly, only a small 
part of the heritability of MM has been explained. This work has contributed to the 
identification of 10 new MM risk loci. Together with previous94-96 and later (Went 
et al., in revision) findings, this brings the total number of known MM risk alleles 
to 24. Nevertheless, these alleles only explain somewhere in the order of 20% of the 
estimated heritability (Went et al., in revision), meaning that inherited MM 
susceptibility is far from completely understood. Extended association and family 
studies will need to be undertaken to identify additional risk alleles.  

Secondly, we do not yet know how the identified MM risk variants promote MM 
development. This work has unveiled that the ELL2 MM risk allele alters the 
expression of ELL2 in cis, and has additional effects on global gene expression 
patterns in plasma cells. Although this provides a first glimpse into the basic 
molecular-genetic effects of the ELL2 allele, our results do not explain why carriers 
of this allele actually have a higher risk of MM. For the remaining risk alleles, we 
know even less.  

Thirdly, it remains to be understood how the findings from this work and other 
recent studies of MM predisposition can be translated into the clinic. The MM risk 
alleles identified so far are common variants, each of which confers a modest risk 
increase. Hence, looking at each one of these separately is not clinically meaningful. 
However, it could be the case that polygenic risk scores calculated from the 
combined genotype of all 24 risk loci (or a subset thereof) could provide sufficient 
predictive information, and recent analyses108 indicate that somewhere in the order 
of 30% of familial MM cases carry a significantly larger burden of common MM 
risk alleles. However, the clinical usefulness of such polygenic risk scores remains 
to be understood. 
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Summary in English 

Multiple myeloma (MM) is the second most common hematologic malignancy. The 
disease is characterized by an uncontrolled growth of malignant plasma cells in the 
bone marrow, producing a monoclonal immunoglobulin (“M protein”) that can be 
detected in peripheral blood. Clinically, MM is characterized by bone marrow 
failure, lytic bone lesions, hypercalcemia, and kidney failure. It is preceded by 
monoclonal gammopathy of unknown significance (MGUS), a common condition 
defined as a clonal growth of plasma cells that does not yet satisfy the criteria for 
MM, but progresses to MM at a rate of 1% per year. Increasing evidence supports 
that the biology of MM is influenced by inborn genetic variation and first degree 
relatives of patients with MM and MGUS seem to have higher risk for MM, and a 
higher risk of certain other malignancies. In this Ph.D. project, we aim to find DNA 
sequence variants that predispose for MM, and understand how these variants 
contribute to MM development. 

Case-control genome-wide association study (GWAS) is our approach for finding 
variants. Previous GWASes have identified eight genetic variants that associate with 
MM development. As a first step in this study, we also carried out a GWAS on a 
case-control data set from Sweden-Norway and Iceland (Paper I). Following 
statistical analysis we could identify one novel MM risk locus related to the ELL2 
(Elongation Factor for RNA Polymerase II 2) gene and a promising association with 
the TOM1-HMGXB4 locus at 22q13 and we could confirm the previously reported 
loci. In the second part of the project, we carried out a meta-analysis of six genome-
wide association studies together with the United Kingdom, Germany, Netherlands, 
the United States and Iceland. Previously reported loci were confirmed and eight 
new loci were discovered (Paper II). Understanding how the identified risk variants 
contribute to MM development is the next challenge. In the third part of the project 
we focused on the ELL2 gene located on the locus 5q15 and tried to understand its 
mechanism of action in MM (Paper III). Finally, we retrieved clinical information 
for 871 patients diagnosed with MM from the Swedish Multiple Myeloma Registry. 
We tested for association between sequence variants and MM overall survival 
(Paper IV). Our findings provide further insights into the genetic and biological 
basis of MM predisposition. 
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Multiple myeloma (MM) is characterized by an uninhibited, clonal growth of plasma cells.

While first-degree relatives of patients with MM show an increased risk of MM, the genetic

basis of inherited MM susceptibility is incompletely understood. Here we report a genome-

wide association study in the Nordic region identifying a novel MM risk locus at ELL2

(rs56219066T; odds ratio (OR)¼ 1.25; P¼9.6� 10� 10). This gene encodes a stoichiome-

trically limiting component of the super-elongation complex that drives secretory-specific

immunoglobulin mRNA production and transcriptional regulation in plasma cells. We find that

the MM risk allele harbours a Thr298Ala missense variant in an ELL2 domain required for

transcription elongation. Consistent with a hypomorphic effect, we find that the MM risk

allele also associates with reduced levels of immunoglobulin A (IgA) and G (IgG) in healthy

subjects (P¼ 8.6� 10� 9 and P¼ 6.4� 10� 3, respectively) and, potentially, with an

increased risk of bacterial meningitis (OR¼ 1.30; P¼0.0024).
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M
ultiple myeloma (MM) is characterized by an un-
inhibited, clonal growth of plasma cells in the bone
marrow, producing a monoclonal immunoglobulin

(‘M protein’) that can be detected in peripheral blood1.
According to the International Myeloma Working Group
criteria, MM is defined by 410% monoclonal plasma cells in
the bone marrow or 43 g M protein per 100 ml plasma.
Characteristic symptoms include calcium elevation, renal
insufficiency, anaemia and lytic bone lesions or osteoporosis.
While survival can be extended, MM remains an incurable and
fatal disease2. It is preceded by monoclonal gammopathy of
unknown significance (MGUS)3,4, a common condition (3% of
Z50 year olds)5 defined as a clonal growth of plasma cells that
does not yet satisfy the criteria for MM, but progresses to MM at
a rate of B1% per year.

Since the 1970s, several authors have reported families with
multiple cases of MM, including pedigrees suggesting Mendelian
inheritance6,7. This century, systematic family-based studies,
including in population-based registries, confirmed that first-
degree relatives of patients with MM and MGUS have 2–4 times
higher risk for MM, and a higher risk of certain other
malignancies8–12. These data support the existence of MM risk
alleles. Recent genome-wide association studies have identified
eight common sequence variants that associate with MM, and
account for an estimated 13% of the familial risk13–15.
The molecular basis of inherited MM susceptibility is thus
incompletely understood.

Here we report a genome-wide association study aimed at
identifying DNA sequence variants that predispose for MM in
Nordic populations. We identify a novel risk locus at the
ELL2 gene at 5q31 that encodes a key component of the super-
elongation complex (SEC) that drives secretory-specific Ig mRNA
production and transcriptional regulation in plasma cells. We also
identify a promising association with the TOM1-HMGXB4 locus
at 22q13. We find that the ELL2 MM risk allele harbours a
Thr298Ala missense variant in an ELL2 domain required for
transcription elongation. Consistent with a hypomorphic effect,
we find that the MM risk allele also associates with reduced levels
of IgA and IgG in healthy subjects and, potentially, with an
increased risk of bacterial meningitis.

Results
Genome-wide association study. To identify MM risk loci,
we carried out a genome-wide association study based on one
case–control data set from Sweden and Norway, and one from
Iceland (Table 1). For the Swedish–Norwegian data set, variants
identified by the 1,000 Genomes consortium were imputed into
genotype data generated on Illumina single-nucleotide poly-
morphism (SNP) microarrays. For the Icelandic data set, variants
were identified by whole-genome sequencing of 2,636 Ice-
landers16, and imputed into 104,220 Icelanders genotyped with
Illumina SNP chips17,18. Using the Icelandic genealogy, we
additionally calculated genotype probabilities for 294,212 relatives
of the chip-typed individuals16.

We performed association testing in the Swedish–Norwegian
and Icelandic data sets, and combined the results for 12.1 million
variants that passed quality filtering. Two versions of the
Icelandic case–control data were used for meta-analysis: one
with MM patients only, and one that was expanded with non-
IgM MGUS patients to increase power (Table 1). The latter is
motivated because MM evolves from MGUS3,19, relatives of
MGUS patients have increased MM risk9,12 and known MM risk
alleles tend to associate with MGUS11. We replicated all known
MM risk loci in both meta-analyses (Supplementary Fig. 1 and
Supplementary Table 1; refs 13–15). Quantile–quantile analysis

showed minimal P value inflation (genomic inflation factor
l¼ 1.005–1.020; Supplementary Fig. 2).

Seven loci associated with MM or MMþMGUS at
Po5� 10� 8 (calculated using logistic regression as described
in Methods section). These included four known MM risk loci
(Fig. 1a and Supplementary Table 1; refs 14,15) and three
previously unknown loci at 5q15 (ELL2), 5q31 (ARHGAP26) and
22q13 (HMGXB4-TOM1; Supplementary Table 2). Inclusion of
the Icelandic MGUS cases strengthened the associations with
5q15 and 5q31. The signals at 5q15 (rs56219066; risk allele
frequency (RAF) 71.1–73.2%) and 22q13 (rs138740; RAF
36.4–41.5%) were represented by common variants with
moderate effects (odds ratio (OR)¼ 1.20–1.39; Fig. 1a,b and
Table 2), whereas the 5q31 signal (rs74735889; RAF B0.3%) was
represented by an imputed rare variant that lost significance
(OR¼ 1.69; logistic regression P¼ 0.014) when genotyped
directly and was not investigated further. Examining the
expression patterns of ELL2, TOM1 and HMGXB4 across
different types of blood cells, we noted that ELL2 and TOM1
are preferentially expressed in normal and malignant plasma
cells (Fig. 1c). Conditional analysis did not reveal any
underlying independent association signals at the ELL2 or
HMGXB4-TOM1 loci.

To validate the 5q15 and 22q13 loci, we genotyped an
additional 586 MM cases and 2,111 controls from Sweden and
Denmark for rs56219066 and rs138740 (Table 1). The rs56219066
SNP replicated in these samples (logistic regression P¼ 0.0046)
and reached genome-wide significance under Bonferroni correc-
tion when the discovery and replication sets were combined
(meta-analysis P¼ 9.6� 10� 10; Table 2). While rs138740 did not
replicate, it remained borderline significant (meta-analysis P¼ 5.7
� 10� 8) when the discovery and replication sets were combined
and we observed effects in the same direction as in the meta-
analysis (OR¼ 1.04–1.08; Table 2). Further validation in larger
data sets is needed to confirm the 22q13 locus.

ELL2 regulates RNA processing in plasma cells. The association
with 5q15 was captured by numerous markers in strong linkage
disequilibrium distributed across a B40-kb haplotype block in
ELL2 (elongation factor, RNA polymerase II, 2; previously eleven-
nineteen lysine-rich leukaemia gene 2) (Fig. 1b). This gene
encodes a stoichiometrically limiting component of the SEC20,
which mediates rapid gene induction by suppressing transient
pausing of RNA polymerase II activity along the DNA21.
Strikingly, ELL2 and the SEC play an important role in the
differentiation of mature B cells into plasma cells22,23. In mature
and memory B cells, which express ELL2 at a low level, IGH-
mRNA is translated to membrane-bound Ig. In plasma cells,
ELL2 is highly expressed and helps RNA polymerase II find a
promoter-proximal weak poly(A)-site that is essentially hidden in
B cells. This causes IGH-mRNA to be translated to secreted Ig at a
high rate24,25. B cell-lineage ELL2 conditional knockout mice
exhibit curtailed humoral responses to immunization, reduced
numbers of plasma cells in the spleen and fewer antibody-
producing cells in the bone marrow. Plasma cells isolated from
these mice show a paucity of secreted IgH and a distended
endoplasmic reticulum26. Silencing of ELL2 in mouse
plasmacytoma cell lines using RNA interference decreases the
ratio of secreted versus membrane-encoding Ighg2b transcripts27.
RNA sequencing studies suggest that, in addition to the IGH-
mRNA, ELL2 influences the processing of B12% of transcripts
expressed in plasma cells, including those of the plasma cell
survival receptor Tnfrsf17 (B-cell maturation antigen
(BCMA))22,26 and the MYC oncogene28.

To characterize the ELL2 risk allele, we analysed SNP and
gene expression profiles from peripheral blood (eight data sets
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Table 1 | Study populations.

N Per cent male Age at diagnosis (years±s.d.) Genotyping method

Discovery samples
Sweden and Norway

Cases 1,714 57.1% 67.5±11.4 Illumina OmniExpress-Exome1

Controls 10,391 51.5% — Illumina OmniExpress1

Iceland (MM)
Cases 480 47.9% 71.2±10.0 Illumina microarrays (n¼ 174); familially imputed (n¼ 306)2

Controls 212,164 48.9% — Illumina microarrays (n¼82,742); familially imputed (n¼ 129,422)2

Iceland (MMþMGUS)
Cases 731 49.5% 71.0±12.4 Illumina microarrays (n¼ 332); familially imputed (n¼ 399)2

Controls 283,999 48.8% — Illumina microarrays (n¼90,568); familially imputed (n¼ 193,431)2

Replication samples
Sweden

Cases 223 — — Selected SNPs
Controls 1,285 — — Selected SNPs

Denmark
Cases 363 — — Selected SNPs
Controls 826 — — Selected SNPs

MGUS, monoclonal gammopathy of unknown significance; MM, multiple myeloma; SNP, single-nucleotide polymorphism.
1Imputed using whole-genome sequence data from 1,000 Genomes.
2Imputed using whole-genome sequence data from 2,636 Icelanders.
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Figure 1 | Identification of ELL2 at 5q15 as a novel MM risk locus and HMGXB4-TOM1 at 22q13 as a candidate MM risk locus. (a) Manhattan plot for

the meta-analysis of the Swedish-Norwegian and Icelandic MM data sets for 12.1 million SNPs that passed quality filtering. Seven loci showed association

with MM or MMþMGUS at meta-analysis Po5� 10�8, including four known MM risk loci (pink) and three previously unknown loci at 5q15 (ELL2),

5q35 (ARHGAP26) and 22q13 (HMGXB4 and TOM1) (red). The x axis indicates genomic position of the SNPs. The y axis indicates the –log10 of the

combined P values. The dotted line indicates the threshold for genome-wide significance of meta-analysis Po5� 10�8. The results shown were obtained

with the MMþMGUS version of the Icelandic data. Similar results were obtained with the MM version (not shown). (b) Regional association plots of the

novel risk locus at ELL2 and the tentative risk locus at HMGXB4-TOM1. Positions and P values of SNPs indicated on the x and y axes, respectively. Degree of

linkage disequilibrium with sentinel SNPs indicated in shades of red. Blue background curves indicate meiotic recombination rates. The signal at ARHGAP26

was represented by an imputed rare variant that lost significance when genotyped directly, and was not investigated further. (c) Expression of ELL2,

TOM1 and HMGXB4 in 20 different types of blood cells (Affymetrix microarrays). ELL2 and TOM1 are preferentially expressed in plasma cells.

BASO, basophils; BCELL, B cells; CMP, common myeloid progenitors; EOS, eosinophils; ERY, erythroid progenitors; GMP, granulocyte–monocyte

progenitors; HSCs, haematopoietic stem cells; MEGA, megakaryocytes; MEP, megakaryocyte–erythrocyte progenitors; MONO, monocytes;

NEU, neutrophils; NK, natural killer cells; PC, CD138þ plasma cells; PRE-B, pre-B cells; TCELL, T cells.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8213 ARTICLE

NATURE COMMUNICATIONS | 6:7213 | DOI: 10.1038/ncomms8213 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


totalling 9,087 samples) and lymphoblastoid cell lines (two
data sets totalling 1,188 samples). We did not detect any risk
allele-associated effect on ELL2 expression (not shown). Because
we did not have access to expression data from plasma cells from
genotyped individuals, we could not exclude a plasma cell-specific
effect on ELL2 expression. Among the associated variants,
however, we identified a Thr298Ala missense variant in ELL2
exon 7 (rs3815768) in tight linkage disequilibrium (D0/r2¼ 1.00/

0.957) with the sentinel SNP rs56219066 in intron 4 (Fig. 2a). The
missense variant is located at the end of a ELL2 domain required
for transcription elongation29.

The ELL2 risk allele associates with decreased IgA and IgG.
Because of the recent mouse studies implicating ELL2 in the
production of secreted Igs, we tested for associations with blood

Table 2 | Association of sequence variants in or near ELL2 and TOM1.

Populations EAF MM MMþMGUS

OR (95% CI) P value OR (95% CI) P value

ELL2—rs56219066-T
Discovery

Sweden/Norway 0.732 1.20 (1.11–1.32) 3.8� 10� 5 1.20 (1.11–1.32) 3.8� 10� 5

Iceland 0.711 1.39 (1.17–1.64) 1.1� 10�4 1.32 (1.15–1.51) 3.9� 10� 5

Combined 1.23 (1.14–1.33) 6.5� 10� 8 1.23 (1.15–1.33) 1.4� 10�8

Replication
Denmark (363/826) 0.732 1.28 (1.04–1.57) 0.017 1.28 (1.04–1.57) 0.017
Sweden (223/1285) 0.735 1.30 (1.03–1.64) 0.030 1.30 (1.03–1.64) 0.030
Combined 1.29 (1.08–1.54) 0.0046 1.29 (1.08–1.54) 0.0046
Combined discovery and replication 1.25 (1.16–1.34) 9.6� 10� 10 1.24 (1.16–1.33) 2.2� 10� 10

TOM1—rs138740-C
Discovery

Sweden/Norway 0.364 1.20 (1.11–1.30) 2.4� 10� 6 1.20 (1.11–1.30) 2.4� 10� 6

Iceland 0.415 1.26 (1.09–1.46) 0.0017 1.15 (1.03–1.30) 0.015
Combined 1.22 (1.13–1.30) 1.7� 10� 8 1.19 (1.11–1.27) 1.3� 10� 7

Replication
Denmark (352/815) 0.360 1.08 (0.90–1.30) 0.39 1.08 (0.90–1.30) 0.39
Sweden (235/1285) 0.364 1.04 (0.85–1.26) 0.72 1.04 (0.85–1.26) 0.72
Combined 1.06 (0.93–1.21) 0.38 1.06 (0.93–1.21) 0.38
Combined discovery and replication 1.18 (1.11–1.25) 5.7� 10�8 1.16 (1.10–1.23) 2.7� 10� 7

Abbreviations: CI, confidence interval; EAF, effect allele frequency; MGUS, monoclonal gammopathy of unknown significance; MM, multiple myeloma; OR, odds ratio.
Association results for ELL2 rs56219066 and TOM1 rs138740 in the discovery samples from Sweden, Iceland and Norway and in the replication samples from Sweden and Denmark. Logistic regression
and meta-analysis P values indicated.
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Figure 2 | The ELL2 MM risk allele harbours a Thr298Ala missense variant, and the sentinel SNP rs56219066 is associated with reduced Ig levels.

(a) Schematic representation of the ELL2 gene showing the location of the sentinel SNP rs56219066 in intron 4 and the correlated variant rs3815768 in

exon 7, which causes a Thr298Ala substitution in an ELL2 domain required for transcription elongation. (b) We analysed blood IgA, IgG and IgM levels from

24,279, 21,981 and 20,413 Icelandic individuals without MM or MGUS. We found a significant association between IgA and IgG levels and the

ELL2 risk allele (log-linear regression P values shown). Compared with rs56219066C homozygotes, rs56219066T heterozygotes and homozygotes show

5.2 and 10.1% lower IgA and 2.6 and 5.1% lower IgG, respectively. We observed similar effects for IgA and IgG in an independent set of 1,012 Swedish blood

donors (Supplementary Fig. 3). Boxes indicate medians and the first and third quartiles. Whiskers indicate first and third quartiles 1.5 times the interquartile

range or the minimum/maximum values. Notches indicate confidence intervals around the median. NS, not significant.
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Ig levels in 20,413–24,279 Icelanders without MM or MGUS. Risk
allele carriers showed lower IgA (log-linear regression P¼ 8.6
� 10� 9) and IgG levels (log-linear regression P¼ 6.4� 10� 3;
Fig. 2b). The ELL2 haplotype associating with IgA and IgG
levels was identical to the haplotype associating with MM
(Fig. 3). Compared with rs56219066C homozygotes, rs56219066T
heterozygotes and homozygotes showed 5.2 and 10.1% lower IgA
and 2.6 and 5.1% lower IgG, respectively (Fig. 2b). We observed
similar effects in an independent set of 1,012 Swedish blood
donors (Supplementary Fig. 3). The risk allele does not associate
with IgM levels. These results, together with the reduced Ig levels
in the ELL2 conditional knockout mice26, suggest that the MM
risk variant reduces, rather than enhances, the function of ELL2
in plasma cells.

The ELL2 risk allele associates with bacterial meningitis.
Finally, to test whether the ELL2 risk allele affects the risk of other
diseases and traits, we screened deCODE’s databases harbouring
about 400 independent and uncorrelated diseases and quantita-
tive traits. While we did not find any association with other
B-lymphoid proliferative or malignant diseases apart from MGUS

(OR¼ 1.19; logistic regression P¼ 0.0018), we observed associa-
tions between rs56219066T and lower total serum protein levels
(n¼ 20,100; log-linear regression P¼ 0.0014; b¼ � 0.035) as
previously reported for rs3777200 in ELL2 (D0/r2¼ 1.00/0.96
with rs56219066; ref. 30), and an increased risk of bacterial
meningitis (n¼ 512; OR¼ 1.30; logistic regression P¼ 0.0024).
The meningitis risk could be mediated through the reduced IgA
and IgG levels.

Discussion
We have identified a previously unknown MM risk locus at 5q15
(ELL2) and a promising MM risk locus at 22q13 (HMGXB4-
TOM1). Neither of these loci has been previously associated with
MM or other lymphoid malignancies. The identified risk variants
are common and their estimated effect sizes are similar to those of
previously identified MM risk variants13–15.

While the mechanisms that promote development of MM
await further exploration, our findings indicate that the ELL2 risk
allele affects plasma cell function. The fact that ELL2 regulates
mRNA processing in plasma cells is compelling, as is the
reduction of IgA and IgG levels associated with the risk allele.
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Figure 3 | The ELL2 haplotype that predisposes for MM is identical to the ELL2 haplotype that influences IgA and IgG levels in healthy subjects.

In addition to the sentinel SNP rs56219066, the association between 5q15 identified in the MM and MMþMGUS meta-analyses was captured by

numerous markers in strong linkage disequilibrium located in a B40-kb haplotype block in ELL2. To verify that the ELL2 haplotype associating with MM and

MMþMGUS is identical to the ELL2 haplotype associating with Ig levels, we tested for association between each available SNP in the ELL2 region and IgA,

IgG and IgM levels using the Icelandic Ig data set. We overlaid the log-linear regression P values for association with Ig levels with the meta-analysis

P values obtained for the same SNPs for association with MM and MMþMGUS: (a) log-linear regression P values for association with IgA (red; left),

IgG (red; middle) and IgM (red; right) overlaid on logistic regression P values for association with MM (blue); (b) corresponding results for MMþMGUS.

The x axes indicate chromosomal positions. The y axes indicate � log10 P values. Sizes of markers reflect degree of association with MM or MMþMGUS.

As shown, all SNPs in the B40-kb haplotype block associating with MM or MMþMGUS associate with IgA and, to a lesser extent, with IgG. We did not

observe any association with IgM. Taken together, ELL2 SNPs associating with MM and MMþMGUS associate with IgA and IgG and vice versa, further

supporting that the ELL2 haplotype that predisposes for MM also influences Ig levels.
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While the altered Ig levels as such are unlikely to be the
MM-predisposing event (as other variants in the Icelandic data
that alter Ig levels do not predispose for MM; not shown), these
changes could reflect a hypomorphic effect on the SEC that affects
mRNA processing broadly, which could predispose for malignant
transformation.

Furthermore, the lower Ig levels could make ELL2 risk allele
carriers susceptible to infections. The potential association with
meningitis is therefore intriguing. While these carriers are
certainly not severely immunodeficient (because the allele is
common), it is well known that various types of limited Ig
deficiency (for example, IgG2 and IgG3 subclass deficiency)
confer an increased incidence of infections, including with
Neisseria meningitidis and other meningitis pathogens. Future
studies will uncover the role of ELL2 in haematological
malignancies and immune response.

Methods
Study populations. For the Swedish-Norwegian discovery sample set, we obtained
1,668 and 157 samples from the Swedish National Myeloma Biobank (Skåne
University Hospital, Lund, Sweden) and the Norwegian Biobank for Myeloma
(Trondheim, Norway), respectively. The samples were banked between 2003 and
2013. In addition, we obtained SNP microarray profiles of population-based
controls from previous studies of twins (n¼ 9835; TWINGENE, http://ki.se/sites/
default/files/twingene_gwas_basic_info.pdf) and schizophrenia31 (n¼ 3,754). From
TWINGENE, we only used one individual from each pair of twins. After this
filtering, a total of 10,704 controls were available for further analysis.

For the Icelandic discovery sample set, we identified from the nationwide
Icelandic Cancer Registry all patients diagnosed with MM (ICD-10 code C90) in
Iceland from 1955 to 2013 were identified and used in the association studies
(n¼ 480). To identify MGUS cases, information on the detection of an M protein
on serum protein electrophoresis was gathered from 1955 to 2005 from Landspitali
University Hospital and the Icelandic Medical Center Laboratory in Mjodd. A total
of 251 cases of non-IgM MGUS were identified and used in the analysis.

For replication, we obtained 223 MM cases from the Swedish National
Myeloma Biobank and 363 MM cases from the University Hospital of Copenhagen.
As controls for the respective replication sets, we used 1,285 randomly ascertained
Swedish blood donors and 826 randomly ascertained individuals from Denmark
and Skåne county, Sweden (the southernmost part of Sweden next to Denmark).
All samples were collected subject to ethical approval (Lund University Ethical
Review Board, 2013/54; Icelandic Data Protection Authority, 2001010157; and
National Bioethics Committee 01/015) and informed consent. No individuals were
approached solely for the purpose of this study.

Analysis of Swedish and Norwegian samples. Samples were genotyped on
Illumina OmniExpress-Exome and OmniExpress microarrays. For analysis, we
used the OmniExpress SNPs, which are recorded by both array types. We excluded
SNPs showing 45% missing data, significant deviation from Hardy–Weinberg
equilibrium (Po1� 10� 1 in controls; Po1� 10� 1� in cases), or discrepancies
in allele frequency between genotyping batches (Po5� 10� 8; w2-test). We
excluded samples showing 45% missing data or excess heterozygosity (43 s.d.’s),
and samples from closely related individuals (proportion identity-by-descent
p̂40:2; calculated using SNPs with pairwise r2o0.2 using PLINK, after removing
regions of high linkage disequilibrium32,33). After filtering, 542,599 SNPs, 1,714
cases and 10,391 controls remained. Unobserved genotypes were imputed using
phased haplotypes from the Phase I (b37) release of the 1,000 Genomes Project34

(http://www.1000genomes.org). Association testing was performed using logistic
regression under an additive genetic model. To avoid artefacts of cryptic
population stratification, we included five principal components of the identity-by-
state matrix that were found to increase the genomic inflation factor l (ref. 35)
in the regression. The analyses were done with SHAPEIT2 (ref. 36; (https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), IMPUTE2 (ref. 37;
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) and SNPTEST38 (https://
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html).

Analysis of Icelandic samples. Samples were genotyped using Illumina micro-
arrays. The whole genomes of 2,636 Icelanders were sequenced using Illumina
technology to a mean depth of at least 10� (median 20� ), including 909 to a
mean depth of at least 30� (ref. 39). A total of 35.5 million autosomal SNPs and
indels were identified using the Genome Analysis Toolkit version 2.3.9 (ref. 40).
We used information about haplotype sharing to improve variant genotyping,
taking advantage of the fact that all sequenced individuals had also been chip-typed
and long-range phased17. Variants were annotated using Ensembl release 72 and
Variant Effect Predictor (VEP) version 2.8 (ref. 41). The 35.5 million sequence
variants found and genotyped by whole-genome sequencing were then imputed

into 104,220 Icelanders who had been genotyped using Illumina chips. In addition,
using the Icelandic genealogy, we calculated genotype probabilities for 294,212
untyped individuals who are close relatives of the chip-typed individuals born after
1880 (Gudbjartsson et al. 39). Including this increases the power to detect
associations with all diseases where ungenotyped cases are available. Logistic
regression was used to test for association between SNPs and disease, treating
disease status as the response and genotype counts as covariates. Other available
individual characteristics that correlate with disease status were also included in the
model as nuisance variables. These characteristics were as follows: sex, county of
birth, current age or age at death (first and second order terms included), blood
sample availability for the individual and an indicator function for the overlap of
the lifetime of the individual with the time span of phenotype collection (described
in detail below). The control set selected for each case group can thus be different
after matching for the nuisance variables (Gudbjartsson et al. 39). Correction for
familial relatedness was carried out using the method of genomic control by
dividing the corresponding w2-statistic by 1.04 and 1.02 for MM and
MMþMGUS, respectively.

Meta-analysis. We performed association testing in each discovery set separately
and combined the results for 12.1 million variants that were shared by the Icelandic
and 1,000 Genomes whole-genome sequencing data. These variants passed the
quality thresholds applied: minor allele frequency 40.1%, imputation information
value 40.8 and consistent frequency between the two sample sets. The meta-
analysis was done using METAL42 (http://www.sph.umich.edu/csg/abecasis/metal)
with a fixed effect model. Conditional association analysis with respect to
rs56219066 and rs138740 using SNPTEST38 did not reveal any other underlying,
independent signals.

Gene expression analysis in haematopoietic cell types. To characterize gene
expression patterns of ELL2, TOM1 and HMGXB4, we used microarray data from
the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo). These data
included gene expression profiles of different types of blood cells from normal
haematopoiesis (n¼ 211; accession no. GSE24759 (ref. 43)), plasma cells from
patients with MM (n¼ 1,285; accession nos. GSE15695 (ref. 44) GSE4581,
GSE19784 (ref. 45) and GSE26760 (ref. 46)), and plasma cells from patients with
MGUS, patients with smouldering MM and healthy bone marrow donors (n¼ 78;
accession no. GSE5900 (ref. 47)). All data were generated on Affymetrix U133A
and Av2 microarrays and quantile-normalized to a log-normal distribution.

Genotyping and association analysis of replication samples. The Swedish and
Danish replication samples were genotyped by quantitative PCR for ELL2
rs56219066 (Taqman custom assay AHCTDL6), ELL2 rs3815768 (Taqman assay
C_22272652_30) and TOM1 rs138726 (D0/r2¼ 1/0.997 with rs138740; Fluidigm
SNP type assay GTA0072445). Association analysis for the replication sets was
done using NEMO48 assuming a multiplicative risk model. Results for the
discovery and replication cohorts were combined using a Mantel–Haenszel fixed
effect model. Heterogeneity in the effect estimate was tested assuming that the
estimated ORs for different groups followed a log-normal distribution using a
likelihood ratio w2-test with degrees of freedom equal to number of groups
compared minus one.

Association of the risk alleles with gene expression. To test for associations
between identified risk variants and the expression of nearby genes, we analysed
SNP and gene expression microarray data generated from peripheral blood samples
(eight data sets totalling 973 individuals from the Icelandic population49 and 8,086
individuals of other European populations50) and lymphoblastoid cell lines
(two data sets totalling 1,188 samples51,52). Gene expression in the Icelandic data
set was quantified as the mean log10 expression ratio compared with pooled
reference RNA samples, and regressed against the number of risk alleles carried,
age, gender, relatedness and differential white blood cell counts.

Association of ELL2 allele with Ig levels. To screen for associations between
the identified MM risk allele at ELL2 and Ig levels, we used IgA, IgG and IgM
measurements from 24,279, 21,981 and 20,413 individuals from the Icelandic
population, respectively. Subjects diagnosed with MM or MGUS were not included
in this data set. Ig levels adjusted for age, sex and site were tested for association
with imputed genotypes using generalized log-linear regression16. Individuals
diagnosed with MM or MGUS were excluded. In addition, we used IgA, IgG
and IgM data from 1,012 Swedish blood donors (Clinical Immunology and
Transfusion Medicine, Lund, Sweden) previously genotyped for ELL2 rs17085249
(D0/r2¼ 1/0.957 with rs56219066 and D0/r2¼ 1/1 with rs3815768, Fluidigm SNP
type assay GTA0072447). For the latter samples, we used Pearson correlation for
association testing. All Ig measurements were done at certified clinical laboratories
in Iceland and Sweden.

Association of the ELL2 risk allele with other traits. The deCODE Genetics
phenotype database contains medical information on diseases and traits obtained
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through collaboration with specialists in each field. This includes information on
cardiovascular diseases (myocardial infarction, coronary arterial disease, peripheral
arterial disease, atrial fibrillation, sick sinus syndrome and stroke), metabolic
disorders (obesity, diabetes and metabolic syndrome), psychiatric disorders
(schizophrenia, bipolar disorder, anxiety and depression), addictions (nicotine
and alcohol), inflammatory diseases (rheumatoid arthritis, lupus and asthma),
musculoskeletal disorders (osteoarthritis, osteoporosis), eye diseases (glaucoma),
kidney diseases (kidney stones and kidney failure) and 29 types of cancer.
Anthropometric measures have also been collected through several of these
projects. Routinely measured traits from patient workups (sodium, potassium,
bicarbonate, calcium, phosphate, creatinine, blood cell counts, haemoglobin,
haematocrit, Igs, iron, vitamins, lipids and more) were obtained from the
Landspitali University Hospital, Reykjavik, and the Icelandic Medical Center
Laboratory in Mjodd (Laeknasetrid), Reykjavik, in addition to more specific
hormonal measures (adrenal, thyroid and sex hormones). The number of
independent and uncorrelated secondary traits tested for association with
rs56219066 amounts to 400.
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Genome-wide association study identifies multiple
susceptibility loci for multiple myeloma
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Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-

wide association studies have transformed our understanding of MM predisposition, but individual

studies have had limited power to discover risk loci. Here we perform a meta-analysis of these

GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188

controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995,

P¼ 1.31� 10� 8), 6q21 (rs9372120, P¼9.09� 10� 15), 7q36.1 (rs7781265, P¼9.71� 10� 9),

8q24.21 (rs1948915, P¼4.20� 10� 11), 9p21.3 (rs2811710, P¼ 1.72� 10� 13), 10p12.1

(rs2790457, P¼ 1.77� 10� 8), 16q23.1 (rs7193541, P¼ 5.00� 10� 12) and 20q13.13 (rs6066835,

P¼ 1.36� 10� 13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC,

RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and

insight into the biological basis of tumour development.
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M
ultiple myeloma (MM) is a malignancy of plasma cells
that has a significant genetic component as evidenced
by the two- to fourfold increased risk shown in relatives

of MM patients1. Our understanding of MM susceptibility has
been transformed by recent genome-wide association studies
(GWASs), which have identified the first risk alleles for MM2–5

and its precursor condition monoclonal gammopathy of
unknown significance5. Although projections indicate that
additional risk variants for MM can be discovered by GWAS6,
the statistical power of these individual studies is limited.

To gain comprehensive insight into MM predisposition, we
performed a meta-analysis of these GWAS, new GWAS and
replication comprising 9,866 cases and 239,188 controls. We
confirmed all nine known risk loci and discovered eight new risk
loci for MM. Our findings provide further insights into the
genetic and biological basis of MM predisposition.

Results
Association analysis. To identify new MM susceptibility loci, we
analysed genome-wide association data from six populations of
European ancestry (Supplementary Tables 1 and 2): a new sample
set from the Netherlands, two previously reported sample sets
from United Kingdom and Germany, to which we added addi-
tional cases2, and three previously published sample sets from
Sweden/Norway, Iceland and the Unites States5,7. After filtering,
the six studies provided single-nucleotide polymorphism (SNP)
microarray genotypes on 7,319 cases and 234,385 controls
(Supplementary Tables 1 and 2). To increase genomic
resolution, we imputed 410 million SNPs using either the
1,000 Genomes Project8 combined with UK10K9 (MM data sets
from the Netherlands, United Kingdom, Germany, Sweden/
Norway and the United States) or deCODE Genetics (MM data
set from Iceland10) as reference. Quantile–quantile plots for SNPs
with minor allele frequency (MAF)40.5% post imputation did
not show evidence of substantive overdispersion (l¼ 1.00–1.06;
Supplementary Fig. 1). Pooling association testing results from
the six sample sets, we derived joint odds ratios and 95%
confidence intervals under a fixed-effects model for each SNP and
associated per allele P-value. In this analysis, associations for all
nine established risk loci showed a consistent direction of effect
with previously reported studies and have Po5.0� 10� 8 (Fig. 1
and Supplementary Table 3).

We identified 315 SNPs at 16 loci that showed evidence of
association (Po1.0� 10� 6) not previously implicated in the risk of
developing MM (Fig. 1 and Supplementary Tables 4 and 5). For 13 of
the 16 loci, the strongest signal was provided by an imputed SNP. We
confirmed the fidelity of imputation for 12 of the 13 imputed SNPs in
multiple series (Supplementary Tables 6 and 7; rs78311596
imputation unconfirmed). Using allele-specific PCR, we genotyped

the 15 substantiated SNPs in additional UK, Germany, Sweden/
Norway and Denmark sample series totalling 2,547 cases and 4,803
controls. Meta-analysing the discovery and replication samples, we
identified genome-wide significant associations for MM with eight
previously unreported loci (Table 1 and Supplementary Tables 8 and
9) at 6p22.3 (rs34229995, P¼ 1.31� 10� 8), 6q21 (rs9372120,
P¼ 9.09� 10� 15), 7q36.1 (rs7781265, P¼ 9.71� 10� 9), 8q24.21
(rs1948915, P¼ 4.20� 10� 11), 9p21.3 (rs2811710, P¼ 1.72�
10� 13), 10p12.1 (rs2790457, P¼ 1.77� 10� 8), 16q23.1
(rs7193541, P¼ 5.00� 10� 12) and 20q13.13 (rs6066835, P¼ 1.36
� 10� 13). We also observed two promising associations (that is,
Po5.0� 10� 7) at 6q27 (rs1034447) and at 7q22.3 (rs17507636)
(Supplementary Tables 8 and 9). Conditional analysis of GWAS data
showed no evidence for additional independent signals at the loci.

The 6q21 association marked by rs9372120 (Fig. 2) maps to
intron 6 of ATG5 (Homo sapiens autophagy related 5). The
8q24.21 variant rs1948915 maps to CCAT1 (colon cancer-
associated transcript 1; Fig. 2). The same region at 8q24.21
harbours multiple independent loci with different tumour
specificities11, including the B-cell malignancies diffuse B-cell
lymphoma12, Hodgkin’s lymphoma13 and chronic lymphocytic
leukaemia14. With the possible exception of chronic lymphocytic
leukaemia, the linkage disequilibrium (LD) blocks defining these
identified cancer risk loci are distinct from the 8q24.21 MM
association signal (pairwise LD metrics r2o0.03; Supplementary
Table 10). The 9p21.3 variant rs2811710 maps to intron 1 of
CDKN2A/p16INK4A (cyclin-dependent kinase inhibitor 2A,
Fig. 2). Although the 9p21.3 region is a susceptibility locus for
multiple tumour types including breast and lung cancer, glioma
and acute lymphoblastic leukaemia15, the rs2811710 association
for MM is distinct (Supplementary Table 11). The 16q23.1
(rs7193541) association is a non-synonymous SNP I564V of
RFWD3 (encoding ring finger WD domain 3; Fig. 2). 6p22.3
(rs34229995) and 7q36.1 (rs7781265) associations mark
chromatin-regulating genes; rs34229995 is 2.2-kb telomeric to
the 50 of JARID2 (jumonji, AT-rich interactive domain 2; Fig. 2)
and rs7781265 localizing to intron 2 of SMARCD3 (swi/snf-
related, matrix-associated, actin-dependent regulator of
chromatin, subfamily d, member 3; Fig. 2). The 10p12.1
(rs2790457) association localizes to intron 3 of the gene
encoding WAC (ww domain-containing adaptor with coiled-
coil region), which has recently been shown to be part of an
extended autophagy network16. The 20q13.13 (rs6066835)
association mapped to intron 3 of PREX1 (phosphatidylinositol-
3, 4, 5-trisphosphate-dependent Rac exchange factor 1) (Fig. 2).

Relationship between the new MM SNPs and phenotype. We
tested for associations between sex or age at diagnosis and
genotype for each of the eight risk SNPs by case-only analysis
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using all individuals in five of the six sample sets and observed no
such relationships (Supplementary Tables 12 and 13). In addition,
case-only analysis provided no evidence for associations between
risk SNPs and cytogenetic MM subtype (Supplementary Table 14)
or MM-specific overall survival (Supplementary Table 15). Col-
lectively, these data are compatible with the risk variants having
generic effects on MM development rather than tumour
progression.

Biological inference. To the extent that they have been deci-
phered, many of the GWAS loci map to non-coding regions of
the genome and influence gene regulation. In this respect, it is
perhaps not surprising that none of the genes annotated by the
GWAS signals we identify are somatically mutated in MM
(Supplementary Table 16). Hence, to gain insight into the bio-
logical mechanisms for the associations at the eight newly iden-
tified risk SNPs, we first performed expression quantitative trait
loci (eQTL) analysis using gene expression profiles of CD138-
positive MM plasma cells from the United Kingdom (n¼ 183),
Germany (n¼ 658) and the United States (n¼ 608) cases

(Affymetrix Human Genome U133 2.0 Plus Array; NCBI GEO
Data sets GSE21349, GSE31161, GSE2658 and EBI ArrayExpress
E-MTAB-2299). In addition, we interrogated publicly accessible
expression data on whole blood, adipocytes, skin cells and lym-
phoblastoid cell lines (LCLs). To explore methylation QTL
(meQTLs) at each risk locus, we analysed Illumina Infinium
HumanMethylation450 BeadChip data on CD138-positive MM
plasma cells from 365 UK patients. In MM plasma cells, we
identified significant associations between rs2790457 and
decreased expression of WAC (P¼ 6.58� 10� 24) and rs6066835,
and increased expression of PREX1 (P¼ 3.85� 10� 5)
(Supplementary Fig. 2 and Supplementary Data 1). We also
detected strong cis-meQTLs at WAC and PREX1 with rs2790457
and rs6066835 genotypes (P-values 1.42� 10� 6 and
1.12� 10� 4, respectively; Supplementary Data 1). The direction
of these eQTLs and meQTLs is compatible with the 10p12.1
signal encompassing an active promotor for WAC, whereas the
20q13.13 signal does not capture an active promotor in the gene
body of PREX1 (Fig. 2).

DNA methylation plays a central role in epigenetic regulation
of gene expression; however, meQTLs and cis-acting eQTLs do

Table 1 | Summary results for SNPs associated with multiple myeloma risk.

Location SNP Position (bp) Risk allele RAF Data set OR P-value

6p22.3 rs34229995 15,244,018 G 0.029 Discovery 1.40 1.76� 10� 8

Replication 1.19 0.214
Combined 1.37 1.31� 10�8

Phet¼0.50 I2¼0%

6q21 rs9372120 106,667,535 G 0.218 Discovery 1.20 8.72� 10� 14

Replication 1.12 0.0147
Combined 1.18 9.09� 10� 15

Phet¼0.93 I2¼0%

7q36.1 rs7781265 150,950,940 T 0.125 Discovery 1.20 1.82� 10� 7

Replication 1.15 0.0136
Combined 1.19 9.71� 10�9

Phet¼0.24 I2¼ 23%

8q24.21 rs1948915 128,222,421 C 0.345 Discovery 1.14 3.14� 10� 10

Replication 1.09 0.0283
Combined 1.13 4.20� 10� 11

Phet¼0.34 I2¼ 11%

9p21.3 rs2811710 21,991,923 G 0.657 Discovery 1.14 6.50� 10� 10

Replication 1.18 4.02� 10� 5

Combined 1.15 1.72� 10� 13

Phet¼0.97 I2¼0%

10p12.1 rs2790457 28,856,819 G 0.739 Discovery 1.12 8.44� 10� 7

Replication 1.13 6.18� 10� 3

Combined 1.12 1.77� 10�8

Phet¼0.94 I2¼0%

16q23.1 rs7193541 74,664,743 T 0.585 Discovery 1.12 1.14� 10� 8

Replication 1.17 4.79� 10�4

Combined 1.13 5.00� 10� 12

Phet¼0.15 I2¼ 35%

20q13.13 rs6066835 47,355,009 C 0.083 Discovery 1.24 1.16� 10�9

Replication 1.35 1.36� 10� 5

Combined 1.26 1.36� 10� 13

Phet¼0.072 I2¼43%

I2, proportion of the total variation due to heterogeneity; OR, odds ratio; Phet, P-value for heterogeneity; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
RAF is risk allele frequency across all cases and controls in the discovery set, where the risk allele is the allele corresponding to the estimated OR. Positions are based on NCBI build 37 of the human
genome.
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not always overlap. Thus, although rs7193541 showed a strong
meQTL for RFWD3 methylation and reduced expression of
RFWD3 in whole blood, no eQTL was shown in MM plasma cells
(Supplementary Data 1).

Various lines of evidence indicate that chromatin lopping
interactions formed between enhancer elements and genes that
they regulate map within distinct chromosomal topological
associating domains (TADs)17. To map candidate causal SNPs
to TADs and identify patterns of local chromatin patterns, we
analysed Hi-C data on the LCL cell line GM12878 (ref. 17), as a
source of B-cell information (Supplementary Fig. 3). Looping
chromatin interactions and TADs were shown at 6q21
(rs9372120), 8q24.21 (rs1948915), 9p21.3 (rs2811710) and
20q13.13 (rs6066835), involving a number of genes with
biological relevance to MM development. With the limitations
of cell line data from LCL, which may not fully reflect MM
biology, we demonstrated with MM RNA-sequencing data that
gene expression within the 6q21 and 9p21.3 TADs were tightly
correlated (Po2.0� 10� 5), which is consistent with their co-
regulation (Supplementary Table 17). Moreover, the region at
6q21 (rs9372120, ATG5) participates in intra-chromosome
looping with the transcriptional repressor PRDM1
(Supplementary Fig. 3b). Similarly, the 8q24.21 region of
association defined by rs1948915, which contains CCAT1
(colon cancer-associated transcript 1), interacts with MYC and
distal upstream enhancer elements (Supplementary Fig. 3d).

To explore the epigenetic profile of association signals at each
of the new MM risk loci, we used HaploReg and RegulomeDB to
examine whether the sentinel SNPs and those in high LD (that is,
r240.8 in the 1,000 Genomes EUR reference panel) annotate
putative transcription factor (TF) binding or enhancer elements.
We also assessed B-cell-specific chromatin dynamics using
FANTOM5, which uses the pre-computed chromatin state data
for multiple cell lines. HaploReg showed that the majority of
MM-related SNPs were observed in regions of DNase hypersen-
sitivity common across multiple cell lines. The protein motifs at
these sites are for known TFs such as nuclear factor-kB, c-MYC,
GATA, TCF4, POL24H8, CEBPB or POL2 (Supplementary Data
2). We examined for statistical evidence of enrichment in specific
TF binding across the eight new and nine established risk loci
using GM12878 data18. Although of borderline significance and
hypothesis generating, after correction for the 90 TFs assayed,
there was evidence for enrichment of SPI1 (alias PU.1),
(P¼ 0.0007, Padjusted¼ 0.063), which regulates PRDM1 and its
downregulation is required for MM cell growth19. Collectively, these
observations are compatible with the identified risk SNPs mapping
within regions of active chromatin state, which have a role in the
B-cell cis-regulatory network.

Discussion
We have performed the largest GWAS of MM to date. We
identified eight novel MM risk loci taking the total count to 17.
Fully deciphering the functional impact of these SNP associations
on MM development requires additional analyses. However,
seven of the SNPs map intragenic to transcribed genes, which are
relevant to MM or B-cell biology. Although a number of SNPs
displayed an eQTL/meQTL in MM plasma cells, the absence of a
relationship does not preclude the possibility of a subtle
cumulative long-term relationship intrinsic to plasma cells or a
predisposition through altered gene function in other cell types.

Studies in other cancers have shown that the multiple risk loci
at 8q24.21 are enhancers interacting with MYC20,21. As
deregulation of MYC is a feature of MM, it is plausible that the
susceptibility to MM has a similar mechanistic basis. Indeed,
MYC promotes CCAT1 transcription by binding to its promoter,

and in colorectal cancer the L-isoform of CCAT1 has been shown
to interact with the MYC promoter and distal upstream enhancer
elements regulating MYC transcription22. We have previously
shown the MM risk SNP at 7p15.3 influences expression of
CDCA7L, a binding partner of p75 potentiating MYC-mediated
transformation. In addition to local interactions with CDKN2A/
CDKN2B, the 9p21.3 region encompassing SNP rs2811710
interacts with the genomic region containing MTAP
(methylthioadenosine phosphorylase). MTAP plays a major role
in polyamine metabolism and deletion of MTAP is common in
cancer, being closely linked to homozygous deletion of p16 (ref. 23).

ATG5 at 6q21 is highly expressed in plasma cells and essential
for autophagy and plasma cell survival24. Strikingly, the same
locus also contains the transcriptional repressor PRDM1
(formerly BLIMP1), which is key to the development of plasma
cells from B cells and a determinant of plasma cell survival25. The
RFWD3 protein is an E3 ubiquitin ligase that positively regulates
p53 stability by forming an RFWD3–MDM2–p53 complex,
thereby protecting p53 from degradation by MDM2-mediated
polyubiquitination26. Variation at 16q23.1 defined with the
correlated SNP rs4888262 (pairwise LD with rs7193541,
r2¼ 0.68, D’¼ 1.0) has previously been shown to influence
testicular cancer risk27, suggesting a common genetic and
biological basis to both associations.

JARID2 functions as a transcriptional repressor through
recruitment of Polycomb repressive complex 2 and has recently
been identified as a regulator of haematopoietic stem cell
function28, and the 6p22.3-p21.31 region is commonly gained
in MM tumours29. Inhibition of JARID2 leads to loss of
Polycomb binding and a reduction of histone H3 lysine-27
trimethylation levels on target genes. SMARCD3 recruits BAF
chromatin remodelling complexes to specific enhancers.
Although there is currently no evidence to implicate the
transcriptional repressors JARID2 or SMARCD3 in terms of
somatic mutation in MM, multiple genes including CDKN2A and
TP53 are silenced by methylation in MM. Overexpression of
histone methyltransferase and inactivating mutations in histone
demethylase (UTX) typifies a subset of MM30 and our findings
add to the impact of chromatin remodelling genes on MM.

We have previously shown an association for MM at ULK4, a
key regulator of mammalian target of rapamycin-mediated
autophagy4. We now suggest a more extensive set of
associations involving ATG5 and WAC, and by virtue of the
role of MYC in autophagy31, CCAT1, CDCA7L, DNMT3A and
CBX7. Collectively, these data invoke deregulation of DNA
methylation, telomere length, differentiation and autophagy,
and immunoglobulin production as determinants of MM
susceptibility.

Our findings provide further evidence for an inherited genetic
susceptibility to MM. However, further studies are necessary to
understand the biology behind these risk variants. We estimate
that the currently identified risk SNPs for MM account for 20% of
the heritable risk attributable to all common variation; hence,
further GWAS-based studies in concert with functional analyses
should lead to additional insights into MM biology. Importantly,
such studies may inform the development of new therapeutic
agents32,33.

Methods
Ethics. Collection of patient samples and associated clinico-pathological infor-
mation was undertaken with written informed consent and relevant ethical review
board approval at respective study centres in accordance with the tenets of the
Declaration of Helsinki, specifically for the Myeloma-IX trial by the Medical
Research Council (MRC) Leukaemia Data Monitoring and Ethics committee
(MREC 02/8/95, ISRCTN68454111), the Myeloma-XI trial by the Oxfordshire
Research Ethics Committee (MREC 17/09/09, ISRCTN49407852), HOVON65/
GMMG-HD4 (ISRCTN 644552890; METC 13/01/2015), HOVON87/NMSG18
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(EudraCTnr 2007-004007-34, METC 20/11/2008), HOVON95/EMN02
(EudraCTnr 2009-017903-28, METC 04/11/10), University of Heidelberg Ethical
Commission (229/2003, S-337/2009, AFmu-119/2010), University of Arkansas for
Medical Sciences Institutional Review Board (IRB 202077), Lund University Ethical
Review Board (2013/54) and Icelandic Data Protection Authority (2,001,010,157
and National Bioethics Committee 01/015).

Genome-wide association studies. The diagnosis of MM (ICD-10 C90.0) was
established in accordance with World Health Organization guidelines. All samples
from patients for genotyping were obtained before treatment or at presentation.
The meta-analysis was based on GWAS conducted in the Netherlands, the United
Kingdom, Germany, Sweden/Norway, the United States and Iceland
(Supplementary Tables 1 and 2).

The Dutch GWAS consisted of 608 cases (316 male). The cases were ascertained
from three clinical trials: HOVON65/GMMG-HD4 ISRCTN64455289 (restricted
to Dutch cases; n¼ 158), HOVON87/NMSG18 (n¼ 292) and HOVON95/EMN02
(n¼ 105) (ISRCTN64455289: GMMG-HD4 http://www.isrctn.com/
search?q=ISRCTN64455289, HOVON87/NMSG18; HOVON87/NMSG18 https://
www.clinicaltrialsregister.eu/ctr-search/trial/2007-004007-34/BE and HOVON95/
EMN02 https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-017903-28/AT).
DNA was extracted from venous blood samples and genotyped using Illumina
Human OmniExpress-12 v1.0 arrays (Illumina, San Diego, USA). For controls, we
used the B-PROOF data set (B-vitamins for the prevention of osteoporotic
fractures). Controls were genotyped using Illumina OmniEpress Exome-8v1-1
arrays34.

The UK GWAS2 comprised 2,329 cases (1,060 male (post quality control (QC));
mean age at diagnosis: 64 years) recruited through the UK MRC Myeloma-IX and
Myeloma-XI trials (ISRCTN68454111: Myeloma IX http://www.isrctn.com/
search?q=ISRCTN68454111 and ISRCTN49407852: Myeloma XI http://
www.isrctn.com/search?q=ISRCTN49407852). DNA was extracted from EDTA-
venous blood samples (90% before chemotherapy) and genotyped using Illumina
Human OmniExpress-12 v1.0 arrays (Illumina). For controls, we used publicly
accessible data generated by the Wellcome Trust Case Control Consortium from
the 1958 Birth Cohort (58C; also known as the National Child Development Study)
and National Blood Service. Genotyping of controls was conducted using Illumina
Human 1-2M-Duo Custon_v1 Array chips (www.wtccc.org.uk).

The German GWAS2 comprised 1,512 cases (867 male (post QC); mean age at
diagnosis: 59 years) recruited by the German-Speaking Multiple Myeloma
Multicenter Study Group (GMMG) coordinated by the University Clinic,
Heidelberg (ISRCTN06413384: GMMG-HD3 http://www.isrctn.com/
search?q=ISRCTN06413384; ISRCTN64455289: GMMG-HD4 http://
www.isrctn.com/search?q=ISRCTN64455289; and ISRCTN05745813: GMMG-
HD5 http://www.isrctn.com/search?q=ISRCTN05745813). DNA was prepared
from EDTA-venous blood or CD138-negative bone marrow cells (o1% tumour
contamination). Genotyping was performed using Illumina Human OmniExpress-
12 v1.0 arrays (Illumina). For controls, we used genotype data on 2,107 healthy
individuals, enroled into the Heinz Nixdorf Recall (HNR) study genotyped using
either Illumina HumanOmni1-Quad_v1 or 1428 OmniExpress-12 v1.0 arrays.

The Swedish/Norwegian GWAS5 was based on 1,668 and 157 MM patients
from the Swedish National Myeloma Biobank (Skåne University Hospital, Lund,
Sweden) and the Norwegian Biobank for Myeloma (Trondheim, Norway),
respectively. Genotyping was performed using Illumina Human OmniExpress-
Exome arrays (Illumina). Control genotypes on 10,704 individuals were obtained
from previously published studies of schizophrenia and TWINGENE5.

The USA GWAS7 comprised 1,076 newly diagnosed patients treated at the
UAMS Myeloma Institute for Research and Therapy (NCT00083551: Total therapy
II https://clinicaltrials.gov/ct2/show/NCT00083551; NCT00081939: Total therapy
III https://clinicaltrials.gov/ct2/show/NCT00081939; NCT00572169: Total therapy
3B https://clinicaltrials.gov/ct2/show/NCT00572169; and NCT00734877: Total
therapy 4 https://clinicaltrials.gov/ct2/show/NCT00734877). DNA was isolated
from peripheral blood samples collected from patients after granulocyte–colony-
stimulating factor mobilization of stem cells. Genotyping was performed using
Illumina Human OmniExpress-12 v1.0 arrays and OmniExpress arrays
(Illumina)7. Genotype data from 2,234 healthy individuals enroled into the Cancer
Genetic Markers of Susceptibility studies served as a source of controls.

The Icelandic GWAS comprised 480 MM cases identified from the nationwide
Icelandic Cancer Registry5. Samples were genotyped using Illumina microarrays5.

Analysis of GWAS. The Swedish/Norwegian GWAS has been previously pub-
lished in its entirety with a full description of QC5. Adopting the same standard,
quality-control measures were applied to the UK, German, US and the Netherlands
GWAS. Specifically, we excluded individuals with low call rate (o95%) and those
found to have non-European ancestry on the basis of HapMap version 2 CEU, JPT/
CHB and YRI population reference data (Supplementary Fig. 4). For first-degree
relative pairs, we excluded the control or the individual with the lower call rate.
SNPs with a call rate o95% were excluded as were those with a MAFo0.01 or
displaying significant deviation from Hardy–Weinberg equilibrium (that is,
Po10� 5). Post QC, the 5 GWAS provided genotype data on 6,839 cases and
22,221 controls. GWAS data were imputed for all scans for 410 million SNPs
using 1,000 Genomes Project (phase 1 integrated release 3, March 2012)8 and

UK10K data (ALSAPAC, EGAS00001000090/EGAD00001000195 and TwinsUK
EGAS00001000108/EGAS00001000194 studies only)9 as reference in conjunction
with IMPUTE2 v2.3 software35 (Supplementary Tables 1 and 2). Imputation was
conducted separately for each scan and each GWAS was pruned to a common set
of SNPs between cases and controls. We pre-set thresholds for imputation quality,
to retain potential risk variants with MAF40.005 for validation. Specifically, we
excluded poorly imputed SNPs (that is, information measure Is o0.80). Test of
association between imputed SNPs and MM was performed using logistic
regression using SNPTESTv2.5.2 (ref. 36). The adequacy of the case–control
matching was formally evaluated using quantile–quantile plots of test statistics
(Supplementary Fig. 1). The inflation factor l was based on the 90% least-
significant SNPs37. Where appropriate, principle components (zero for UK, five for
Sweden/Norway, two for Germany, zero for USA and zero for the Netherlands),
generated using common SNPs, were included to limit the effects of cryptic
population stratification. Eigenvectors for the GWAS data sets were inferred using
smartpca (part of EIGENSOFT38) by merging cases and controls with Phase II
HapMap samples.

For the Icelandic GWAS, SNP genotypes were phased using a long-range
method based on whole genome sequence data on 2,636 Icelanders. Sequence
variants (35.5 million) were then imputed into 104,220 Icelanders, which had been
genotyped using Illumina chips. We corrected for familial relatedness by genomic
control dividing the w2-statistic by 1.04.

Meta-analysis. We performed association testing in the discovery sets separately
and then combined the results for 12.4 million variants. We assessed the fidelity of
imputation through the concordance between imputed and directly genotyped
SNPs in a subset of GWAS samples (Supplementary Tables 6 and 7). Meta-analysis
was undertaken using the inverse-variance approach under a fixed-effects model
implemented in META v1.6 (ref. 39). Cochran’s Q-statistic was calculated, to test
for heterogeneity, and the I2 statistic measured, to quantify the proportion of the
total variation due to heterogeneity40. Meta-analysis summary statistics and LD
correlations from a reference panel of 1,000 Genomes Project combined with
UK10K, we used GCTA41 to perform conditional association analysis. Association
statistics were calculated for all SNPs conditioning on the top SNP in each loci
showing genome-wide significance. This is performed in a step-wise manner.

Replication genotyping. To validate promising associations, we analysed four
case–control series from the United Kingdom, Germany, Denmark and Sweden/
Norway.

The UK replication comprised 812 MM cases (412 male) ascertained through the
UK MRC Myeloma-IX (n¼ 95) and XI trials (n¼ 717). Controls comprised 1,110
healthy individuals with self-reported European ancestry (420 male, aged 18–69
years) with no personal history of malignancy ascertained through GEnetic Lung
CAncer Predisposition Study (n¼ 536) (ref. 42) and National Study of Colorectal
Cancer Genetics (n¼ 574) (ref. 43). All cases and controls were UK residents.

The German replication series comprised 1,149 cases collected by the German
Myeloma Study Group (Deutsche Studiengruppe Multiples Myelom (DSMM)),
GMMG, University Clinic, Heidelberg, and University Clinic, Ulm (676 male,
mean age at diagnosis 57.6 years, s.d. 9.8). Controls comprised of 1,582 healthy
German blood donors recruited between 2004 and 2007 by the Institute of
Transfusion Medicine and Immunology, University of Mannheim, Germany (885
male, mean age 55.8 years, s.d. 10.0).

The Swedish/Norway and Danish replication series comprised 223 MM cases
from the Swedish National Myeloma Biobank and 363 MM cases from the
University Hospital of Copenhagen. As controls for these respective replication
sets, we analysed 1,285 Swedish blood donors and 826 individuals from Denmark
and Skåne County, Sweden (the southernmost part of Sweden adjacent to
Denmark).

Replication genotyping was performed using allele-specific PCR KASPar
chemistry (LGC, Hertfordshire, UK; UK replication series). Primers, probes and
conditions used are available on request. Call rates for SNP genotypes were 495%
in each of the replication series. The quality of genotyping in all assays was assessed
by measuring 1–10% duplicates (showing a concordance of 499%) and at least two
negative controls for each centre. Technical artefacts were excluded by cross-
platform validation of 96 samples and sequencing of a set of 96 randomly selected
samples from each case and control series confirmed genotyping accuracy.
Concordance of 499% demonstrated robust performance.

Translocation detection and mutation analysis. Karotyping was used for cyto-
genetic studies of MM cells and standard criteria for the definition of a clone were
applied. Fluorescence in situ hybridization and ploidy classification of UK samples
was conducted using the methodologies previously described44. Fluorescence
in situ hybridization and ploidy classification of German samples was performed as
previously described45. The XL IGH Break Apart probe (MetaSystems, Altlussheim
Germany) was used to detect any IGH translocation in German samples. Logistic
regression in case-only analyses was used to assess tumour karyotype . The
frequency of somatic mutation in genes annotated by GWAS signals was derived
from tumour whole-exome sequencing of 463 Myeloma XI trial patients46.
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Association between genotype and patient outcome. To examine the rela-
tionship between SNP genotype and patient outcome, we analysed GWAS data on
four of the patient cohorts2–4,7, specifically (i) 1,165 cases from the UK MRC
Myeloma-IX trial (UK-GWAS); (ii) 877 MM cases from the UK MRC Myeloma-XI
trial (UK-GWAS); (iii) 511 of the patients recruited to the German GWAS; and (iv)
703 MM cases in the UAMS Myeloma Institute for Research and Therapy GWAS
(USA GWAS)7. Clinical trial information on these patients has been previously
reported47–50. The primary analysis end point was myeloma-specific overall
survival and analysis was performed as previously described51. Cox regression
analysis was used to derive genotype-specific hazard ratio and associated 95%
confidence intervals. Meta-analysis was performed under a fixed-effects model
(Supplementary Table 15).

eQTL analysis. We performed an eQTL analyses using Affymetrix Human
Genome U133 2.0 Plus Array data for plasma cells from 183 MRC Myeloma IX
trial patients29, 658 Heidelberg patients and 608 US patients as recently described.
Briefly, GER, UK and US data were separately pre-processed and analysed using a
Bayesian approach to probabilistic estimation of expression residuals to infer broad
variance components, thus accounting for hidden determinants influencing global
expression such as copy number, translocation status and batch effects52. The
association between genotype of the sentinel variant and gene expression of genes
within 500 Kb either side was evaluated based on the significance of linear
regression coefficients. We pooled data from each study under a fixed-effects model
controlling for false discovery rate (FDR) calling significant associations with a
FDRr0.05. In addition, we queried publicly available eQTL messenger RNA
expression data using MuTHER and the Blood eQTL browser. MuTHER contains
expression data on LCLs, skin and adipose tissue from 856 healthy twins53. The
Blood eQTL browser contains expression data from 5,311 non-transformed
peripheral blood samples54.

meQTL analysis. We performed cis-meQTL analysis using Illumina 450K
methylation array data on plasma cells from 384 MRC Myeloma XI trial patients.
As with analysis of MM expression (eQTL) data, we inferred hidden determinants
influencing global methylation. The genetic association was tested under an
additive model between each SNP and each normalized methylation probe,
adjusting for plate and methylation-based principal component analysis score.
Controlling for a FDR of 0.05 across the 338,456 methylation traits required a
P-value for association to be o4.0� 10� 5.

ENCODE and chromatin state dynamics. Risk SNPs and their proxies (that is,
r240.8 in the 1,000 Genomes EUR reference panel) were annotated for putative
functional effect using HaploReg v3 (ref. 55), RegulomeDB56 and SeattleSeq57

annotation. These servers make use of data from ENCODE58, genomic
evolutionary rate profiling59 conservation metrics, combined annotation dependent
depletion scores60 and PolyPhen scores61. We examined for an overlap of
associated SNPs with predicted enhancers using the FANTOM5 enhancer
atlas62and searched for overlap with ‘super-enhancer’ regions using data from
Hnisz et al.63, restricting our analysis to GM12878.

To formally examine for enrichment in specific TF binding across risk loci, we
adopted the method of Gaulton et al.18 Briefly, for each risk locus we derived a
credible set of SNPs with a 99% probability of containing the causal SNP; posterior
probability for each SNP being computed from its Bayes factor. SNPs were ranked
by their posterior probability and included so that the cumulative posterior
probability for association was 40.99. Binding sites for 90 TF in GM12878 were
obtained from ENCODE. For each TF the total posterior probability over all
credible set SNPs overlapping all binding sites was calculated. A null distribution
was generated by randomly relocating each binding site up to 100 kb from its
original location. For these perturbed sites, the total posterior probability over all
overlapping SNPs was calculated. This process was repeated 10,000 times and
enrichment P-values calculated as the fraction of permutations where the total
posterior probability was greater than for the unperturbed binding sites.

Hi-C data and definition of topological domains at risk loci. Hi-C data was used
to map the candidate causal SNPs to chromosomal TADs and identify patterns of
relevant, local chromatin interactions. We made use of publicly available raw Hi-C
data on GM12878 cells17. Valid Hi-C pairs were generated aligning raw reads to
the reference genome using Burrows-Wheeler alignment (BWA), matching pairs of
reads and filtering for biases. Bona fide Hi-C ditags were allocated to a contact
matrix, with a predefined, uniform resolution of 5 kb. We corrected for
experimental bias using the matrix balancing approach64. We inferred TADs from
the contact matrix by means of the arrowhead algorithm for domain detection as
previously proposed.

To investigate whether genes within TADs are co-regulated, we obtained
RNAseq transcript counts from 66 MM cell lines from the Keat’s lab Data
Repository (http://www.keatslab.org/data-repository)65. We performed pairwise
correlation by calculating the Pearson’s product–moment correlation coefficient of
the transcript counts for all pairs of genes within respective TADs.

Heritability analysis. We used Genome-wide Complex Trait Analysis to estimate
the polygenic variance ascribable to all genotyped and imputed GWAS SNPs
simultaneously for the UK and German GWAS41,66,67. SNPs were excluded based
on low MAF, poor imputation and poor HWE. Principal components were
included as covariates in the heritability analysis of the German data. As previously
advocated when calculating the heritability of a disease such as cancer we used the
lifetime risk68,69, which for MM is estimated to be 0.007 for the UK population
(http://www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/
incidence/uk-multiple-myeloma-incidence-statistics#Lifetime) and 0.006 for the
German population. We estimated the heritability explained by risk SNPs
identified by GWAS as located within regions associated with MM. Meta-analysis
of heritability estimates from UK and German GWAS data sets was performed
under a standard fixed-effects model.

Data availability. SNP genotyping data that support the findings of this study
have been deposited in Gene Expression Omnibus with accession codes GSE21349,
GSE19784, GSE24080, GSE2658 and GSE15695; in the European Genome-phe-
nome Archive (EGA) with accession code EGAS00000000001; in the European
Bioinformatics Institute (Part of the European Molecular Biology Laboratory)
(EMBL-EBI) with accession code E-MTAB-362 and E-TABM-1138; and in the
database of Genotypes and Phenotypes (dbGaP) with accession code
phs000207.v1.p1.

Expression data that support the findings of this study have been deposited in
GEO with accession codes GSE21349, GSE2658, GSE31161 and EMBL-EBI with
accession code E-MTAB-2299.

Whole-exome sequence data that support the findings of this study have been
deposited in EGA with accession code EGAS00001001147.

Transcription profiling data from MuTHer studies that support the findings of
this study have been deposited in EMBL-EBI with accession code E-TABM-1140.
Data from Blood eQTL have been deposited in EMBL-EBI with accession codes
E-TABM-1036, E-MTAB-945 and E-MTAB-1708.

The remaining data are contained within the paper and Supplementary Files or
available from the author upon request.
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The multiple myeloma risk allele at 5q15 lowers
ELL2 expression and increases ribosomal gene
expression
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Ulf-Henrik Mellqvist6, Urban Gullberg1, Markus Hansson 1,7, Kari Hemminki8,9, Hareth Nahi10,

Anders Waage11, Niels Weinhold2 & Björn Nilsson1,12

Recently, we identified ELL2 as a susceptibility gene for multiple myeloma (MM). To

understand its mechanism of action, we performed expression quantitative trait locus ana-

lysis in CD138+ plasma cells from 1630 MM patients from four populations. We show that

the MM risk allele lowers ELL2 expression in these cells (Pcombined= 2.5 × 10−27;

βcombined=−0.24 SD), but not in peripheral blood or other tissues. Consistent with this,

several variants representing the MM risk allele map to regulatory genomic regions, and

three yield reduced transcriptional activity in plasmocytoma cell lines. One of these

(rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM

risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further

analysis reveals that the MM risk allele associates with upregulation of gene sets related to

ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma

cell lines support a cause–effect relationship. Our results provide mechanistic insight into

MM predisposition.
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Multiple myeloma (MM) is the second most common
hematologic malignancy. It is defined by an unin-
hibited, clonal growth of plasma cells in the bone

marrow, producing a monoclonal immunoglobulin (“M protein”)
that can be detected in peripheral blood1. Clinically, MM is
characterized by bone marrow failure, lytic bone lesions, hyper-
calcemia, and kidney failure. It is preceded by monoclonal
gammopathy of unknown significance (MGUS)2,3, a common
premalignant condition that progresses to MM at a rate of about
1% per year4.

Several lines of evidence support that heritable factors con-
tribute to the development of MM. Since the 1920s, several
authors have reported families with multiple cases of MM and
MGUS5,6. Systematic family studies show that first-degree rela-
tives of patients with MM and MGUS have two to four times
higher risk of MM, and a higher risk of certain other malig-
nancies6–11. Recently, genome-wide association studies have
identified DNA sequence variants at 18 independent loci that
associate with MM risk12–15, and show further polygenic etiology
in a subset of familial MM cases16.

One of the MM susceptibility genes is ELL2 (elongation factor
for RNA polymerase II 2)12,13 at chromosome 5q15. This gene
encodes a key component of the super-elongation complex (SEC),
which enhances the catalytic rate of RNA polymerase II17,18.
ELL2 is highly expressed in normal and MM plasma cells, and
helps RNA polymerase II find a promoter-proximal weak poly
(A)-site in the immunoglobulin (Ig) heavy gene that is hidden in
B cells, allowing Ig heavy chain messenger RNA (mRNA) to be
translated to secreted Ig at a high rate13,19,20. Conditional B-
lineage Ell2 knockout mice show curtailed humoral immune
responses, reduced numbers of plasma cells, and abnormal
plasma cell morphology21–23. The ELL2 MM risk allele is repre-
sented by ~70 sequence variants in tight linkage disequilibrium
(r2 > 0.8 with the first reported lead variant rs5621906613 or the
lead variant from a subsequent multi-center analysis, rs1423269;
r2/D′= 0.96/0.98 with rs56219066)12. Interestingly, the same
allele that predisposes for MM also associates with lower Ig
levels13, altered Ig glycosylation24, lower total serum protein
levels25, and an increased risk of MGUS13, salivary gland carci-
noma26, and possibly bacterial meningitis13.

Here we investigate the effects of the ELL2 MM risk
allele. Since this allele is represented by non-coding variants
(apart from one missense variant of unclear relevance13),
we hypothesize that its effects are due to changes in ELL2
expression. Using expression quantitative locus (eQTL)
analysis, we detect a negative effect of the MM risk allele on ELL2
expression in MM plasma cells. This finding is further supported
by data showing that several of the risk variants map to regulatory
chromosomal regions, including three that yielded reduce tran-
scriptional activity. Interestingly, one of these (rs3777189-C) is
located only 514 bp from the lead variant for ELL2 expression
(rs9314162) and 2616 bp from the best-supported lead variant for
MM risk (rs1423269), and diminishes binding of MAFF/G/K
family transcription factors. In addition to the effect on ELL2
itself, we find that the MM risk allele perturbs the expression of
genes involved in ribosome biogenesis and function.

Results
The MM risk allele lowers ELL2 expression in MM plasma cells.
To identify effects of the ELL2 MM risk allele on gene expression,
we generated mRNA-sequencing data for CD138+ plasma cells
from bone marrow samples from 185 MM patients from Sweden
and Norway, and genotyped these samples for one of the linked
MM risk variants at the ELL2 locus (rs3815768; Supplementary
Fig. 1a). In addition, 158 of the samples were genotyped using

Illumina OmniExpress™ single-nucleotide polymorphism (SNP)
microarrays, and imputed using phased haplotypes from the 1000
Genomes compendium27.

In our mRNA sequence data, we found that the MM risk allele
lowers ELL2 expression. While this effect was clearest across the
distal part of the gene (exons 9–11; Pearson correlation
P= 0.007–0.01, β=−0.19 to −0.20), we saw significant associa-
tions with all exons (Fig. 1a and Table 1), except with exons 7 and
8, which could not be quantified reliably for technical reasons
(Supplementary Fig. 1b), and the last exon, which could not be
quantified accurately because of uneven coverage in the 3′
untranslated region. Samples heterozygous and homozygous for
the risk allele showed 34% and 43% lower ELL2 expression,
respectively (average across exons 1–6 and 9–11) than samples
homozygous for the protective allele. We also observed an allelic
imbalance in expression for heterozygous individuals among
rs3815768-TC heterozygotes (54.5% for T-allele vs 45.4% C-allele;
P < 0.005). No differences in ELL2 splicing patterns were detected
between the T- and C-allele using replicate multivariate analysis
of transcript splicing28.

For further validation of the observed effect, we used gene
expression microarray data for CD138+ plasma cells from MM
patients from Germany (n= 658), the United Kingdom
(n= 183), and the USA (n= 604)12,29. In all these datasets,
rs3815768-C associates with lower ELL2 expression (Fig. 1b;
Fisher’s inverse χ2 test combined P= 2.5 × 10−27 and β=−0.24
for the four datasets). Moreover, regional analysis of these data
and the Swedish-Norwegian samples genotyped on SNP micro-
arrays showed that the set of variants that most strongly influence
MM risk are those that have the largest effect on ELL2 expression
(Fig. 2a, b). Additionally, we observed slightly more significant P
values across the second half of intron 2 and across intron 3,
including both the lead variant for ELL2 expression (rs9314162)
and MM risk (rs1423269). These data demonstrate a concordance
between the effects of sequence variants on ELL2 expression and
MM risk, and indicate that the same sequence variations at this
locus affect both.

Effect on ELL2 expression in other cell types. While ELL2 is
highly expressed in normal and malignant plasma cells, the gene
is also expressed in other cell types, including red blood cell
precursors, salivary gland, and pancreatic islets (Supplementary
Fig. 2)13,30,31. Curiously, these cell types resemble plasma cells in
that they produce large amounts of protein (hemoglobin, amy-
lase, and peptide hormones), and the same allele that predisposes
to MM also predisposes to salivary gland carcinoma (rs3777204;
r2/D′= 0.96/0.98 with rs1423269)32. Yet, unlike the highly
reproducible effect on ELL2 expression in MM plasma cells, we
could not detect any effect on ELL2 expression in mRNA-
sequencing data from peripheral blood from 2515 Icelanders
(Supplementary Fig. 3), nor in eQTL data from 8086 Europeans
in the Blood eQTL database33 or any of the 44 tissues represented
in GTEx34. Although some tissues, including salivary gland, could
not be studied because of lack of data, these results indicate that
the effects of the MM risk allele on ELL2 expression are restricted
to certain cell types.

Identification of causal variants. A total of 67 SNPs and
5 small insertions/deletions are highly correlated with the best-
supported sentinel MM risk variant (rs1423269) and the
strongest ELL2 expression variant (rs9314162) (r2 > 0.8; Supple-
mentary Tables 1 and 2). Hypothetically, some of these
variants may be causal in that they alter the efficiency of ELL2
transcription, whereas others only tag the causal markers. To
search for such causal variants, we considered variants
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in linkage disequilibrium (r2 > 0.8) with rs9314162 that
associate with both ELL2 expression and MM (top-right clusters
in Fig. 2b) and map to regulatory regions. To delineate regulatory
regions, we used ChIP-seq (chromatin immunoprecipitation with
next-generation sequencing) data for histone modifications
representing enhancers and promoters, and for transcription
factors, in GM12878 lymphoid cells from the ENCODE and

Roadmap compendia (Supplementary Table 1)35,36. In addition,
we generated ChIP-seq data for H3K4me3 histone marks
in the L363 plasma cell leukemia cell line to delineate promoter
regions relevant in plasma cells. Using our criteria, we identified
eight candidate variants (rs1841010, rs9314162, rs3777189,
rs3777185, rs4563648, rs6877329, rs3777184, and rs889302). All
of these mapped near rs1423269 and rs9314162, and five
(rs3777185, rs4563648, rs6877329, rs3777184, and rs889302) to
an internal promoter in intron 2, as defined by the presence of the
H3K4me3 histone mark (Fig. 2c).

To evaluate the candidate variants, we made luciferase
vectors containing 120 bp of genome sequence with the
respective risk and protective variants in the center (Supplemen-
tary Table 3). We transfected these vectors into three
plasma cell lines (L363, OPM2, and RPMI-8226) and two cell
lines representing other hematologic lineages (K562 and
MOLM-13; acute myeloid leukemia cell lines with eryhtroblastic
and monocytic differentiation, respectively). Consistent
with our observation of an eQTL effect in MM plasma cells but
not in peripheral blood, three risk variants (rs3777189-C,
rs3777185-C, and rs4563648-G) yielded decreased luciferase
activity relative to their corresponding protective variants in
plasma cell lines, but not in non-plasma cell lines (Fig. 3a).
Interestingly, rs3777189 is located only 514 bp from
rs9314162; and rs3777185 and rs4563648 in the internal
promoter in intron 2.

Table 1 Association testing results

Exon Chr. Position (hg38) Effect
size (β)

r2 P

1 5 95885097–95888987 −0.15 0.02 0.036
2 5 95889085–95889130 −0.16 0.03 0.026
3 5 95891102–95891274 −0.17 0.03 0.018
4 5 95895627–95895691 −0.16 0.03 0.025
5 5 95898239–95898810 −0.15 0.02 0.040
6 5 95900692–95900780 −0.14 0.02 0.050
7 5 95900955–95901080 −0.04 0.00 0.601
8 5 95906522–95906782 −0.11 0.01 0.133
9 5 95913770–95913934 −0.20 0.04 0.007
10 5 95919423–95919545 −0.20 0.04 0.007
11 5 95913001–95913049 −0.19 0.04 0.010
12 5 95911574–95912071 −0.12 0.02 0.093

Association testing results for the Swedish-Norwegian mRNA-sequencing dataset (n= 185).
Effect size (β), squared Pearson regression coefficient (r2), and P values indicated
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We screened these three variants for gain or loss of
transcription factor-binding motifs. We identified numerous
candidate factors, about 20 of which are expressed in MM
plasma cells (Supplementary Tables 4 and 5). Electrophoretic
mobility shift assays (EMSAs) with L363 and OPM2 nuclear
extracts revealed allele-dependent binding of nuclear proteins for
rs3777189 and rs3777185, but not for rs4563648 (Supplementary
Fig. 4).

To search for differentially bound nuclear proteins,
we carried out EMSA assays with antibodies against factors
predicted to gain or lose a binding site at rs3777189 or rs3777185.
We observed supershift with antibody against the MAFF/G/K
transcription factors with probes for the protective/high-expres-
sing allele rs3777189-G, but not with probes for the risk/low-
expressing allele rs3777189-C (Fig. 3b, c and Supplementary
Fig. 5). Moreover, ELL2 expression correlated with MAFK and
MAFG expression (Supplementary Table 5), and rs3777189 maps
to an annotated MAFK ChIP-seq peak in lymphoid cells
(Supplementary Table 1). The MAF protein family (MAF,
MAFA, MAFF, MAFG, and MAFK) are paralogous basic leucine
zipper (bZIP)-type transcription factors that form homo and
heterodimers both with each other and certain other bZIP
transcription factors (e.g., BACH1)37–39. MAFF/G/K are thought
to be functionally redundant, and have similar binding
motifs (Supplementary Table 4). Our results indicate that
rs3777189-C leads to loss of a binding site for at least one of
MAFF/K/G, and thereby reduced transcriptional drive. No
additional supershifts were identified for rs3777189 or
rs3777185 (Supplementary Fig. 6).

The ELL2 MM risk allele upregulates ribosomal genes. ELL2 is
a key component of the SEC. Accordingly, variation in ELL2
expression could influence gene expression in a broader sense,
either through modulation of RNA polymerase II or through
cellular responses to altered protein synthesis. Consistent with
this notion, mouse studies have shown that Ell2 influences Ig
heavy chain exon usage, and the processing of a large percentage
of transcripts in plasma cells22,23,40.

To gain insight into the downstream effect of variation in ELL2
function, we first calculated the correlation between ELL2 and
other genes expressed in MM plasma cells in the Swedish-
Norwegian mRNA-sequencing data, which had high sequence
coverage (about 100 million reads per sample) and allow accurate,
linear estimation of transcript levels. Here, ELL2 showed a
significant correlation with a large set of genes, including 4890
genes with <5% false discovery rate (Supplementary Data 1).
Interestingly, gene set enrichment analysis showed an over-
representation of positive correlations among multiple gene sets
related to ribosomal biogenesis and function (Supplementary
Table 6), including a set of 80 genes encoding the proteins of the
large and small ribosomal subunits (ribosomal protein coding
genes, RPGs) and a set of seven genes encoding other members of
the SEC (Fig. 4a)41. These results are consistent with co-
regulation of cellular components required for high-rate protein
synthesis, and the role of ELL2 in driving the production of
secreted Ig.

Next, we correlated the ELL2 MM risk allele with the
expression of other genes in the mRNA-sequencing dataset.
Compared to the signature obtained by correlating with ELL2
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Fig. 4 The ELL2 MM risk allele increases ribosomal gene expression. a To explore the downstream effects of reduced ELL2 function, we first calculated the
correlation between ELL2 and other genes in the Swedish-Norwegian mRNA-sequencing data. Here, ELL2 showed significant correlation with a large set of
genes. Enrichment analysis revealed an over-representation of positive correlations among multiple gene sets related to ribosomes biogenesis and function,
including ribosomal protein coding genes (RPGs) and the SEC (see also Supplementary Table 6). b Enrichment analysis of correlation between the ELL2
MM risk allele and gene expression in the same dataset identified RPGs and other gene sets related to ribosomes. This enrichment was in the direction of
the ELL2 risk allele, which confers lower ELL2 expression (see also Supplementary Table 7). c Similarly, analysis of ELL2 CRISPR-Cas9 knockout (KO) L363
cells showed an upregulation of RPGs and other gene sets related to ribosome biogenesis and function (see also Supplementary Tables 8 and 9), i.e.,
effects in the same direction as the ELL2 MM risk allele. d Finally, similar changes were seen in mouse MPC1 plasmocytoma cells treated with shRNA
against either Ell2 vs GFP. These data support that, in addition to the effect on ELL2 itself, the ELL2 MM risk allele confers additional changes in gene
expression, including an increased expression of genes involved in ribosomal biogenesis, possibly as a compensatory reaction
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expression, this signature was weaker (Supplementary Data 2),
which is expected as the ELL2 MM risk allele only explains a part
of the variance in ELL2 expression. Yet, gene set enrichment
analysis again identified gene sets related to ribosome biogenesis
and function (Fig. 4b and Supplementary Table 7). Unexpectedly,
the detected enrichment was in the direction of the ELL2MM risk
allele, which confers lower ELL2 expression.

To understand whether the association with ribosomal gene
expression reflects a cause–effect relationship, we knocked out
ELL2 in L363 cells using lentiviral CRISPR-Cas9 (Supplementary
Fig. 7), and analyzed knockout and wild-type cells by mRNA
sequencing. Strikingly, L363-ELL2-KO cells showed a significant
enrichment of increased expression for RPGs (Fig. 4c) and other
gene sets related to ribosome biogenesis and function (Supple-
mentary Tables 8 and 9). We also observed a similar trend in pre-
existing mRNA-sequencing data from mouse plasmocytoma cells
treated with short hairpin RNA against Ell2 or GFP (Fig. 4d). To
exclude off-target effects of CRISPR-Cas9 editing or lentivirus
integration, we carried out rescue experiments where ELL2
expression was reconstituted in the L363-ELL2-KO cells. For this,
we generated a vector containing CRISPR-resistant ELL2
controlled by a doxycycline-inducible promoter (Supplementary
Fig. 8). ELL2- and mock-transduced L363-KO cells were cultured
with and without doxycycline, and analyzed with mRNA
sequencing. Consistent with a rescue effect, we observed
doxycycline-dependent downregulation of ribosomal genes in
ELL2-transfected cells, but not in mock-transfected cells (Fig. 5).
These data support that decreased ELL2 expression/function
increases ribosomal biogenesis, possibly as a compensatory
reaction in response to reduced protein synthesis.

Discussion
ELL2 has been associated with MM and several other phenotypes.
It has been postulated that the MM risk allele has a negative effect
on ELL2 function, yet the reason for this has been unclear. We
show that the MM risk allele lowers ELL2 expression in plasma
cells, providing an explanation for the hypomorphic effect. Fur-
ther, we identify three risk variants that map to regulatory regions
and yield decreased transcriptional activity in plasmocytoma cell
lines. Two of these (rs3777185 and rs3777189) exhibit altered
binding of nuclear proteins, and rs3777189-C diminishes binding
of MAFF/G/K family transcription factors. In addition, we
identify increased expression of ribosomal genes as a downstream
effect.

Our data are consistent with a working model where the
expression of ELL2 is co-regulated with the expression of

ribosomal gene sets to allow production of secreted Ig in a
coordinated manner. The MM risk allele confers lower ELL2
expression, which makes the production of secreted Ig less effi-
cient13,19,21–23. Hypothetically, plasma cells sense this and try to
compensate by increasing the drive on Ig synthesis, which leads to
relative upregulation of gene sets related to ribosome biogenesis
and function. Such a model would explain the co-occurrence of
the positive correlation between ELL2 and ribosomal gene sets,
and the negative correlation between the ELL2MM risk allele and
ribosomal gene sets.

Regarding limitations, our study is based on plasma cells from
MM patients. While it seems likely that our findings extend to
normal plasma cells, it remains verify this using samples from
healthy individuals. However, this is hard to do in practice as it
would require isolation of CD138+ cells from bone marrow
samples from a large number of healthy volunteers. Moreover,
this isolation would need to be done by fluorescence-activated
flow cytometry, instead of magnetic-bead sorting, as plasma cells
are rare (<1% of nucleated cells) in samples from healthy indi-
viduals. It would also be interesting to test whether our findings
extend to patients with MGUS or smoldering MM. Further, while
complete testing of all the linked variants that tag the ELL2 MM
risk allele would be desirable, we focused on variants in regulatory
regions for practical reasons. Similarly, our data do not exclude
an effect of the missense variant rs3815768 on top of the reduced
expression, and we have not been able to look for effects at the
protein level due to lack of material. Finally, it would be inter-
esting to look for effects on ELL2 and ribosomal gene sets in
salivary gland samples, in light of the recently reported associa-
tion with salivary gland cancer32.

An intriguing question is how the ELL2 risk allele promotes
MM development. Hypothetically, one possibility is that the
lower Ig levels could lead to slower antigen clearance and sti-
mulation of the B-cell system for longer periods of time, and
thereby a higher risk of malignant transformation. Alternatively,
it is conceivable that altered ribosome function could promote
MM development owing to the connection between altered
ribosome biogenesis and perturbation of oncogenic pathways
(c.f., refs. 42–45 and references therein).

Methods
Study populations. To generate the Swedish-Norwegian gene expression dataset,
we used CD138+ cells isolated from 185 bone marrow samples obtained at diag-
nosis from MM patients. For 158 samples, we also obtained matching DNA from
peripheral blood (Swedish National Myeloma Biobank, Lund, Sweden and Nor-
wegian Biobank for Myeloma, Trondheim, Norway). Finally, to look for effects of
ELL2 expression in peripheral blood, we used mRNA expression data for 2515
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Fig. 5 Reconstitution of ELL2 expression. For further validation of the effect of ELL2 knockout on RPG expression, we transduced CRISPR-resistant,
doxycycline-inducible ELL2 or mock vector into our L363-ELL2-KO cells. Following culture with or without doxycycline (DOX), the cells were gene
expression-profiled using mRNA sequencing: a Comparing the gene expression profiles of ELL2-transduced cells cultured with (n= 3) vs without DOX (n
= 4), we observed an enrichment of negative gene scores (i.e., downregulation) of ribosomal gene sets, consistent with a rescue effect; b no similar
enrichment was seen with mock-transduced control cells (n= 4 samples with vs 4 without DOX). These data further support a cause–effect relationship,
and that the results in Fig. 4b are not due to CRISPR-Cas9 off-target effects
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Icelandic samples (deCODE Genetics, Reykjavik; unpublished). The sample col-
lection was done subject to informed consent and ethical approval (Lund Uni-
versity Ethical Review Board, 2013/54; Icelandic Data Protection Authority,
2001010157; and National Bioethics Committee 01/015), and in accordance with
the principles of the Declaration of Helsinki.

For validation, we used three sets of pre-existing gene expression profiles of
CD138+ plasma cells isolated from MM patients from Germany, UK, and USA29.
The German sample set consists of 658 MM patients from the Heidelberg
University Clinic and the German-speaking Myeloma Multicenter Group29. The
British sample set comprises 183 MM patients enrolled in the UK Medical
Research Council Myeloma IX trial29. The US sample set comprises 604 samples
from newly diagnosed patients treated at the UAMS Myeloma Institute for
Research and Therapy12. The three validation datasets were generated using
Affymetrix U133 2.0 plus microarrays and custom chip definition file
(“BrainArray”; http://brainarray.mhri.med.umich.edu/Brainarray/Database/
CustomCDF).

Gene expression profiling of Swedish-Norwegian samples. For the Swedish-
Norwegian samples, total RNA was purified from immune-magnetically isolated
CD138+ cells using standard methods (Macherey Nagel NucleoSpin® RNA
#740955.10 or QIAamp RNA blood #52304). Icelandic blood samples were col-
lected in PAXgene tubes (PreAnalytix, Switzerland; cat no. #762165) and RNA was
isolated using the PAXgene 96 Blood RNA or the Paxgene Blood RNA Kit (Pre-
Analytix; cat nos. #762331 or #762174). The RNA integrity (RIN) was assessed
using the BioAnalyzer (Agilent, Santa Clara, CA, USA) or LabChip GX (Perki-
nElmer, Waltham, MA, USA) instruments. Indexed sequencing libraries were
prepared using the TruSeq RNA sample preparation v2 kit in 96-well format
(Illumina, San Diego, CA, USA). Between 0.1 and 1 µg of total RNA was used for
poly-A mRNA capture using oligo-dT attached magnetic beads. Complementary
DNA synthesis was done using SuperScript II and random hexamer priming
(ThermoFisher, Waltham, MA, USA). End-repair, 3′-adenylation, ligation of
indexed adaptors and PCR amplification was performed according to Illumina
protocols. Quantity and quality of each sequencing library was assessed using the
LabChip GX, followed by standard dilutions and sample/plate storage at −20 °C.
Further quality assessment was performed by doing pool sequencing (≤24 samples/
pool) on a MiSeq instrument in order to optimize cluster densities and assess insert
size, sample diversity, and so on. Primary processing and base calling was done
using HCS1.3.8–1.4.8 and RTA1.10.36–1.12.4.2 analysis packages. Demultiplexing
and generation of FASTQ files was performed using scripts from Illumina
(bcl2fastq v.1.8). Sequence alignment and fragment counts was done with TopHat2
and HTSeq-count, respectively46,47. The plasma cell gene expression data will be
deposited in the NCBI Gene Expression Omnibus (GEO) database when the
manuscript is accepted. The German, UK, and US gene expression datasets were
generated in previous studies using Affymetrix U133A 2.0 plus arrays with a
custom chip definition file (v.17)1,2.

Genotyping. The Swedish-Norwegian sample set was genotyped at two levels: first,
all samples (n= 185) were genotyped for the ELL2 MM risk allele using the coding
variant rs3815768, which could be robustly typed manually from the RNA-
sequencing data using Integrative Genomics Viewer (Supplementary Fig. 1a). In
addition, a subset of the Swedish-Norwegian samples was genotyped on Illumina
Human OmniExpress microarrays (n= 158). To increase the genomic resolution,
these data were haplotype-phased using SHAPEIT2 (v2.790)48 and imputed by
IMPUTE2 (v2.3.2)49 with the 1000 Genomes Phase 3 compendium reference data
(October 2014 release)27. The German, UK, and US myeloma sample sets were
genotyped previously on Illumina Human OmniExpress-12 v.1.0 arrays12,29 and
imputed using the UK10K compendium14,15,50. For the Icelandic blood samples,
genotypes were obtained by imputing variants identified by whole-genome
sequencing of 8453 Icelanders into 150,656 chip genotyped individuals using long-
range phasing based imputation51,52. Probabilities of genotypes were also predicted
for 294,212 first and second-degree relatives of chip-typed individuals53. A
description of the alignment to the reference genome, genotype calling, and
imputation and haplotype phasing is given in a recent publication54.

Association testing. In the Swedish-Norwegian sample set, test of association
between the ELL2 risk variants and expression values generated from the MM
plasma cell mRNA-sequencing data was done at the exon level, in order to allow
detection of exon-specific effects and to avoid signal dilution due to alignment bias
caused by coding variants (Supplementary Fig. 1b). For association testing, we used
Pearson correlation as implemented in R (v.3.3)55. Effect sizes (beta, β) and
standard errors (SE) of eQTLs were calculated using R (v.3.3). The coefficient of
linkage disequilibrium (D′) and r-squared (r2) were calculated using the Central
European part of the 1000 Genomes compendium as available via HaploReg 4.1.
To estimate risk allele ratios in rs3815768-CT heterozygotes, we counted the two
allelic sequences ([C/T]AGCATTCTGAGACGGATTTAGTTTTC, representing
the site of rs3815768) in the raw RNA-sequencing reads using BBTools (http://jgi.
doe.gov/data-and-tools/bbtools). Exact matches of the variant sequence and its
complement were counted. In the German, UK, and US sample sets, the association
was done using MatrixEQTL under a linear model12,29. In the Icelandic mRNA-

sequencing dataset, we used generalized linear regression to test for association on
rank-transformed expression estimates. To account for family structure, an esti-
mate of the inverted kinship matrix was incorporated into the test52. Effect sizes
(beta, β) and SE of eQTLs were calculated using R (v.2.8). Meta-analysis of P values
for eQTL associations was performed using the Fisher’s inverse χ2 test in
MATLAB.

Chromatin immunoprecipitation sequencing. L363 cells were cross-linked with
1% paraformaldehyde (ThermoFisher, #28908) at 37 °C in water bath for 11 min.
Shearing and immunoprecipitation was done according to manufacturer’s
instructions (Millipore, #17-10085). The DNA was sonicated between 200–400 bp
fragment length on Biorupture Pico Sonication System (Diagenode) at 4 °C for 30
s/30 s and 13 cycles. To pull down fragments, we used 1–10 μg of H3K4me3
(Millipore, #04-745) and isotype control antibodies (normal rabbit IgG, #sc-2027,
Santa Cruz Biotechnology). Fragments were de-cross-linked and purified using
ChIP clean and concentrate kit (Zymogen, #D5205). Concentration was measured
using Qubit 2.0 fluorometer. The ChIP-Seq library was prepared using ThruPLEX
DNA-seq Kit (RUBICON GENOMICS, #R400406). Following amplification,
samples were run on bioanalyzer to verify amplification and fragment size. The
library was purified using AMPure XP protocol described in ThruPLEX DNA-seq
Kit instruction manual. The library was diluted with nuclease-free water to 2 nM
concentration. Dual-indexed libraries were sequenced on Illumina HiSeq
2500 sequencer using the TruSeq v4 cluster and SBS sequencing kits, respectively
(paired-end; 2 × 125 cycles). Demultiplexing and generation of FASTQ files was
performed using scripts from Illumina (bcl2fastq v.1.8). FastQC (v0.11.5)56 was
used to assess read quality, GC content, the presence of adaptors, over-represented
k-mers and duplicated reads. Bases with low quality score were removed using
Trimmomatic program (v.0.36)57. Trimmed reads were aligned using Bowtie2
(v.2.3.0)58.

Luciferase assays. Ten double-stranded nucleotide sequences of 120 bp each,
including with KpnI and BglII restriction sites at terminal ends, were commercially
synthesized (Integrated DNA Technologies, USA). The sequences correspond to
rs1841010, rs9314162, rs3777189, rs3777185, rs6877329, rs3777184, rs889302, and
rs4563648 (Supplementary Table 3). Sequences were directionally cloned into a
pGL3-Basic plasmid (Promega) upstream of a luciferase reporter gene59. Sanger
sequencing confirmed the inserts. Renilla luciferase was used as internal trans-
fection control. L363, OPM2, RPMI-8226, MOLM-13, and K562 cells were cul-
tured at 37 °C and 5% CO2 in RPMI 1640 medium (Gibco, Life Technologies)
supplemented with 10% fetal bovine serum (Gibco). These cells were transfected
with each of the ten clones using Neon system (ThermoFisher). Post 24 h trans-
fection, cells were harvested and lysed in lysis buffer. An aliquot of 20 μl of the
lysed cells was used for luciferase measurement following manufacturer’s protocol
(dual-luciferase reporter assay system, Promega). Measurements were performed at
GLOMAX 20/20 Luminometer using Run Promega Protocol (DLR-0-INJ). Effects
were quantified as log2 ratios of renilla-normalized luminiscence values for the risk
alleles divided by the corresponding values for the protective alleles (median over
three to seven replicates per sequence and cell line).

Electrophoretic mobility shift assays. For nuclear proteins and gel shifts59,60, we
used the following 25-bp double-stranded probes (variants in brackets): for
rs3777189, ACAGTGCTGACT[G/C]AGCTCAAAATAC; rs3777185,
CTCTGAAACTCT [G/A]CCTGAATGGCTC; rs4563648, GAAACTTTCTCA[C/
T]CCTGACATTTGT. All probes were biotin-labeled at the 5′end of both strands;
unlabeled specific competitor probes with identical sequences were used to test for
specificity. For supershift assays with nuclear extracts from OPM2 and L363 cell
lines (DSMZ, Braunschweig), we used these antibodies: BACH1 (#sc-271211, Santa
Cruz Biotechnology), JunB (#3753S, Cell Signaling Technology), c-Fos (#4384S,
Cell Signaling Technology), and MafF/G/K (D-12), #sc-166548, Santa Cruz Bio-
technology. In essence, 1–2 μg antibody was added to the reaction mix and incu-
bated 15 min at room temperature, before addition of probes and another 20 min
incubation at room temperature. The cell line identities was confirmed by the
supplier and mycoplasma was eliminated with ciprofloxacin, then confirmed
negative in microbiological culture, RNA hybridization, and PCR assays (DSMZ,
Braunschweig).

Motif analysis. To identify transcription factors whose motifs are gained or lost by
sequence variants, we used PERFECTOS-APE (http://opera.autosome.ru/
perfectosape) with the HOCOMOCO-10, JASPAR, HT-SELEX, Swiss Regulon and
HOMER motif databases and default parameters (P < 0.0005 for both the reference
and alternative variant; fold change >5).

Knockout using CRISPR-Cas9. To knock out ELL2 in L363 cells, we used
CRISPR-Cas9 vectors encoding two different single-guide RNAs (sgRNAs) corre-
sponding to DNA sequences TCTGGTAAGTCTCGAGCGCCCGG (clone #6) and
TGCGGGAGGAGCAGCGCTATGGG (clone #2.3). These sequences, which were
designed using the CRISPR Design tool (http://www.crispr.mit.edu-tool) and target
ELL2 exon 1, were synthesized and ligated into lentiCRISPRv2 vector (AddGene,
Cambridge, MA, USA; cat. no. #52961) using published protocols61. An aliquot of
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ligated mix was transformed to JM109 competent cells. sgRNA inserts were con-
firmed by Sanger sequencing using standard Hu6-F primer. The lentiCRISPRv2
vector containing inserts were transfected into L363 cells by electroporation and
puromycin selection. Successful knockout was verified by western blot with anti-
bodies toward ELL2 (Santa Cruz Biotechnology, cat. no. sc-376611). For this, five
million cells were collected and washed with PBS. Cells were lysed using 2×
Laemmli sample (100 μl) and 2-mercaptoethanol. Samples were kept on ice and
sonicated on Bioruptor-pico (Diagenode) for ten cycles at 30 s/30 s on and off.
Thereafter, samples were heat denatured at 96 °C for 5 min and centrifuged at full
speed for 5 min. Supernatant was transferred to another vial and loaded on gel. For
protein separation and blot, we used mini-protein TGX stain free gel (Bio-Rad) and
trans-blot turbo transfer pack (nitrocellulose, Bio-Rad) followed by overnight
incubation with ELL2 antibody (Santa Cruz Biotechnology, #37661) and devel-
opment (Bio-Rad). Membranes were re-probed with GAPDH antibody after re-
blot treatment (Millipore, #2502).

Analysis of cell line data and gene set enrichment analysis. From wild-type and
CRISPR-Cas9 ELL2 knockout cells, we purified and sequenced mRNA using the
same protocols as the primary CD138+ plasma cell samples. Two replicates from
wild-type cells and two replicates from each of two independent clones (clone #6
and clone #2.3) were analyzed. Differentially expressed genes were identified by
comparing FPKM (fragments per kilo base of exon per million fragments mapped)
values using Smyth’s moderated t-statistic62. For gene set enrichment analysis, we
used the RenderCat63 tool with default parameters, Gene Ontology64 and ABI
Panther (http://panterdb.org) gene set databases, and considered genes with
average FPKM >5 in the MMPC RNA-sequencing data. We also created specific
gene sets comprising the ~80 genes encoding the proteins of the large and small
ribosome subunits (“RPG”) and 7 genes encoding other members of the super-
elongation complex (“SEC”). In addition to the L363 gene expression data, we used
pre-existing gene expression profiles of shEll2- vs shGFP-treated mouse MPC1
plasmocytoma cells. These data were retrieved from the NCBI Gene Expression
Omnibus Omnibus (accession no. GSE40285). The MPC1 data were analyzed
using the same methods as the L363 data.

Reconstitution of ELL2 expression in L363-ELL2-knockout cells. To reconstitute
ELL2 expression in the L363-ELL2-KO cells generated using CRISPR-Cas9, we
inserted ELL2 into a Tet-ON-3G doxycycline-inducible gene expression system
(Clontech). To allow the construct to escape CRISPR-Cas9 editing, we changed the
sixteenth ELL2 codon from GGG to GGC, both coding for glycine. The new codon
change eliminates the PAM sequence of the sgRNA that was used to generate the
L363-ELL2-KO cells. The coding mRNA transcript (based on NM_012081.5, 351-
2273) was synthesized as gBlocks Gene Fragments from IDT. The gene fragment
was cloned in pTRE3G inducible vector. The L363-ELL2-KO (clone #2.3) were
electroporated with pTRE3G-ELL2 and pTRE3G-EF1α (Clontech) at a ratio of 4:1
using the NEON system (Thermo-Fisher Scientific). For mock/control transfection,
we used Empty pTRE3G- and pTRE3G-EF1α (Clontech). The electroporated cells
were cultured with or without doxycycline (200 ng/ml) for 24 h. RNA was prepared
using the RNeasy mini kit (Qiagen), quality-assessed using Nanodrop and Bioa-
nalyzer (Agilent), and sequenced using 2 × 75-bp Illumina mRNA sequencing at
the Centre for Translational Genomics facility (Lund University), yielding about 36
million paired-end reads per sample on average. Sequences were aligned to hg38
reference genome using TopHat, and expression (FPKM) values were quantified
using CuffLinks47. Successful induction of ELL2 expression was confirmed by
western blot, and by the presence of reads containing the new glycine codon in the
RNA-sequencing data in the doxycycline-treated samples. Differential gene
expression was quantified using log2 ratios, and enrichment analysis was done with
RenderCat63.

Data availability. The RNA-sequencing data for wild-type and knockout L363
cells, and for L363 cells from the ELL2 addback experiments are available via the
NCBI Gene Expression Omnibus (accession nos. GSE111199 and GSE111210). The
eQTL data for MM plasma cells and ChIP-seq data for L363 cells are available from
the authors on a collaborative basis.
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Abstract 

 

Multiple myeloma (MM) is the second most common blood malignancy. Recently, two meta-

analyses reported associations between MM overall survival and inborn sequence variants at 

the MTHFD1L-AKAP12 and FOPNL loci, respectively. Here we looked for further support of 

these associations in a series of 871 patients with MM from Sweden, but could not detect any 

evidence for association with survival for either of the two loci. Our results could potentially 

be explained by differences in treatment or other patient characteristics, and motivate the 

collection of larger data sets to understand the effects of genetic variation on clinical 

outcome in MM.  
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Multiple myeloma (MM) is the second most common hematologic malignancy. The disease 

is defined by an uninhibited, clonal growth of plasma cells in the bone marrow
1
. It is 

preceded by monoclonal gammopathy of unknown significance (MGUS)
2
, a common 

condition defined as a clonal growth of plasma cells that does not yet satisfy the criteria for 

MM, but progresses to MM at a rate of approximately 1% per year
3
.  

Increasing evidence supports that the biology of MM is influenced by inborn 

genetic variation. MM and MGUS show familial clustering, and genome-wide association 

studies have identified DNA sequence variants that influence MM risk
4-8

. Additionally, 

two recent studies indicate that genetic variation could also influence MM survival
9,10

. 

In the first of these, Johnson et al.
9
 describe an association between overall survival 

in multiple myeloma (MM-OS) and rs12374648, located between the MTHFD1L and 

AKAP12 genes at chromosome 6q25.1
9
. The protein encoded by MTHFD1L is involved in 

folate metabolism
11

, and AKAP12 is related to cell growth
12

. The association with MM-OS 

was detected in a meta-analysis of 3,256 cases from four clinical trials: two from the UK, 

one from the USA, and one from Germany (combined P-value=4.69×10
–9

,
 
hazard ratio, 

HR=1.34, 95% CI 1.22-1.48). The association was detected in the sample sets from the 

UK and USA (P=1.69×10
–6

 to 0.009; HR 1.06 to 1.75), but not in the one from Germany 

(P=0.55; HR=1.09, 95% CI 0.82-1.44).  

In a second study, Ziv et al.
10

 describe an association between MM-OS and 

rs72773978 near FOPNL at 16p13. The protein encoded by FOPNL has been implicated in 

centrosome function
13

. The association was detected by meta-analysis of 545 cases from 

two clinical trials in USA (P=6×10
–10

; HR=2.65, 95% CI 1.94-3.58). The association was 

replicated in a meta-analysis of two other data sets (IMMEnSE, consisting six sample 

subsets totaling n=772 and one from Utah, n=315) (combined P=0.044; HR=1.34, 95% CI 

1.01-1.78). Yet, the positive replication result was driven by a P-value of 0.004 with large 
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effect size (HR=9.73) in a subset of 109 patients from Spain in IMMEnSE, whereas the 

other six subsets (Italy, Poland, Portugal, Denmark, Edmonton in IMMEnSE and the one 

from Utah) did not show any evidence of association (Supplementary Table 7 in ref.
10

). 

Given these reports, we looked for further support of the MTHFDL1-AKAP12 and 

FOPLN loci in a Swedish study population. We retrieved clinical data for 871 patients 

diagnosed with MM between 2005 to 2015 from the Swedish Multiple Myeloma Registry 

(Sahlgrenska Hospital, Gothenburg) (Table 1), which records clinical data on MM patients 

in Sweden and has about 90% inclusion rate compared to the Swedish Cancer Registry. 

The patients had been previously genotyped in genome-wide association studies using 

population-based samples from the Swedish National Myeloma Biobank (Skåne 

University Hospital, Lund)
6,7

. The clinical data and samples were obtained subject to 

informed consent and ethical approval (Lund University, dnr 2013/540), and in accordance 

with the principles of the Declaration of Helsinki. The samples were genotyped using 

Illumina microarrays and imputed with phased reference haplotypes from 1,000 Genomes
6,14

. 

To test for association between genotypes and MM-OS, we used a Cox proportional 

hazards model implemented in R (v.2.8) with adjustment for age, sex and International 

Staging System (ISS) score. Survival was calculated from the date treatment started until 

the date of death, or until April 5th 2016 (median follow-up time 39.5 months). 

In our analysis, we did not see any evidence of association with MM-OS for either 

rs12374648 (P=0.7; HR=0.97, 95% CI=0.81-1.2) or rs72773978 (P=0.93; HR=0.98, 95% 

CI=0.7-1.4) (Fig. 1). For completeness, we also tested for associations between MM-OS 

and all variants with minor allele frequency (MAF) > 5% located within 1 Mb of 

MTHFD1L-AKAP12 (6,515 variants) or FOPNL (3,892 variants), but could not identify 

any association with any of these variants (smallest P-value= 1.02×10
–4

, Bonferroni 

threshold =7.7× 10
–6 

for MTHFD1L-AKAP12
 
and smallest P-value= 1.54× 10

–4
, Bonferroni 
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threshold= 1.28× 10
–5 

for FOPNL). Thus, we could not replicate the associations between 

MM-OS and MTHFD1L-AKAP12 and FOPNL in a population-based series, nor identify 

any other alleles associations with MM-OS at these loci. 

We considered possible reasons why the reported associations did not replicate in 

our sample set. Firstly, our study is comparable in size (n=871) to the largest of the 

reported individual sample sets, including UK-My9 (n=1,163) and UK-My11 (n=871) 

where rs12374648 at MTHFD1L was detected, and rs72773978 at FOPNL was found in 

smaller data sets. Secondly, the absence of associations between MM-OS and rs12374648 

and rs72773978 in our data is probably not due to differences in geographic origin. The 

two reported variants are common, both in our data (MAF 21.5% and 4.7%) and in the 

different populations of 1,000 Genomes
14

, meaning the reported associations are unlikely 

to be population-specific. Thirdly, however, the absence of replication signals in our data 

could be explained by differences in clinical characteristics between the study populations. 

Here, one notable difference is that our material is population-based, whereas the studies 

by Johnsson et al.
9
 and Ziv et al.

10
 are based on patients recruited into clinical trials. As a 

result, our population is older (average 68 years vs 54 to 66 years), and has not been 

selected for patients without comorbidity, as is common in clinical trials. A higher 

incidence of comorbidity could dilute effects of DNA sequence variation on survival. 

Moreover, differences in age and comorbidity will carry differences in treatment. For 

example, some of the reported populations contain a high proportion of patients who 

received autologous stem cell transplantation (ASCT; 100% in the German and US sample 

sets in Johnson et al.
9
), whereas our study population contains 32.5% transplanted patients. 

Accordingly, it is possible that the reported effects on MM-OS are connected to a certain 

treatment, for example ASCT. Together, our results and refs.
9,10

 motivate the collection of 

larger data sets to understand the impact of genetic variation on clinical outcome in MM.  
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Figure legends 

 

Figure 1: Kaplan-Meier plots for (a) rs12374648 at MTHFD1L-AKAP12 and (b) rs72773978 

at FOPNL. No difference in survival between the genotype groups was observed. 
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Table 1: Clinical characteristics of the study population  
 

Number of Cases 871 

Gender 

Male 

Female 

 

531 

340 

Median age at diagnosis 68 

Median follow-up (months) 39.48 

Deceased during follow-up 

Yes 

No 

 

393 

478 

ISS 

I 

II 

III 

Unknown 

 

179 

339 

234 

119 

Heavy chain paraprotein 

IgA 

IgG 

IgD 

IgM 

Not detected 

 

191 

536 

6 

6 

132 

Light chain paraprotein 

Lambda 

Kappa 

Not detected or not done 

 

240 

446 

185 

Median plasma cells in bone marrow (%) 22 

Treatment received 
Proteasome inhibitor 

Immunomodulatory (IMiD) 

Chemotherapy 

Autologous stem cell transplantation (ASCT) 

Other or no treatment 

 

427 (49.02%) 

228 (26.18%) 

678 (77.84%) 

283 (32.49%) 

112 (12.86%) 

Anemia (%) 26.18 

Hypercalcemia (%) 8.04 

Renal failure (%) 13.6 
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