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Preface 

The complexity of the human body is both intriguing and taunting. Discrete changes 
in the, evolutionary fine-tuned, machineries that controls the cells in our body can lead 
to diseases that distort the biological functions that we rely on for everyday life. 
Understanding the causes that underlies these changes will improve our understanding 
of the human body and increase our abilities to correct damaged molecular processes. 
Therefore, it is important to characterize diseases in detail and to model them in an 
accurate fashion. 

Our blood system has a vast turnover of cells each day and the different cells in our 
blood perform many vital tasks including respiration, wound healing, and helps us fight 
infections. Complex regulatory mechanisms in these cells control the formation of 
specific cell types, the momentum of their generation, and their survival. Genetic 
lesions damaging components of these regulatory structures can result in uncontrolled 
growth of a blood cell and its progenies, that with time overflows the blood system and 
disturb its normal functions. This is the basis of leukemia. The causative genetic lesions 
play a fundamental role for the features of the resultant leukemia, and it is therefore 
important to identify these lesions to help diagnose and stratify patients so that they 
can be treated in a way that provides the best chance for a cure. The difficulty of 
leukemia, as for most cancers, is that multiple contributing genetic lesions often 
coincide and cooperate in the establishment and progression of the disease. Even 
though significant advances have been made in our understanding of the pathobiology 
of leukemia, we still lack a full understanding of the molecular interplay between 
different genetic lesions. It is therefore crucial to model leukemia in experimental 
models in order understand the crosstalk between the affected regulatory pathways. 

This thesis summarizes my attempts to shed light on the molecular and biological 
interactions, and cooperation between genetic lesions, that underlie leukemia. 

 

 

Axel 
San Francisco 
August 2017 
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Background 

Normal hematopoiesis 

Hematopoiesis (from Ancient Greek; haima, blood and poiesis, to make) is the 
biological process involving the formation of new blood cells. Hematopoietic cells are 
a necessity of life and constitute our immune response, oxygen and carbon dioxide 
transport, coagulation, and cellular waste removal. These processes are carried out by 
specialized mature blood cells, many of which are short-lived [1]. In order to maintain 
a continuous homeostasis and replenishment of the blood system, an estimated trillion 
cells are formed each day in our body [2]. These numbers are further increased during 
stress, such as blood loss or infections. Early work postulated that the hematopoietic 
system was arranged as a hierarchy, with all individual lineages originating from a 
shared ancestor [3,4]. Extensive work has since proven that hematopoietic stem cells 
(HSC) reside in the apex of this hierarchy, devoted to generating progenitors that 
successively differentiate along a single or several blood lineages, ultimately providing 
mature and functional blood cells. The HSC is defined by two main characteristics, the 
ability to self-renew and the inherent capacity of multipotent differentiation [5]. 

Blood lineages and the hematopoietic hierarchy 

The blood system is typically divided into two branches, a lymphoid- and myeloid 
lineage. The lymphoid lineage is composed of immune cells that are part of both the 
adaptive immune system (B-cells and T-cells) and the innate immune system (innate 
lymphoid cells (ILCs) and natural killer (NK)-cells), whereas the myeloid lineage is 
comprised of innate immune cells (monocytes and granulocytes), thrombocytes, and 
erythrocytes (Figure 1). The formation of these cells result from step-wise 
differentiation descending from HSCs through committed, proliferative and 
transitional progenitors, a process designed to reduce the risk of accumulating 
proliferation-induced DNA damage in the mostly quiescent HSCs [6-8]. This 
functional formation also highlights the need for reduced self-renewal capacity in these 
highly proliferative progenitors. The mouse has been an indispensable tool for our 
understanding of hematopoiesis, and although several central biological aspects remain 
conserved between mouse and human, there still exist fundamental differences caused  
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Figure 1. The hematopoietic hierarchy  
Hematopoiesis can be arranged as hierarchal structure, commonly known as the hematopoietic tree. At the top of this 
hierarchy is the HSC, a cell with self-renewal capacity and the ability to form all other hematopoietic cells. Upon 
differentiation, HSCs form committed progenitors that subsequently give rise to mature and functional blood cells. 

by traits such as species-related physiological differences and an increased genetic 
diversity for humans [9-11]. One distinct taxonomic difference is the composition of 
the blood system, with humans having a majority of myeloid cells and mice having 
predominantly lymphoid cells [11]. 

The adult human hematopoietic hierarchy is arranged with the HSC at the top, with 
the first differentiation step being loss of self-renewal capacity and the emergence of 
multipotent progenitor (MPP) cells [12]. Clonal multilineage engraftment competence 
in immunodeficient mice is used to distinguish robust long-term HSCs (LT-HSC) 
from more transiently engrafting MPPs [12,13]. However, complete assessment of 
lineage potential is temporally restricted in mouse models of human hematopoiesis 
given that different mature hematopoietic cell types emerge at different time points and 
not always persist with time in this system [10]. The next step of differentiation marks 
the first major lineage bifurcation in hematopoiesis (Figure 1). Previously, this step was 
seen as the branching of the lymphoid and myeloid lineage by the emergence of a 
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common lymphoid progenitor (CLP) and a common myeloid progenitor (CMP), 
respectively [14,15]. However, it is now believed that there exist lymphoid primed 
progenitors with limited myeloid potential known either as multilymphoid progenitor 
(MLP) or lymphoid-primed multipotent progenitors (LMPP) as predecessors to CLPs 
[16,17]. These LMPPs/MLPs are suggested to have the ability to generate monocytes, 
neutrophils, and dendritic cells and to reside alongside CMPs, which have a more broad 
myeloid potential (Figure 1). Recently, it was also suggested that a megakaryocyte 
committed progenitor (MkP), with the potential to generate megakaryocytes and 
platelets, emerge from MPPs [18]. 

CLPs are lymphoid restricted and generate T-cells, B-cells, NK-cells, and ILCs [19-
22]. Worth noting is that T-cells have been suggested to also arise from a progenitor 
preceding CLPs [23,24]. As for the myeloid lineage, CMPs have classically been 
suggested to generate granulocyte-macrophage progenitors (GMP) and megakaryocyte-
erythroid progenitors (MEP), which combined generate all mature myeloid cells. 
However, the existence of such an oligopotent CMP has recently been challenged and 
instead CMPs, then termed erythroid-myeloid progenitor (EMP), were suggested to 
only generate basophils, eosinophils, megakaryocytes, and erythrocytes but not 
monocytes and neutrophils, thus being more restricted than previously believed [25]. 
This was further corroborated in adult hematopoiesis were single CMPs failed to 
generate more than one mature lineage, suggesting that CMPs rather comprise a mix 
of unipotent progenitors [18]. Further, GMPs are now suggested to be a progenitor of 
monocytes, dendritic cells, and neutrophils and to arise directly from LMPPs/MLPs 
and not from CMPs [18,25-27]. Also, these lineage paths of progenitors and 
differentiation are said to differ and change during our life [18]. The assembly of the 
hematopoietic circuitry will likely be further revised, given its complexity and the 
continuous improvements in experimental methods assessing lineage potential. 

Regulating factors of hematopoiesis 

The dynamic process by which HSCs progressively differentiate along the distinct 
blood lineages is complex and mainly driven by transcriptional and epigenetic changes, 
which are instructed and governed by several critical regulators in a context type of 
fashion [28]. The demand of highly proliferating and differentiating cells requires strict 
control mechanisms and subtle defects in this machinery may lead to development of 
severe blood disorders. 

The HSC niche 
Hematopoietic progenitors are to a large extent guided by external factors, such as 
cytokines, growth factors, and cell-to-cell signaling [5]. These cell non-autonomous 
signals are largely provided by specialized microenvironments, known as niches [29]. 
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Within the bone marrow (BM), these niches are proposed to locally retain HSCs in a 
microenvironment that restricts their differentiation and maintains their self-renewal 
capacity. Much effort has been focused into defining the signals important for HSC 
maintenance, which has proposed two distinct sites that harbor and maintain HSCs, 
namely the endosteal- and perivascular niches. The endosteal niche was the first to be 
identified based on an observed co-localization of HSCs and the endosteal surface in 
the BM [30,31]. The contributing stromal cells were suggested to be osteoblasts that 
supported HSC by providing critical factors such as angiopoietin 1, C-X-C chemokine 
12 (CXCL12, also known as SDF-1), thrombopoietin (TPO), and osteopontin [8,32-
35]. Later it was shown that primitive HSCs rather associated with sinusoidal blood 
vessels than osteoblasts and this was thereby posed as an alternate niche [36]. The 
contributing cellular components of the perivascular niche is mainly endothelial cells 
of blood vessels, various perivascular cells including CXCL12-abundant reticular 
(CAR) cells and leptin receptor expressing (LepR+) cells, and sympathetic neural fibers 
[29]. Of these, endothelial-, CAR-, and LepR+ cells provide CXCL12 and stem cell 
factor (SCF) at varying levels, two important factors for HSC retention and 
maintenance [37-39]. Moreover, neural cells provide noradrenaline which regulate 
CXCL12 levels in the BM in a circadian fashion [40,41]. Given that recent imaging 
studies provided no confirming evidence of HSC and osteoblasts association, and the 
lack of effect on HSC maintenance after selective deletion of Scf or Ccxl12 in 
osteoblasts, the existence of an endosteal niche has been challenged [38,39,42-44]. 

Extrinsic factors 
Several cytokines are suggested to be critical for lineage-specificity, however, many of 
these presumably have pleiotropic effects on both the hematopoietic system and other 
tissues [45]. The pleiotropic effects of “lineage-specific” cytokines likely reflect varying 
levels of cytokine receptors on hematopoietic cells, cell-type specific signaling output, 
interplay between different cytokine pathways, intracellular availability of transcription 
factors and signaling molecules, and local access to the cytokines. 

Nevertheless, certain cytokines have been shown to be able to highly influence lineage 
commitment. For example, treatment of single GMPs with either granulocyte colony-
stimulating factor or macrophage colony-stimulating factor directed them to 
differentiate into either granulocytes or macrophages, respectively [46]. Likewise, 
systemically high levels of erythropoietin suppress non-erythroid progenitors and result 
in erythroid-biased lineage output [47]. Similarly, high levels of FMS-like tyrosine 
kinase 3 (FLT3) ligand expanded lymphoid- and myeloid progenitors and suppressed 
MEPs [48]. Knock-out of the interleukin (IL)-7 receptor and the IL-2 receptor gamma 
chain leads to severe impairments of B-, T-, and NK-cells [49-51]. Noteworthy is also 
that chemical screens have identified chemical compounds that support human HSC 
potential ex vivo [52,53]. Collectively, this highlights the major biological impact of 
external factors on hematopoietic cells.  
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Most cytokines activate mitogen activated protein kinase (MAPK) pathways [54]. 
Those that do not, includes the transforming growth factor ß receptor family, the 
tumor nercosis factor receptor family, and the G-protein coupled receptors which 
comprises many chemokine receptors. The MAPK signaling pathway is a vast signaling 
network that can be subdivided into different groups, with the more notable being; 
extracellular signaling-regulated kinases (ERKs), p38MAPKs, and c-jun N-terminal 
kinases (JNKs). MAPK signaling promote monopoiesis as opposed to granulopoiesis in 
human hematopoietic stem and progenitor cells (HSPCs) through negative regulation 
of the CCAAT/enhancer-binding protein α (C/EBPA, encoded by CEBPA) [55]. 
Another cytokine regulated signaling pathway is the phosphoinositide 3-kinase 
(PI3K)/AKT pathway [56]. As for MAPK, constant AKT signaling also favored 
myelopoiesis through C/EBPα-dependent mechanisms [57]. Aberrant signaling output 
from these pathways have a big impact on proliferation and survival of hematopoietic 
cells and genetic lesions causing such constitutively signaling are common oncogenic 
events in hematological malignancies (see Hematological malignancies). 

Intrinsic factors 
The transition in cell fate is generally coupled with changes in gene expression which 
are orchestrated by transcription factors [58]. These changes are also associated with, 
and often preceded by, epigenetic changes in regulatory genomic elements. The initial 
triggering events determining hematopoietic differentiation commitment remains 
largely elusive and even though external factors may play an instructive role in this 
process, it has also been suggested that they merely confer non-specific and permissive 
survival and growth signals. Support for the latter is that differentiation can occur in 
the absence of cytokines when apoptosis is suppressed through overexpression of Bcl-2 
[59-61]. This suggest a stochastic model in which lineage commitment is primarily 
driven by cell autonomous programs. Regardless, the instrumental role of intrinsic 
factors in lineage commitment and cell fate is well established. 

A number of transcriptional regulators have been shown to maintain HSC homeostasis. 
Most of our biological understanding of these factors have been attained from mouse 
models and, although there is a certain discrepancy to the human system, several 
intrinsic factors are evolutionary conserved [10]. This has been confirmed through 
several functional studies that have highlighted a number regulatory factors pivotal for 
human HSC function. For example, overexpression or knockdown of the Polycomb-
group gene BMI1, the Notch target HES1, and the transcription factor HLF have 
proved to influence the function of human HSC in experimental xenograft models 
[62,63]. More recently, the Cohesin complex, which guides chromatin segregation, has 
been suggested to regulate human HSC homeostasis [64-66]. Mouse models have also 
highlighted several intrinsic factors important for the embryonic development of HSCs, 
including Ktm2a, Etv6, Runx1, Lmo2, and Scl [9]. Importantly, genetic alterations 
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and/or deregulation of these genes are seen in a majority of hematological malignancies 
(see Hematological malignancies). 

Lineage-associated transcription factors play a key role in cell fate decision and, 
although complex interplays between different pathways play a fundamental role, 
certain factors are known to instruct or reflect distinctive lineage commitments. One 
well established antagonistic interaction is that of PU.1 (encoded by SPI1) and GATA1 
in the development of myeloerythroid-, driven by GATA1, and myelolymphoid, driven 
by PU.1, lineages [67-69]. Although initially suggested as instructive factors in lineage 
commitment, single-cell tracking have recently rather suggested them to execute or 
reinforce already established lineage choices, thereby further complicating the process 
of lineage commitment [70]. So, while certain transcription factors are assigned as 
essential for B-cell (e.g. EBF1, PAX5, FOXO1, and IKZF1), erythroid (e.g. GATA1 
and KLF1), myeloid (e.g. C/EBPα, PU.1, TAL1, GFI1), and T-cell (e.g. HEB, E2A, 
GATA3, and TCF family factors) maturation, several of these are known to be more 
promiscuous and important for multilineage differentiation [71-75]. 

Hematological malignancies 

The need of a constant turnover of short-lived mature blood cells requires a highly 
active and tightly regulated hematopoiesis. Genetic aberrations affecting this regulatory 
machinery and/or signaling pathways associated with hematopoietic differentiation, 
proliferation, or survival commonly result in hematological dysplasia or neoplasms 
[76]. These disorders generally disturb the output from either of the two blood lineages 
by generating excessive proliferation, abnormal differentiation, or a combination of the 
two. The perturbed dynamics gradually disturb the residual normal hematopoiesis that 
often result in anemia, leukopenia, and thrombocytopenia, which clinically presents as 
fatigue, cachexia, bleedings, and infections. Although recent advancement in molecular 
genetic and epigenetic technologies has greatly increased our understanding of the 
underlying lesions in hematological malignancies, a complete and integrated 
understanding is still lacking. Hematopoietic malignancies is a heterogeneous 
collection of diseases with differences in their clinical presentation of symptoms and 
outcome [77,78]. Many of the underlying hematological malignancy-associated 
mutations are promiscuous, in the sense that they are found in several entities, while 
others are more linked to a certain disease phenotype. Over the past decades, 
accumulated cytogenetic and genetic evidence have made it increasingly clear that 
several structural and numerical chromosomal changes display such pathognomonic 
qualities in hematological malignancies. This have allowed for their use as diagnostic 
markers for a subclassification of, otherwise seemingly overlapping, disease entities. 
This has led to improved risk stratification, treatment, and clinical outcome for many 
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groups of patients [79]. The advancements of high-throughput sequencing have further 
markedly improved our understanding of an emerging complexity in the mutational 
landscape for several hematological malignancies, and the clinical implications for these 
networks of underlying genetic lesions continues to evolve [76]. 

Clonal hematopoiesis of indeterminate potential 

Over recent years, the existence of age-related clonal hematopoiesis of indeterminate 
potential (CHIP) has become recognized as a common occurrence in older individuals, 
seen in up to 10% of people older than 65 years of age [80-82]. Large sequencing efforts 
from tens of thousands of individuals, unselected for hematological parameters or 
neoplasms, identified the presence of somatic mutations in genes associated with 
hematological malignancies, with mutations in epigenetic modifiers DNMT3A and 
TET2 and the Polycomb-group gene ASXL1 accounting for about two thirds of CHIP 
cases. However, a recent study based on whole-genome sequencing (WGS) from >11 
000 healthy Icelandic individuals confirmed the high prevalence of CHIP in older 
people, but could through statistical modeling of passenger mutations show that most 
cases of CHIP lacked evident driver mutations [83]. The reason for clonal 
hematopoiesis in the absence of known driver mutations might be explained by either 
unidentified and unknown driver genes, epigenetic alterations, or through a natural 
neutral drift toward clonal hematopoiesis due to an exhausted HSC compartment [83]. 
Regardless, CHIP-associated mutations are able to clonally expand the multilineage 
output from a single HSC and CHIP is associated with an increased risk of developing 
a subsequent hematological malignancy [80,81,83]. Given the high prevalence of 
leukemia-associated mutations in CHIP and the increased risk of hematological 
malignancies in individuals with CHIP, CHIP is suggested to act as a pre-malignant 
state serving as an initial genetic event that is permissive to additional cooperating 
lesions in downstream progenitors [84-89]. Error-corrected ultra-deep sequencing of 
older healthy individuals (50-60 years) identified mutations in DNMT3A and TET2 
in 95% of the analyzed samples, suggesting that most of us might harbor a pre-
malignant clone irrespective of CHIP [90]. Although CHIP may account as an 
evolutionary explanation for some hematological malignancies, this is likely not the 
case in all subtypes and future studies will need to decipher the preceding prevalence of 
CHIP and its causation throughout hematological malignancy entities. 
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Myelodysplastic syndromes 

Much like CHIP, myelodysplastic syndrome (MDS) is a clonal disorder suggested to 
originate in HSCs, but with an ineffective hematopoiesis displaying morphological 
dysplasia of the myeloid lineage that clinically results in cytopenia [91-94]. As for 
CHIP, MDS is mainly a disease of the elderly [93]. The prognosis of MDS varies, with 
some patients requiring minimal therapy while others succumb to severe complications 
due to cytopenia. Further, about one-third of MDS progress to secondary acute 
myeloid leukemia (sAML) upon the acquisition of additional cooperating genetic 
lesions (Figure 2) [95]. In contrast to CHIP, MDS is a genetically more complex disease 
with most patients harboring at least two somatic mutations in genes associated with 
hematological malignancies [96,97]. Given that mutations in the epigenetic regulators 
DNMT3A and TET2 commonly are found as early events in MDS and the increased 
risk of developing hematological malignancies when suffering from CHIP, MDS has 
been proposed to, in certain cases, emerge from CHIP, although this will need further 
investigation [80,81,91,96]. Cytogenetically, del(5)(q31q33) is the most common 
chromosomal aberration present in around 15% of patients, which results in 
haploinsufficiency of a variable number of genes [98]. Other common cytogenetic 
lesions include del(7q) and +8, seen in 11% and 8% of patients, respectively [98]. 
Recurrent mutations in genes encoding splicing factors are very common and include 
SF3B1, SRSF2, and U2AF1 [97]. Other frequently mutated genes include the 
Polycomb-group genes ASXL1 and EZH2, the transcription factors RUNX1, IRF1, and 
the tumor suppressor TP53 [96,97]. 

Myeloproliferative neoplasms 

As opposed to MDS, a hematological malignancy that display normal morphology and 
preserved differentiation but that presents with an excessive proliferation is commonly 
classified as a myeloproliferative neoplasm (MPN) (Figure 2). MPN comprise a 
heterogeneous group of disorders that not always display clinical symptoms but that is 
associated with an increased incidence of thrombosis, myelofibrosis, and with a risk of 
transformation to sAML (Figure 2) [99,100]. MPN is regarded as a HSC originating 
disorder with a clonal expansion at the progenitor level, together with a high expansion 
of mature cells in one or more myeloid lineages that manifest as hypercellularity in the 
BM and extramedullary hematopoiesis [99,101]. As for all hematological malignancies, 
genetic alterations are central in the development of MPN and in its risk-stratification 
[102]. Chronic myeloid leukemia (CML) is an MPN defined by the presence of the 
t(9;22)(q34.1;q11.2), leading to the formation of the Philadelphia chromosome (Ph) 
[103], resulting in the causative fusion protein BCR-ABL1 [77]. CML is today quite 
manageable with the use of specific tyrosine kinase inhibitors that directly target the 
BCR-ABL1 fusion protein, but can, especially if left untreated or through the acquisition 
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Figure 2. Relations between myeloid malignancies 
Myeloid malignancies are caused by genetic alterations in HSPCs. This causes excessive proliferation and/or disturbed 
differentiation of at least one myeloid lineage. Some myeloid malignancies are associated with one of these features, 
while others display a combination of the two. AML can arise without any preceding malignancies, but cases with MDS, 
MPN, and MDS/MPN-U can also progress to secondary AML. This figure demonstrates common features and paths in 
myeloid malignancies. 

of resistance mutations to the specific kinase inhibitors, progress into blast crisis, a state 
that shares several characteristics of acute leukemia [104]. Besides CML, Ph-negative 
MPNs includes polycythemia vera (characterized by erythrocytosis), essential 
thrombocytosis (characterized by thrombocytosis), and primary myelofibrosis 
(characterized by the accumulation of collagen fibers in the BM) [77]. All these entities 
commonly harbor mutations leading to constitutively activated signaling that likely 
result in cytokine independent growth (see Regulating factors of hematopoiesis) 
[77,102,105]. The driver mutations in MPN, seen in ∼90% of patients, all affect the 
JAK-STAT signaling pathway and most commonly occur in JAK2 and CALR and more 
seldom the thrombopoietin receptor gene MPL [105-108].  

Myelodysplastic/myeloproliferative syndromes 

Hematological malignancies with unique clinical features overlapping with MDS and 
MPN, i.e. the concurrent overlap of dysplasia and an excessive expansion of mature 
cells in one or more myeloid lineages, are classified as a group of disorders which are 
termed MDS/MPN (Figure 2) [77]. Several genetic alterations associated with other 
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myeloid neoplasms have to be excluded in order to meet a diagnosis of MDS/MPN, 
such as BCR-ABL1, PCM1-JAK2, and gene fusions involving, PDGFRA, PDGFRB, 
and FGFR1 [77,109]. MDS/MPN is comprised of juvenile myelomonocytic leukemia 
(JMML), chronic myelomonocytic leukemia (CMML), atypical chronic myeloid 
leukemia (aCML), MDS/MPN-unclassifiable (MDS/MPN-U), and MDS/MPN with 
ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) that all arise in late 
adulthood, with the exception of JMML which is a RASopathy seen in infants and 
young children [77]. As a RASopathy, a majority of JMML patients have somatic 
mutations in KRAS, NRAS, or the RAS regulatory genes CBL, NF1, or PTPN11 [110]. 
PTPN11 mutations induce a JMML-like disease in mouse models and, interestingly, 
through transgenic mouse models it has been shown that a Ptpn11 mutation in non-
hematopoietic cells in the BM was sufficient to induce a hematological MPN disease 
through inflammatory processes [111,112]. 

For remaining MDS/MPN groups, aCML have recurrent mutations in SETBP1, 
ETNK1, KRAS, or NRAS, CMML have recurrent mutations in SRSF2, TET2, ASLX1, 
RUNX1, or SETBP1, MDS/MPN-RS-T is mainly associated with mutations in SF3B1, 
and MDS/MPN-U has been described to harbor recurrent mutations in JAK2, KRAS, 
and NRAS [113-120]. As for both MDS and MPN, MDS/MPN frequently progress 
to sAML. However, this is more commonly seen for JMML and CMML as compared 
to aCML and MDS/MPN-RS-T, with MDS/MPN-U being too heterogeneous to 
distinctly evaluate [109]. 

Chronic lymphocytic leukemia 

Hematological malignancies also occur in the lymphoid branch of hematopoiesis 
(Figure 1). Accumulation of clonal mature B-cells are generally classified as chronic 
lymphocytic leukemia (CLL) and is the most common type of leukemia in adults in 
Western countries [78,121]. Mature T-cell and NK-cell neoplasms also exist but are 
rare disorders [122]. Scrutinizing work has shown that virtually all cases of CLL arise 
from monoclonal B-cell lymphocytosis (MBL), a precursor disease that is similar to 
CLL but does not fulfill the defining CLL criteria [78,123,124]. CLL is a slow-growing 
disease that usually do not require any upfront treatment, but involves active 
management of symptoms such as infections, chronic immune deficiency, autoimmune 
complications, and continuous evaluation for progression to secondary acute leukemia 
[125]. However, the clinical management of CLL is changing given a number of new 
approved chemotherapeutic and targeted drugs [126]. Chromosomal aberrations are 
common in CLL and include del(13)(q14), del(11q), trisomy 12, and del(17) [127]. 
More than half of CLL patients harbor del(13)(q14) which has been suggested to 
disturb miRNA 15a and 16-1 which is proposed to influence CLL leukemogenesis 
[128,129]. The most frequently mutated genes in CLL includes SF3B1, ATM, TP53, 
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POT1, CHD2, NOTCH1 and MYD88, albeit their mutational frequencies varies along 
the clinical course of the disease [130,131]. 

Acute leukemia 

Various hematological malignancies, as mentioned above, have the risk to progress into 
secondary acute leukemia (from Ancient Greek; leukos, white and haima, blood) (Figure 
2). There is also an increased risk of developing therapy-related secondary acute 
leukemia as a consequence of chemotherapy and/or radiation therapy for prior 
neoplasms [132]. However, acute leukemia that develops without any prodrome or 
known therapeutic exposure is designated de novo acute leukemia. 

In acute leukemia, genetic aberrations in HSPCs cause excessive proliferation, arrest in 
differentiation, and the subsequent accumulation of non-functional immature blast 
cells. The blast cells display phenotypic characteristics of hematopoietic progenitor cells 
and the leukemia is classified based on their associated hematopoietic branch, i.e. acute 
lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). In some rare cases, 
acute leukemia cells display lineage markers of both lymphoid and myeloid cells and 
can then be classified as mixed phenotype acute leukemia (MPAL) [133]. Below, the 
characteristics of ALL and AML will be discussed in more detail. 

Acute lymphoblastic leukemia 

ALL is a disease that occur in both children and adults with an estimated 150 new cases 
diagnosed each year in Sweden (www.cancerfonden.se). However, a majority of cases 
are below 20 years of age with a peak of prevalence between the age of 2 and 5 years 
[134]. Improved treatment regimens have resulted in an overall survival that is close to 
90% in childhood ALL, whereas the overall survival for infants (<12 months of age) 
and adults (18-60 years of age) are poorer and varies with treatment protocols, being 
around 55% and 35-59%, respectively [135-137]. ALL can be of B-cell precursor 
(BCP-ALL) or T-cell lineage (T-ALL), with T-ALL being a less common but more 
aggressive entity, accounting for about 15% of childhood and 25% adult ALL cases 
[138]. ALL is further comprised of several entities commonly defined by distinct 
somatic genetic alterations [139]. Common genetic alterations in ALL include 
aneuploidy (i.e. numerical chromosome changes), chromosomal rearrangements (either 
deregulating gene expression or, more commonly, creating chimeric fusion proteins), 
gains or deletions of genomic bases, and single nucleotide variations (SNVs) in the 
genome [140]. The prevalence of various genetic alterations alters with age and the 
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presence of a specific genetic alteration is a crucial factor for the diagnosis and prognosis 
in patients [77,138]. 

Genetic alterations in BCP-ALL 

The most common genetic alterations in childhood BCP-ALL include 
t(12;21)(p13;q22), generating the ETV6-RUNX1 fusion, and high hyperdiploidy 
(HeH, 51-67 chromosomes) each accounting for around 25-30% of cases, and both 
are generally associated with a favorable prognosis (Article IV) [141-143]. These 
alterations are considerably less frequent in adults (Figure 3) [144]. The mechanism by 
which ETV6-RUNX1 is involved in leukemogenesis is still unclear. However, both 
ETV6 and RUNX1 are transcription factors important for normal hematopoietic 
differentiation and it has been hypothesized that ETV6-RUNX1 serves as an initial 
genetic event that generates a pre-leukemic clone susceptible for secondary 
transforming events [145,146]. The most common secondary event involves the loss of 
the non-rearranged ETV6 allele (77% of cases), but also includes other cytogenetic and 
submicroscopic deletions [146-149]. The pathogenic impact of the numerical changes 
in HeH is not clear, although it is likely linked to the resultant changes in gene dosage 
which would help explain the non-random gains of certain chromosomes [150,151]. 
In adults, Ph-positive BCP-ALL constitutes around 24% of cases but it is more 
uncommon in children, only accounting for an estimated 3% (Article IV) [144]. 
Chromosomal aberrations involving 11q23 that results in KMT2A (previously MLL) 
rearrangements (KMT2A-R) accounts for a majority (79%) of BCP-ALL in infants, but 
is also seen in children (7%) and adults (15%) (Article IV) [144,152]. KMT2A-Rs are 
discussed in more detail below (see Rearrangements of the KMT2A gene). Other well-
known chromosomal abnormalities in BCP-ALL are t(1;19)(p23;q13) and 
der(19)t(1;19)(p23;q13) resulting in the fusion gene TCF3-PBX1 [134,153]. TCF3-
PBX1 is associated with a more mature pre-B phenotype and was initially associated 
with poor prognosis but new treatment regimens have improved the outcome of these 
patients [154]. Both TCF3 and PBX1 are important transcription factors in 
lymphopoiesis and TCF3-PBX1 upregulate the expression of components in the pre B-
cell receptor whose signaling is suggested to play a part in the oncogenic process [155]. 
Other recurrent, but less common cytogenetic alterations in BCP-ALL includes near-
haploid (21-31 chromosomes), low hypodiploid (32-39 chromosomes), high 
hypodiploid (40-43 chromosomes), and near-diploid (44-45 chromosomes) [134]. 

Until recently, an estimated 25% of childhood and even more of adult BCP-ALL, 
lacked a risk stratifying cytogenetic alteration [156]. However, recent genome-wide 
studies have been able to establish new subtypes of BCP-ALL that often exhibit distinct 
gene expression profiles (GEPs) and diverse, often cryptic, genetic alterations. Of these, 
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Figure 3. Common genomic alterations in BCP-ALL and AML 
Structural- and numerical chromosomal changes are hallmarks of leukemia and many serve as important diagnostic 
markers. Some of these chromosomal changes are disease-specific while others are more promiscous and the 
prevalence of different genetic alterations vary with age. These diagrams depict a approximate summation of 
chromosomal alterations in infant-, pediatric-, and adult BCP-ALL and AML [144,152,157-160]. 

the most prevalent includes leukemias that are Ph-negative but that display GEPs 
similar to that of Ph-positive BCP-ALL, appropriately termed Ph-like or BCR-ABL1-
like BCP-ALL [161-164]. Ph-like BCP-ALL is seen from 10% in childhood- to 27% 
in adult BCP-ALL and has, in 91% of cases, been shown to harbor genetic alterations 
that activate kinase signaling [165]. Additionally, we and others recently showed that 
deregulation of the double-homeobox transcription factor DUX4, mainly seen through 
juxtapositioning to the IGH locus, is seen in 3-7% of childhood and young adult BCP-
ALL (Article IV) [166,167]. These cases also commonly harbor intragenic deletions of 
ERG. Further, we recently discovered a new subtype comprising 3% of our cohort of 
pediatric BCP-ALL, termed ETV6-RUNX1-like, with GEP similar to cases harboring 
ETV6-RUNX1 without carrying the actual fusion but that instead harbored deletions 
of ETV6 and IKZF1 (Article IV). Importantly, these newly identified genetic alterations 
can be used to aid in the diagnostic process and to risk classify patients. 

Genetic alterations in T-ALL 

Around half of cases with T-ALL harbor rearrangements that juxtapose the T-cell 
receptor loci (mainly TRA and TRD at 14q11 and TRB at 7q34) to central transcription 
factors in normal T-cell development, such as TAL1, TLX1, TLX3, LMO2, and MYB. 
Two other hallmarks of T-ALL include deletion of the CDKN2A/CDKN2B loci, 
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observed in 70-80% of T-ALL, and activating mutations of NOTCH1, seen in more 
than 50% of cases [168-170]. A third of patients harbor in-frame fusions with 
MLLT10-PICALM, KMT2A-MLLT1, and ABL1-NUP214 being the most frequent. 
Sequence mutations are seen at a mean of 16 per case in T-ALL and the most 
commonly mutated genes include FBXW7, PHF6, PTEN, USP7, and DNM2 [170]. 

ETP-ALL is a subtype of T-ALL which constitute around 15% of cases and is 
characterized by a reduced immunophenotypic expression of T-cell markers (CD1a, 
CD3, and CD5) and aberrant expression of myeloid and stem cell markers (CD13, 
CD33, CD34, and CD117) [171]. Genetically, ETP T-ALL is characterized by 
mutations in active signaling (e.g. NRAS, KRAS, FLT3, IL7R, JAK1, and JAK3), 
transcription factors of hematopoiesis (GATA3, ETV6, RUNX1, IKZF1, and EP300), 
or in epigenetic regulators (EZH2, EED, SUZ12, and SETD2) [172]. 

Acute myeloid leukemia 

AML is the most common type of acute leukemia with an estimated 350 new cases 
diagnosed each year in Sweden (www.cancerfonden.se). As for ALL, AML occur both 
in children and adults but in contrast to ALL, it is instead associated with older age 
with 43% of patients being >65 years of age [173]. Albeit incurable 50 years ago, AML 
still has an overall bad prognosis with cure rates of 35-40% in patients ≤60 years and 
5-15% in patients >60 years of age [174]. Whole genome sequencing has emphasized 
the complex and evolving genetic heterogeneity in AML [158,175]. Similar to other 
hematological malignancies, the underlying somatic and causative genetic alterations of 
AML are instrumental in the classification of different AML entities [77]. 

Genetic alterations in AML 

Emerging data assembled from several high-throughput sequencing studies have 
generated a comprehensive catalogue of AML-associated genes [158,176]. This have 
led to an increased understanding of how single- and combinations of genetic 
alterations affect prognosis in AML [158,174,177,178]. Transcriptional and 
epigenomic studies have also been able to emphasize AML subtypes with prognostic 
differences based on GEP and DNA methylation patterns [179-181]. 

Around 53-59% of adult AML patients harbor chromosomal abnormalities of which 
about a third includes recurrent cytogenetic changes that define specific AML entities 
[77,158,177]. These include t(15;17)(q24;q21) encoding PML-RARA, 
t(8;21)(q22;q22) encoding RUNX1-RUNXT1 (also known as AML1-ETO), 
inv(16)(p13q22)/t(16;16)(p13;q22) encoding CBFB-MYH11, t(6;9)(p23;q34) 
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encoding DEK-NUP214, t(9;11)(p22;q23) encoding KMT2A-MLLT3, 
inv(3)(q21q26)/t(3;3)(q21;q26) which affect GATA2 and MECOM regulation, and 
t(1;22)(p13;q13) encoding RBM15-MKL1 [77]. Chromosomal changes are more 
common in younger patients and their frequencies vary with age (Figure 3) [157,158]. 
PML-RARA is a hallmark of acute promyelocytic leukemia (APL), a disease 
characterized by an abnormal accumulation of immature promyelocytes. The prognosis 
of APL has significantly improved after the introduction of all-trans-retinoic acid [182]. 
Leukemias with chromosomal rearrangements involving CBF and RUNX1 are 
collectively known as core-binding factor (CBF) AML. These rearrangements perturb 
the normal regulation of hematopoiesis by CBF and/or RUNX1, creating a pre-
leukemic clone [183,184]. Secondary genetic events in CBF AML are likely required 
for overt leukemia and these likely involve activating mutations in NRAS, KIT, FLT3, 
KRAS, PTPN11, and/or NF1 in a majority of cases [185]. Beside activating mutations, 
a clear pattern of co-occurring mutations (including DHX15, ZBTB7A, and ASXL2) 
have been shown to distinguish RUNX1-RUNXT1 from CBFB-MYH11 AML [185]. 
Genetic rearrangements involving KMT2A will be discussed in more detail below (see 
Rearrangements of the KMT2A gene). Of these cytogenetic alterations, t(8;21), 
inv(16)/t(16;16), and t(15;17) are generally associated with favorable prognosis, t(9;11) 
generally associated with intermediate prognosis, and inv(3)/t(3.3) and t(6.9) generally 
associated with adverse prognosis [182,186]. However, several other chromosomal- and 
genetic abnormalities also influence risk stratification in AML [186].  

In addition to chromosomal rearrangements, SNVs are a prominent feature of AML, 
especially in cytogenetically normal AML (CN-AML). The Cancer Genome Atlas 
project was the first comprehensive study of AML, i.e. performing WGS and whole-
exome sequencing (WES) of a total of 200 patients. This project identified 23 genes 
that were recurrently mutated, including FLT3, NPM1, CEBPA, DNMT3A, IDH1, 
IDH2, TET2, and RUNX1 [158]. Small insertions and deletions within these genes are 
also common in AML, with internal tandem duplications (ITD) in FLT3 being the 
second most common mutation in AML [176]. A large recent study including over 
1500 AML patients was able to unambiguously distinguish 11 classes of AML, with 
distinct clinical phenotypes and outcomes, solely based on the molecular landscape 
[176]. Another study identified a specific mutational pattern of sAML and mutations 
in these genes (SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2) 
were present in therapy-related AML or elderly de novo AML these leukemias presented 
clinicopathological features of sAML [187]. 
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Temporal order of mutations 

Acute leukemia constitutes a heterogeneous collection of diseases that are both complex 
and dynamic despite having a low number of mutations, as compared to other cancers 
[188]. The complexity originates from the presence of multiple influential somatic 
driver mutations, existence of coexisting leukemia clones with distinct genetic setups, 
and their evolvement over time [158,175,176,178,189]. Successive accumulation of 
mutations is seen as a central step in the development of overt leukemia and typically, 
one genetic lesion has been believed insufficient for full leukemic transformation. 
Despite the proposed multi-step process in leukemia, a unifying mutational pattern 
underlying leukemia development is lacking because of the complex distribution of 
genetic lesions in leukemia. Also, the need of cooperation lesions is perhaps not always 
required for the emergence of leukemia, depending on the specific genetic alterations 
involved and cellular context [190]. In addition, the ability of leukemias to evolve and 
adapt to conventional and targeted therapy by clonal evolution allowing the emergence 
of a therapy-resistant subclone and/or the acquisition of additional mutations, is a 
major clinical challenge. 

Rise of leukemia 

The term “cell of origin”, here also known as leukemia initiating cell (LIC), is used in 
leukemia to define the cell in which the first and initiating genetic alteration occurred. 
Given that additional genetic lesions often are needed for overt leukemia, the LIC 
might not necessarily be the cell that is actually transformed. Also, the LIC is not the 
same as leukemia stem cells (LSC) (transformed cells having leukemia maintaining or 
repopulating capabilities) although they are often used as interchangeable terms, usually 
given that LSCs are functionally defined by engraftment potential in immunodeficient 
mice (leukemia initiation). Preferably, however, these terms should be used separately 
in order to distinguish the initial LIC, and LSCs as a population able to maintain or 
repopulate leukemia [191]. 

Although HSCs repeatedly have been suggested as the cell in which the initial genetic 
event occurs, this might not always be the case for subsequent genetic alterations (see 
Hematological malignancies). Interestingly, normal HSC behavior change with age, with 
older HSCs being more myeloid-biased as opposed to immunophenotypically identical 
HSCs in younger individuals [192]. Therefore, it is possible that, although the LIC in 
theory is the same regardless of age, older individuals might hold an inherent bias 
toward developing myeloid hematological malignancies. This could to some extent 
explain the discrepancy in ALL and AML distribution seen for pediatric and adult cases 
of acute leukemia. If true, this could also influence if an additional hit is needed and, 
if so, which cooperating genetic lesions that are needed for overt leukemia. 
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Initially, human LSCs were viewed as a small population within the heterogeneous 
bulk of leukemia cells with immunophenotypic characteristics of normal HSCs in 
AML [193-195]. However, refined methodology later revealed defined LSCs in 
populations sharing immunophenotype with committed progenitors [196,197]. This 
was later supported by a large study of 100 AML patients (de novo-, refractory-, 
relapsed-, and secondary AML) in which LSC populations were traced to either a 
LMPP-like or GMP-like leukemic population [198]. These LSC populations 
transcriptionally resembled their normal counterpart, expressed certain self-renewal 
expression modules, and a retained hematopoietic hierarchy structure in that 
leukemic LMPPs could give rise to leukemic GMP and not vice versa [198]. Gene 
expression analysis have identified a “stemness” signature that is shared between 
LSCs and healthy HSCs and high expression of this signature correlated to poor 
prognosis [199,200]. Combined, this suggest that either LSCs are committed 
progenitors that aberrantly acquire self-renewal capacity or that they initially 
originate from HSCs and progress into LSCs upon faulty differentiation into 
committed progenitors. 

Progression from pre-leukemic to acute leukemia 

Insight into the order of acquired mutations has been well studied in adult CN-AML. 
Even before the discovery of CHIP, it has been suggested that mutations in genes that 
participate in epigenetic regulation serve as an initial event and generate pre-leukemic 
HSPCs. Early mutations in AML is believed to mainly occur in genes responsible for 
DNA methylation (e.g. DNMT3A, IDH1/2 and TET2) and chromatin modification 
(e.g. ASXL1). These mutations are implied to arise in HSCs, given the multipotency 
and long durability of these cells over time, and to confer increased fitness over normal 
HSCs lacking the mutation [86]. However, CHIP clones can also remain stable at 
relatively low fractions for several years [81]. Further evidence of the emergence of these 
mutations in HSC is based on the immunophenotype of these cells, their increased 
fitness in xenotransplantation models, the fact that they remain present in remission, 
and syngeneic mouse models of affected genes [84-86,201-203]. The pre-leukemic 
HSPCs are in turn susceptible to additional somatic mutations commonly affecting 
genes that are involved in proliferative processes, such as NPM1 and FLT3, and arise 
in or transform committed progenitors [85-87]. The chance of developing AML when 
harboring a CHIP mutation increases with the size of the pre-leukemic clone and it has 
been proposed that if the CHIP clone constitutes >10% of the hematopoietic cells the 
risk of developing AML is 1% per year [81]. 

Chromosomal rearrangements in acute leukemia are generally seen as early or initial 
events. Using monozygotic twins and neonatal biosamples, chromosomal 
rearrangements have been shown to occur prenatally in pediatric leukemia [204]. Of 
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these, at least ETV6-RUNX1 is said to be insufficient to initiate leukemia by itself and 
rather serve as an initial hit that requires additional genetic lesions (see Genetic 
alterations in BCP-ALL). Other chromosomal rearrangements shown to occur 
prenatally in pediatric leukemia includes HeH, RUNX1/RUNXT1 and KMT2A-R 
[205-212]. Interestingly, KMT2A-Rs have been suggested to in themselves be sufficient 
for the development of overt leukemia in infants. The basis would be their short pre-
clinical latency, high concordance rate for BCP-ALL in monozygotic twins, and that 
KMT2A-Rs seem to be the only leukemia-wide genetic lesion seen in some patients 
[190,213]. However, further studies are needed to confirm if this holds true and also 
the importance of the cellular context. 

In adult lymphoid leukemia, CLL-associated mutations have been found in primitive 
non-lymphoid HSCPs with myeloid potential in CLL patients, indicating the presence 
of a leukemia-preceding population [89]. Most cases of CLL is considered to be 
preceded by MBL (see Chronic lymphocytic leukemia). Noteworthy, “healthy” HSCs 
from CLL patients are lymphoid-primed and repeatedly established MBL in xenograft 
mouse models, which indicate that secondary mutations are required for the 
progression from MBL to CLL [88].  

Emergence of subclones 

The emergence of somatic mutations is linked to cell division and DNA replication 
due to slight intrinsic deficiencies in DNA replication and repair mechanisms. The 
mutational rate varies regionally throughout the genome and is influenced by factors 
such as transcriptional levels, chromatin organization, and replication timing [214-
217]. Different mutational signatures have been described which are caused by specific 
DNA maintenance defects or mutagens [188]. In general, many mutations in both ALL 
and AML are caused by cytosine>thymine transitions, believed to result from 
spontaneous deamination of 5-methyl-cytosine. This mutation signature have strong 
correlation with age, implying that these mutations accumulate at a steady rate during 
life [188]. However, they have also been suggested to be influenced by proliferation 
rate [218]. ALL is also associated with a mutational signature linked to aberrant activity 
of APOBEC cytidine deaminases [188]. These enzymes normal function is to convert 
cytidine to uracil and they are involved in antibody affinity maturation and antiviral 
response [219]. 

When a mutation that confers a selective advantage has occurred in leukemia, it creates 
a population carrying a distinct genetic profile and is then known as a subclone. A 
classical model of subclone progression follows a linear route in which 
sequentialaccumulation of genetic alterations establishes increasingly fit leukemia 
clones that replace their ancestors through selective sweeps (Figure 4) [220]. However, 
several  high-throughput sequencing  studies  have highlighted a greater  complexity in  
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Figure 4. Clonal evolution in leukemia 
The acquisition of additional genetic alterations lead to the establishment of distinct leukemia subclones. The 
evolvement of these clones is proposed to follow either of two paths, linear- or branching evolution. Linear evolution is 
defined by the establishment of sequential dominant clones through selective sweeps of subclones with increased 
fitness. Branching evolution on the other hand display an architecture of multiple leukemia clones with divergent 
evolution. 

the clonal architecture of leukemia, which predominantly display clonal evolution 
through a branching pattern (Figure 4) [170,175,176,189,213,221-223]. In this 
scenario, multiple subclones co-exist within the bulk of leukemia cells and possibly 
compete for ascendency. Given the motile nature of the hematopoietic cells and lack of 
the physical confinements seen in solid tumors, a linear evolution would be anticipated, 
since lack of spatial restriction should enable unrestrained clonal evolution. However, 
the predominance of branching evolution in leukemia implies more intricate 
interactions between different leukemia subclones. 

From diagnose to relapse 

Chemotherapy applies a vast amount of stress on leukemia cells and resistance to 
treatment has been thought to emerge in response to therapy [224]. Although this 
might hold true in some cases, more recent studies have highlighted the presence of the 
relapse clone already at the time of diagnosis in both ALL and AML 
[189,213,222,223]. Despite scrutinizing work comparing diagnostic and relapse 
samples it has been hard to distinguish any apparent patterns predicting the mutational 
basis that prevail treatment. Therefore, at diagnosis, a relapse-causing clone can appear 
either as a small subclone with additional mutations not seen in other clones, or as 
dominant clone lacking mutations seen in other clones, or vice versa (subclone lacking 
mutations seen other clones or dominant clone harboring additional mutations not 
seen in other clones). 

Using functional studies, leukemia clones within a single patient has been shown to 
exhibit distinct differences in phenotype, such as repopulating capacity in 
immunodeficient mice [225-227]. Further, it was shown through longitudinal ultra-
deep sequencing that leukemia subclones respond differently to conventional- and 
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targeted therapy [228]. A study of eleven AML patients suggested the presence of two 
different types of relapse causing populations, either a small population of primitive 
and possibly dormant LSCs, said to share properties with normal HSCs (such as self-
renewal capacity and quiescence causing relative resistance to standard 
chemotherapeutic agents), or a larger bulk of blast cells displaying a transcriptional 
stemness-signature [87,194,195]. In line with this, an LSC transcriptional signature 
and engraftment potential in immunodeficient mice, a defining criteria of LSCs, have 
been shown predict adverse prognosis in patients [200,229,230]. However, evidence 
for the presence of a defined LSC population is lacking for BCP-ALL. Whereas LSCs 
in AML have been shown to be enriched in certain immature immunophenotypic 
populations, prospective “LSCs” in BCP-ALL are found throughout 
immunophenotypic maturing populations at similar frequencies [231]. This 
complicates the biology of relapse and suggests that biological mechanisms that go 
beyond genetics are important, and further studies are needed to decipher the relation 
between specific genetic aberrations to transcriptional, epigenetic, and functional 
profiles. 

Genetic rearrangements of the KMT2A gene 

Epigenetic modifications are important for the establishment and maintenance of 
transcriptional memory during hematopoiesis [232]. By adding or removing 
modification of histones and DNA it is possible to control the chromatin architecture 
and accessibility, and in turn influence gene expression through the recruitment of 
transcriptional activator or repressor complexes. The importance of epigenetic 
regulators and their prominent role in hematopoiesis is reflected by the high prevalence 
of dysregulation of such genes in hematological malignancies. 

The Histone-lysine N-methyltransferase 2A (KMT2A) gene encodes a histone 
methyltransferase, and rearrangements involving KMT2A are commonly seen in ALL, 
AML, therapy-related AML and MPAL [233]. KMT2A-R are seen in all ages of acute 
leukemia with the highest frequency in ALL patients younger than one year of age, so 
called infant ALL (Figure 3) [233]. Infant ALL is characterized by KMT2A-R and an 
exceedingly poor prognosis [152,234]. Based on monozygotic twins with concordant 
leukemias having clonal chromosomal breakpoints of their KMT2A-R and the 
identification of the KMT2A-Rs in Guthrie card samples have provided evidence that 
KMT2A-Rs can arise prenatally, suggesting a high susceptibility KMT2A-Rs in prenatal 
hematopoietic cells [205-210]. 
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Normal function of KMT2A 

KMT2A is a member of the trithorax-group (trxG) of genes that positively influence 
gene transcription, as opposed to transcriptional repressive polycomb genes, in a 
manner that is heritable through multiple cell divisions [235]. This enables KMT2A to 
impact cell identity and plasticity and transgenic mouse models have indicated that 
Kmt2a plays an essential role in both the emergence of HSC during embryogenesis as 
well as in the maintenance of HSPCs throughout adult life [236-241]. The key 
transcriptional targets of KMT2A includes the HOX gene cluster. The HOX genes play 
an essential role during embryonic development, and their transcription is positively 
regulated by KMT2A-mediated histone 3 lysine 4 (H3K4) methylation [242-244]. 
Ectopic expression of Hox genes can revert the phenotype caused by a lack of Kmt2a, 
as opposed to other Kmt2a targets such as Pitx2 and Bcl-2, emphasizing their 
importance in Kmt2a biology [245]. In line with this, loss of Hoxa9 impair HSPC 
function [246,247]. 

KMT2A is a nuclear protein with a complex domain structure which is proteolytically 
cleaved by Threonine aspartase 1 into two subunits, one N-terminal (KMT2AN) and 
one C-terminal (KMT2AC) [248,249]. The two subunits are physically associated 
through intramolecular interactions mediated between the two interaction motifs 
FYRN, located at KMT2AN, and FYRC, located at KMT2AC (Figure 5). The KMT2AN 
encompasses several domains involved in DNA binding, including three short AT-
hooks (ATH1-3), a Cysteine-n-n-Cysteine zinc-finger (CxxC) domain, and four plant 
homology domains (PHD) which also includes a bromodomain [250-253]. As opposed 
to the KMT2AN, KMT2AC contains domains involved in transcriptional regulation 
including a domain that recruits the histone acetyltransferase CREB-binding protein 
(CBP) that is a positive regulator of transcription and the Su(var)3-9, enhancer of zeste, 
trithorax (SET) domain that is responsible for the H3K4 methyltransferase activity of 
KMT2A [242,243,254]. 

The methyltransferase activity of KMT2A requires several additional proteins (WDR5, 
RbBP5, and ASH2L) which combined creates a large nuclear complex [243,255,256]. 
However, most of these protein interactions are dependent on sequences that are lost 
in KMT2A-Rs and therefore lack functional contribution for KMT2A fusion proteins 
(Figure 5). Additional proteins have also been suggested to aid in the localization of 
KMT2A to the DNA, with one of the more prominent being MENIN that binds to 
the very N-terminal of KMT2AN [257-260]. In the absence of MENIN, both wild-
type KMT2A as well as KMT2A fusion proteins fail to regulate HOXA9 transcription 
[258]. Another interaction partner that is preserved between normal KMT2A and 
KMT2A fusion proteins is Polymerase Associated Factor complex (PAFc). PAFc has 
been shown to be essential for proper DNA targeting of KMT2A [261,262]. Thus, 
while large parts of the protein are lost in the formation of the KMT2A-R, some of its 
normal function is still retained. 
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Figure 5. The KMT2A protein 
The KMT2A protein is a histone methyltransferase with multiple conserved domains. After translation, KMT2A is 
processed through proteolytic cleavage, resulting in a N-terminal and C-terminal subunit which physically associate 
through the FYRN- and FYRC domains. The genomic breakpoints in KMT2A-Rs are concentrated just before the first 
PHD domain. 

Fusion partners in KMT2A-R leukemia 

Although 135 different translocations partners to KMT2A have, as of date, been 
identified, only eight of these (AFF1, MLLT3, MLLT1, MLLT10, ELL, MLLT4, 
EPS15, and MLLT11) accounts for >90% of all KMT2A-Rs [233]. Many KMT2A-
fusion genes can be found in both lymphoid and myeloid disease, however, some show 
a clear lineage preference including KMT2A-AFF1 in ALL and KMT2A-ELL in AML 
(Figure 6). Further, the distribution of different KMT2A-R varies with age, for example 
with increased frequency of KMT2A with a partial tandem duplication (KMT2A-PTD) 
in older AML patients and increased frequency of KMT2A-AFF1 in adult ALL (Figure 
6). Further, individual KMT2A-Rs can have a predictive impact on prognosis 
[177,263,264]. In infant KMT2A-R BCP-ALL it is possible to subdivide different 
KMT2A-Rs based on their GEP [213,265]. 

Despite the vast number of KMT2A translocation partners, biochemical studies have 
highlighted two unifying groups; nuclear translocation partners (NTP) involved in 
transcriptional elongation and cytosolic translocation partners (CTP) likely causing 
dimerization of the KMT2A part of the fusion protein [266-270]. Of these, NTPs 
constitute more than 80% of KMT2A-R cases and include AFF1, MLLT3, MLLT1, 
MLLT10, MLLT6, ELL, AFF4, and AFF3 [233]. This suggest that the loss of proper 
transcriptional regulation is one of the major molecular mechanisms behind KMT2A-
R leukemogenesis. NTPs have been shown to be part of either the DOT1-like histone 
lysine methyltransferase (DOT1L) complex or the AF4 family/ENL family/P-TEFb 
(AEP) complex (also known as super elongation complex) that both impact 
transcriptional initiation and maintenance [266-268,270-272]. 

The DOT1L complex is mainly composed of DOT1L and the NTPs MLLT1, 
MLLT3, MLLT10, and MLLT6 [267]. DOT1L is an epigenetic modifier and the only 
enzyme known to mono-, di-, or trimethylate histone 3 lysine 79 (H3K79) [273]. These  
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Figure 6. KMT2A fusion partners and their distribution through age and disease 
Several fusion partners have been identified in KMT2A-R leukemia, but only a handful of these accounts for a majority 
of cases. Some fusion partners are restricted to either lymphoid- or myeloid leukemia, while others can be found in both. 
Further, the frequency of the various fusion partners varies with age and leukemia type [233]. 

modifications correlate with active transcription and a chromatin state that is protected 
against histone deacetylase-dependent gene silencing [274-276]. The importance of 
DOT1L in KMT2A-R leukemogenesis has been shown through genetic ablation of 
Dot1l which abrogated the leukemogenic potential of KMT2A-MLLT3 and KMT2A-
MLLT10 in mouse leukemia models [277-281]. Further, a therapeutic compound 
targeting the function of the DOT1L complex has shown promising effects in 
experimental models of KMT2A-R leukemia, and is currently in clinical studies 
[274,282]. 

The AEP complex is a multifaceted transactivator that promote both activation and 
elongation of transcription [283-286]. AEP complex consist of different subcomplexes 
that involve different NTPs (AFF1, AFF4, AFF3, MLLT1, MLLT3, and ELL) 
[270,284,287]. Another member of AEP is the bromodomain-containing protein 4 
(BRD4), which recognizes acetylated chromatin and facilitates genomic localization 
and transcriptional elongation of the AEP complex [288,289]. BRD4 is required for 
KMT2A-R leukemia maintenance and inhibitors targeting BRD4 have shown high 
efficacy in numerous KMT2A-R AML preclinical models [290,291]. Further, it has 
recently been shown that the DOT1L complex and AEP complex has interconnected 
and cooperating functionalities, thereby creating a connection between these two 
complexes [292,293]. 

CTPs lack intrinsic transcriptional activity and include ESP15, GAS7, SH3GL1, 
AFDN, and FOXO4 which together constitutes around ∼10% of KMT2A-R cases 
[233]. Although the CTPs lack any functional similarity, they possess a common 
structural feature, a coiled-coil domain that facilitates the dimerization of the KMT2A 
part of the fusion proteins. Removal of the coiled-coil domains in CTPs abolish their 
oncogenic potential and the CTP-dependent dimerization of KMT2A [294]. However, 
the first study corroborating the pathological impact of KMT2A dimerization was a 
knock-in mouse of KMT2A-LacZ which developed acute leukemia [295]. The 
underlying mechanism was ascribed multidimerization of KMT2A due to the LacZ 
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gene, which encodes for ß-galactosidase that spontaneously di- or oligomerize in 
solution. In line with this, inducible dimerization of truncated KMT2A has been shown 
to block hematopoietic differentiation in a reversible fashion and to upregulate 
expression of KMT2A-R target genes such Hoxa7, Hoxa9, and Meis1 [294,296]. The 
mechanism through which dimerized KMT2A alters gene expression is still unknown. 

KMT2A-PTD involves the duplication of selected exons which duplicates the ATH1-
3 and CxxC domains and, in contrast to all KMT2A-Rs, the retention of the KMT2AC 
domains (Figure 5) [297]. The transforming mechanism of KMT2A-PTD is largely 
unknown. However, one study have suggested that the PTD increases the affinity of 
KMT2A to target loci [296]. Indeed, a knock-in mouse of Kmt2a-PTD displayed high 
expression of Hoxa7, Hoxa9, and Hoxa10 [298]. In addition, KMT2A-PTD has been 
suggested to be associated with DNA hypermethylation [299]. 

Target cell of KMT2A-R transformation 

Most of our knowledge of the LIC- and LSC biology in KMT2A-R leukemia is derived 
from mouse models. Forced expression of KMT2A-MLLT1 or KMT2A-MLLT3 has 
shown that HSCs are not the only target cell for leukemia transformation and that it is 
sufficient to introduce KMT2A-Rs in GMPs to cause leukemia [300,301]. By 
combining GEPs from GMP-like LSC and normal HSPCs, it was further shown that 
the transformed progenitor cells harbored activation of a self-renewal signature [301]. 
However, transplantation of sorted GMPs expressing endogenous levels of Kmt2a-
MLLT3 failed to initiate leukemia [302]. More recently, sorted pure populations of 
various HSPC from inducible knock-in mice expressing endogenous-like levels of 
KMT2A-MLLT1 showed that while e.g. GMPs, granulocyte-monocyte-lymphoid 
progenitors (GMLPs, similar to human LMPPs/MLPs), and CLPs were able to initiate 
leukemia, HSCs were intrinsically protected against transformation [303]. This is in 
contrast to a similar study in which KMT2A-MLLT3 was shown to establish disease 
both from GMPs and LT-HSCs, with a more aggressive disease stemming from LT-
HSC [304]. Other studies using less refined methodology have also proposed HSCs as 
potent LICs in KMT2A-R leukemia [300,302,305,306]. Given that modelling of LIC 
formation includes ex vivo handling of HSPCs, which likely phenotypically influence 
the populations of interest, further studies are needed to determine possible LIC origins 
among different KMT2A-Rs. 

The need for differentiation into progenitors seem important for LIC formation. 
C/EBPα is myeloid transcription factor necessary for the formation of GMPs and 
genetic knock-out of Cebpa ablated the ability of both KMT2A-MLLT1 and KMT2A-
MLLT3 to initiate leukemia [306-308]. Although it still remains elusive whether or not 
the LIC in KMT2A-R is a HSCs and/or a committed progenitor and if it differs 
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between KMT2A-Rs, differentiation seem to play a pivotal role in KMT2A-R 
leukemogenesis. 

The molecular impact of KMT2A fusion proteins 

Numerous large studies have found transcriptional characteristics of KMT2A-Rs in 
acute leukemia (Article IV) [167,179,309-312]. In addition, several studies have 
confirmed that the key transcriptional targets of KMT2A-Rs are the genomically 
clustered HOXA homeobox genes and their interacting partners MEIS1 and PBX3 
[301,313-316]. Experimental models based on both human- and mouse cells have 
demonstrated the importance of Hoxa/HOXA and Meis1/MEIS1 expression in 
KMT2A-R driven leukemogenesis [317-319]. In addition, forced overexpression of 
Hoxa9 results in enhanced hematopoietic expansion but rarely in leukemia [320,321]. 
On the other hand, combined overexpression of Hoxa9 and Meis1 readily induce 
leukemia similar to that seen in KMT2A-R models [321]. An unbiased study of primary 
human samples implied that the presence of a KMT2A-R in AML do not result in 
overexpression of HOXA genes, but rather stabilizes them at levels seen in normal 
HSPCs [322]. 

It is unclear if additional KMT2A-R target genes, besides HOX genes, MEIS1, and 
PBX3, are actually required for leukemia initiation. Chromatin immunoprecipitation 
sequencing (ChIP-seq) studies have shown that KMT2A-Rs only have about 140-490 
confirmed binding targets [281,323,324]. This is strikingly low given that normal 
KMT2A can be found at many or most active promoters [325]. One recent ChIP-seq 
study detected substantial difference in the overlap between target genes of Kmt2a and 
KMT2A-MLLT3 and their associated genomic positions, proposing that they are 
recruited to the DNA by different mechanisms [326]. Interestingly, sustained 
expression of wild-type Kmt2a is required for the initiation and maintenance of 
KMT2A-R leukemia, suggesting an intricate cooperation or dependence between the 
two [327]. The role of a number of potential “non-classical” targets have been assessed 
through experimental studies and thereby been implemented as contributors in 
KMT2A-R leukemia initiation. These genes include CDK6, EYA1, JMJD1C, MECOM 
locus (involving the genes EVI1 and MDS1), and MEF2C [328-334]. EVI1 has further 
been suggested to be more highly expressed in KMT2A-MLLT3 AML cells established 
from HSCs as compared to those originating from GMPs and high levels of EVI1 
associated with poor prognosis in human AML [305,335,336]. 

The subordinate transcriptional targets of KMT2A-R target genes remain more elusive. 
However, one gene suggested to be highly upregulated in response to Hoxa9 and Meis1 
coordinated transcriptional activity is Myb [337]. Myb is an multifaceted transcription 
factor that regulates self-renewal and differentiation in hematopoietic HSPCs [338]. 
Myb has been shown to be required for KMT2A-R leukemogenesis, emphasizing it as 
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an important oncogenic factor [337,339]. MYB has several transcriptional targets 
which can be divided into three groups; housekeeping genes, cell-type specific genes, 
and genes associated with oncogenesis, the latter including MYC [340]. MYC-
associated signatures are often observed in KMT2A-R leukemias [341,342]. Overall, 
the GEP of KMT2A-R leukemias share large similarities to hematopoietic progenitor 
cells but with an aberrant self-renewal signature [301,305,342]. 

Cooperating lesions in KMT2A-R leukemia 

A number of recent sequencing efforts have increased our knowledge of co-occurring 
lesions in KMT2A-R acute leukemia [176,213,343-345]. This have revealed that 
almost half of infant KMT2A-R BCP-ALL and adult KMT2A-R AML cases have 
mutations in genetic pathways that are part of kinase/PI3K/RAS signaling (hereafter 
referred to as activating mutations) as determined by WGS, WES, and/or targeted deep 
sequencing [158,213,346]. The presence of an activating mutation has been suggested 
to correlate with inferior prognosis in infant KMT2A-R ALL, but not in adult KMT2A-
R AML [213,343,344]. Activating mutations are also frequent events in non-KMT2A-
R acute leukemia and in pediatric acute leukemia in general, and activating mutations 
seem to be more common in younger patients as compared to older children of young 
adults [157,170,176,347]. Mutations in epigenetic regulators other than KMT2A are 
common in non-infant pediatric KMT2A-R patients (45%), with most of these 
mutations being found in non-infant KMT2A-R ALL, but such genes are rarely 
mutated in infant KMT2A-R ALL patients (14%) [213]. However, larger collected 
studies are needed in order to gain full insight of the full complement of co-occurring 
genetic lesions in KMT2A-R leukemia and their distribution throughout age and 
genetic subtype. 

In infant KMT2A-R ALL, most of the activating mutations are subclonal, as 
determined by mutant allele frequencies (MAFs) <30% [213]. These activating 
mutations are not mutually exclusive but rather, multiple activating mutations at 
varying MAFs can be found in a single patient, suggesting the presence of multiple low-
frequency leukemia clones [213,345]. The high incidence of activating mutations 
combined with the fact that some KMT2A-R patients carry multiple clones with 
different activating mutations indicates a high selective advantage for these mutations. 
When assessing clonal evolution in paired diagnostic-relapse samples in infant and 
pediatric ALL it has been shown that a leukemia clone containing an activating 
mutation may increase, be maintained in size, decrease in size, be lost, or gained at 
relapse [213,222,223]. Little is known if, or how, different clones influence each other 
in leukemia. However, in solid cancer models, cells from distinct genetic clones have 
been proposed to non-autonomously influence one another and thereby impact cell 
proliferation, drug resistance, and metastasis in these tumors [348-352]. 
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Several studies using mouse models of KMT2A-R leukemia have emphasized the 
cooperative impact of activating mutations in leukemogenesis (see Mouse models of 
KMT2A-R leukemia), but none has investigated the biological impact of a subclonal 
activating mutation in KMT2A-R leukemogenesis (Article II). Moreover, relatively 
little is known with regards to the molecular processes that are dysregulated in the 
presence different cooperating genetic lesions in KMT2A-R leukemia (Article II and 
III). 

Mouse models of KMT2A-R leukemia 

Animal models of human disease are indispensable tools for our understanding of 
pathobiological mechanisms and therapeutic evaluation of existing and novel 
treatments. The mouse is the leading mammalian model organism given that it is cost-
effective, genetically uniform due to inbred animals, sharing 85% similarity to human 
protein-coding sequences, and has a short life cycle. An applicable mouse model needs 
to at least recapitulate key aspects of the disease phenotype. Several different models of 
KMT2A-R leukemia recapitulating important human pathological features have been 
established. Based on the methodology, these models can be categorized into five 
groups; transgenic mice expressing KMT2A-Rs, engraftment of virally transduced 
mouse cells into recipient mice, engraftment of human patient-derived samples into 
immunodeficient recipient mice, engraftment of human cell lines into 
immunodeficient recipient mice, and engraftment of virally transduced or genetically 
engineered primary human cells into immunodeficient recipient mice. Each approach 
varies in their scope of use and comes with different strength and weaknesses. Most 
models have focused on modelling KMT2A-AFF1, KMT2A-MLLT1, and KMT2A-
MLLT3, which are among the most common KMT2A-Rs in acute leukemia, but other 
KMT2A-Rs have also been assessed (Figure 6). 

Transgenic mouse models 
One of the earliest mouse model of KMT2A-R leukemia was the establishment of a 
transgenic knock-in mouse harboring Kmt2a-AF9 controlled by the Kmt2a 
transcriptional control elements [353]. Homozygous mice died of embryonic lethality 
but chimeric and heterozygous mice developed mainly AML with a only few mice 
presenting with B-ALL [353,354]. Later, more sophisticated conditional translocator 
models were established of both Kmt2a-Mllt1 and Kmt2a-Mllt3 in which the Kmt2a-
R was driven by lineage specific Cre expression [355,356]. When Kmt2a-Mllt1 and 
Kmt2a-Mllt3 was initiated in primitive HSPCs (Lmo2-Cre), mice developed myeloid 
leukemia but when they were initiated in T-cells (Lck-Cre) both myeloid- and T-cell 
malignancies were observed but only for Kmt2a-Mllt1 [355,357]. This both suggests 
that Mllt1 and Mllt3 are functionally different and that the cell of origin can influence 
the leukemia phenotype. Further discrepancies between KMT2A-MLLT1 and 
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KMT2A-MLLT3 were shown through the establishment of inducible transgenic mouse 
models. By purifying distinct hematopoietic populations, it was shown that KMT2A-
MLLT3 can initiate disease from both LT-HSC and more committed progenitors (i.e. 
GMPs), with a more aggressive disease phenotype when induced in LT-HSCs, whereas 
KMT2A-MLLT1 only was able to establish disease when induced in committed 
progenitors (e.g. GMLPs, GMPs and CLPs) and not in primitive cells (LT-HSC and 
MPPs) [303,304]. Transgenic mice with Kmt2a-AFF1 have also been established, both 
a knock-in model and a conditional invertor model [358,359]. Both models resulted 
in B-cell lymphomas rather than leukemic malignancies as seen for Kmt2a-Mllt1 and 
Kmt2a-Mllt3 [358,359]. However, through engraftment of transgenic cells induced ex 
vivo to express Kmt2a-AFF1, recipient mice developed mainly AML but also pro-B 
ALL and rare cases with biphenotypic leukemia [360]. A knock-in mouse model of 
KMT2A-PTD has also been established through the introduction of a PTD in the 
endogenous Kmt2a locus, however, these mice do not develop disease but overexpress 
Hoxa genes and exhibit increased numbers of HSPCs [298]. 

Syngeneic transduction models 
Several studies have used retroviral delivery of a KMT2A-R in order to study its 
leukemogenic effect in engrafted recipient mice. Among the KMT2A-Rs studied are 
KMT2A-AFF1/AFF1-KMT2A, KMT2A-MLLT1, KMT2A-MLLT3, KMT2A-
MLLT10, and KMT2A-ELL [301,361-365]. Of these five fusion genes, four (KMT2A-
MLLT1, KMT2A-MLLT3, KMT2A-ELL, and KMT2A-MLL10) resulted in AML 
upon direct transplantation of transduced cells [301,361,363,365]. Using pre-culture 
in B-cell promoting conditions, KMT2A-MLLT1 was later shown be able to induce B-
ALL with myeloid morphology and combined expression of lymphoid- and myeloid 
specific genes, although this study only included a limited number of mice [366]. 
KMT2A-AFF1 leukemia has been difficult to model in vivo, however, when co-
expressed together with its reciprocal fusion partner AFF1-KMT2A engrafted mice 
developed pro-B ALL or MPAL with leukemias being biphenotypic for either B/T-cell 
markers or B/Myeloid cell markers with low penetrance and long latency [362]. 
Noteworthy, forced expression of solely AFF1-KMT2A was also able to initiate disease 
[362]. Later, expression of KMT2A-Aff1 was shown stably induce AML in mice, 
ascribed to higher viral titers when using mouse Aff1 [367]. 

Retroviral models have several caveats such as non-physiological gene dosage, risk of 
insertional mutagenesis, and need for ex vivo manipulation. Knock-in mouse models 
would therefore seem like a more physiologically appropriate approach. However, such 
models are time-laborious, phenotypically sprawling, and many fail to recapitulate the 
leukemia phenotype seen in patients, which at times make them ineffective for directed 
research questions. It is possible that retroviral models display enhanced ability to 
transform different strenuous HSPCs and thereby establishing diseases with varying 
levels of aggressiveness with GEPs that resemble human prognostic subgroups 
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[304,305]. Also, retroviral mouse models are able to simulate chemotherapy-resistance 
as commonly seen for KMT2A-R patients [368]. 

Xenograft models 
Although mouse models are instrumental for expanding our biological understanding 
of KMT2A-R leukemogenesis, they lack the correct cellular context. A first attempt to 
address this employed retroviral delivery of both KMT2A-MLLT1 and KMT2A-
MLLT3 in primary HSPCs derived from umbilical cord blood (CB) with subsequent 
engraftment of NOD.Cg-PrkdcscidB2mtm1Unc (NS-B2m) immunodeficient mice 
conditioned by sublethal irradiation [369]. In this model KMT2A-MLLT1 induced 
exclusively BCP-ALL whereas KMT2A-MLLT3 induced mainly BCP-ALL but with a 
subset of mice presenting with AML [369]. This is in contrast to what is seen in the 
syngeneic setting. KMT2A-MLLT3 was also studied in NOD.CB17/Prkdcscid (NS) mice 
designed to express high levels of the human cytokines SCF, Granulocyte macrophage 
colony-stimulating factor (GM-CSF), and IL-3 (NS-Tg(CMV-
IL3,CSF2,KITLG)1Eav; NS-SGM3) and then exclusively induced AML [370]. In that 
study, none of the NS or NS-B2m mice engrafted with CB cells expressing KMT2A-
MLLT3 developed AML [370]. Further, lymphoid- or myeloid ex vivo manipulations 
were shown to affect the leukemic immunophenotype when engrafted in NS or NS-
B2m [370]. Forced expression of KMT2A-MLLT3 in adult HSPCs derived from BM 
is suggested to skew them into a myeloid lineage in NS or NS-Il2rgtm1Wjl/SzJ (NSG), 
although the engraftment potential of these cells is very low [371]. Early attempts of 
modelling KMT2A-AFF1 in transduced human CB cells failed to initiate leukemia in 
NSG mice [372]. It was later suggested that the human AF4 cDNA sequence interfered 
with virus production and by utilizing KMT2A-Aff1 it was possible to efficiently induce 
BCP-ALL in NSG mice [367]. The BCP-ALL induced by KMT2A-Aff1 resembled pro-
B-cells both at the immunophenotype- and molecular level, as opposed to BCP-ALLs 
induced by KMT2A-MLLT3, which more closely resembled pre-B-cells [367]. 

Novel approaches using different genome editing techniques to engineer the KMT2A-
R directly into the KMT2A locus has recently been performed. The first used 
transcription activator-like effector nucleases to introduce KMT2A-MLLT1 and 
KMT2A-MLLT3 in CB cells. Engraftment of these cells in NSG mice resulted 
exclusively in BCP-ALL for KMT2A-MLLT1 and mainly in BCP-ALL or MPAL for 
KMT2A-MLLT3 and only rarely in cases of AML [373]. The second approach 
introduced KMT2A-MLLT1 into CB cells using a CRISPR-Cas9 vector system which 
resulted in an AML-like disease in NSG mice constitutively expressing the human 
cytokines SCF, GM-CSF, and IL-3 (NSG-Tg(CMV-
IL3,CSF2,KITLG)1Eav/MloySzj; NSG-SGM3), albeit only a limited number of mice 
were included [374]. 

Through immunodeficient mice it is also possible to engraft KMT2A-R patient 
samples. Engraftment of KMT2A-R BCP-ALL samples are usually efficient in NS and 
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NSG mice and several studies have utilized this as preclinical models to assess the 
therapeutic potential of novel treatment modalities [375-377]. The establishment of 
patient derived xenograft repositories of genetically defined samples will likely improve 
the evaluation of future therapies in KMT2A-R leukemia [378]. 

Mouse models involving cooperating lesions 
Given the high prevalence of mutations causing constitutively active signaling in 
KMT2A-R acute leukemia, many studies have focused on combining KMT2A-Rs with 
different genetic alterations causing enforced activation of signaling pathways in various 
mouse models. 

Only few studies have explored solely transgenic mouse models when assessing 
cooperation between KMT2A-Rs and additional genetic changes. One of these, 
highlighted the impact of Flt3ITD for complete AML transformation in the presence of 
Kmt2a-PTD [379]. By combining transgenic mice overexpressing KMT2A-AFF1 with 
mice harboring activated KrasG12D it was shown that their offspring displayed 
accelerated development of lymphoid leukemia and/or lymphoma [380]. Another 
study employed the use of the transgenic Kmt2a-MLLT3 mice and combined it with 
mouse harboring a repressible NRASG12V, which resulted continuous dependency of 
NRASG12V for AML maintenance [381]. A similar approach, crossed mice expressing 
inducible levels of KMT2A-MLLT1 with mice having endogenous expression of 
KrasG12D, which resulted in accelerated development of AML [382]. For KrasG12D driven 
T-ALL, induction of KMT2A-MLLT1 expression increased disease penetrance [382].  

Several studies have utilized syngeneic transduction models when evaluating the 
combinatorial effect of specific genetic alterations and a KMT2A-R. These have 
combined KMT2A-MLLT1 with NRASG12D and FLT3ITD, KMT2A-MLLT3 with 
FLT3ITD, NRASG12D and PTPN11E76K, KMT2A-SEPT6 with FLT3ITD and NRASG12V, 
and KMT2A-MLLT10 with PTPN11S503A, all of these models show an accelerated 
disease process in the presence of an activating mutation [368,383-388]. The use of the 
transduction methodology has also enabled assessment of genetic cooperation between 
activating mutations and KMT2A-Rs in human cells. Although a rather unexplored 
field, co-expression of KRASG12V and KMT2A-MLLT10 enable transformation of CB 
cells leading to development of AML in immunodeficient mice [389]. The same effect 
was, however, not seen when combining constitutively active FLT3 with KMT2A-
AFF1 in NSG mice [390]. Further, KMT2A-MLLT3 have been suggested to cooperate 
with both NRASG12D and FLT3ITD and result in reduced disease latency of human CB 
AML mouse models [391]. 

Although activating mutations have been extensively shown to cooperate with KMT2A-
Rs in many studies, their full biological effect is still not known. KMT2A-R leukemia 
is mainly a disease caused by improper transcriptional activation, however, the 
molecular impact of additional mutations is not well established. Further, the 
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significance of subclonal signaling mutations, often seen in patients, is lacking in mouse 
models of KMT2A-R leukemia. How do such mutations impact leukemogenesis? Also, 
given the big impact of cooperating lesions and long latency of certain KMT2A-Rs 
raises the need for investigating the potential presence and impact of unknown de novo 
mutations in these models. Improving our knowledge about how genetic alteration 
cooperate in KMT2A-R leukemogenesis has been one main focuses of this thesis 
(Article II and III). 
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Present investigation 

The focus of this thesis has been to utilize advances in high-throughput sequencing in 
order to characterize hematological malignancies with high resolution in both primary 
patient material and in leukemia mouse models. Through the identification of genetic 
lesions and malignant signatures, we had three main objectives we sought to achieve; 

 
 
• Describe the causative genetic lesions in a rare primary hematological 

malignancy and the genetic alterations that were associated with disease 
progression in order to explore alternative therapeutic strategies (Article I). 

 

• Assess the biological and molecular impact of genetic cooperation between 
specific leukemia-associated genetic alterations through murine and human 
experimental model systems (Article II and III). 

 

• Define the gene fusion landscape of pediatric BCP-ALL (Article IV). 
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Results and discussion 

Article I 

Genomic profiling and directed ex vivo drug analysis of an unclassifiable 
myelodysplastic/myeloproliferative neoplasm progressing into acute myeloid leukemia 
Hematological malignancies presenting with both myelodysplasia and disproportionate 
proliferation constitute a separate category in the World Health Organization 
classification of myeloid malignancies [77]. This category of myeloid malignancies can 
be further divided into subgroups, but when lacking clear clinical and molecular 
characteristics they are compiled into an “exclusion” entity known as MDS/MPN-U 
[77,109]. Although some efforts have been made into defining the mutational 
pathogenesis of MDS/MPN-U, a unifying signature is lacking due to the rarity and 
heterogeneity of this complex disease [113,115-117]. In addition, little is known about 
the genetic changes that are associated with disease progression. In this study, we 
wanted to define the complement of genetic lesions in a young woman that initially 
presented with an MDS/MPN-U that rapidly progressed to AML and study the genetic 
lesions that were associated with clinical progression. Routine clinical genetic 
diagnostics had failed to identify any underlying genetic lesions and we therefore 
performed single nucleotide polymorphism (SNP) array and WES to detect somatic 
copy number changes and SNVs. Both the MDS/MPN-U and AML sample were 
analyzed in order to establish the genetic lesions associated with progression. Given that 
the patient presented with two extramedullary relapses at separate occasions after initial 
AML diagnosis, she was at high risk of a future BM relapse. We therefore assessed the 
therapeutic potential of a set of clinically approved compounds, based on the patient´s 
genetic lesions, and performed an ex vivo drug analysis. 

Results in short 
• We identified and validated a total of 12 coding genetic lesions including 

KMT2A-PTD, DNMT3AR882H, and NRASG13D. 
• All of the genetic lesions were present already at MDS/MPN-U diagnosis at 

comparable MAFs as at AML diagnosis. 
• Ex vivo drug analysis suggested that the patient could benefit from treatment 

with the proteasome inhibitor Bortezomib or the MEK inhibitor Trametinib. 

The patient harbored AML-associated genetic aberrations 
Using SNP array, we identified a single copy number change in the AML sample, which 
was a KMT2A-PTD. Validation using RT-PCR revealed that the KMT2A-PTD was 
present already at MDS/MPN-U diagnosis and that it involved an in-frame duplication 
of exon 2-8. The KMT2A-PTD is normally associated with older aged AML patients, 
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but can also be found in MDS, albeit at lower prevalence [392]. A recent study of 85 
KMT2A-PTD patients identified mutations in well-defined oncogenic drivers for 
>90% of patients and with mutations in the epigenetic regulators DNMT3A, IDH1/2, 
and TET1/2 in >77% of patients [393]. Activating mutations were also identified in a 
majority of these patients (68%), but tended to be subclonal [393]. Given that 
KMT2A-PTD usually persist in relapse and that DNMT3A, IDH1/2, and TET1/2 
could be detected at clinical remission in a number of patients, it was proposed that 
epigenetic mutations are a likely initial event (as for CHIP), with KMT2A-PTD being 
subsequent early cooperating lesion, and activating mutations being later events 
[393,394]. In line with this data, we identified an additional 11 non-silent SNVs, 
including DNMT3AR882H and NRASG13D in our patient by WES. All identified 
mutations were present both in the MDS/MPN-U and AML samples at similar MAFs 
indicating that the malignant clone that progressed to AML was already established at 
initial MDS/MPN-U diagnosis. The genetic lesions identified in this study could 
potentially be used to monitor disease status of the patient. 

The AML sample displayed possible sensitivity toward targeted therapy 
The patient has had two extramedullary relapses following her AML diagnosis and is 
therefore at high risk for a future BM relapse. AML cells are difficult to keep alive in 
culture, but using a culture protocol optimized to maintain AML cells ex vivo, we 
performed a small targeted drug analysis with FDA approved compounds based on the 
patients underlying genetic lesions [395,396]. The compounds included two 
chemotherapeutics initially given as induction therapy (Cytarabine and Daunorubicin), 
as well as Bortezomib and Voriniostat that have been suggested to confer a high efficacy 
in infant KMT2A-R B-ALL, Trametinib which has been suggested to exhibit high 
efficacy in KMT2A-R leukemia carrying mutant RAS, and the hypomethylating agent 
Decitabine, suggested to improve prognosis for MDS and AML patients carrying 
DNMT3A mutations [345,397-401]. Our analyses showed that the patient cells were 
sensitive towards Trametinib and Bortezomib, suggesting that she may benefit from 
treatment with these compounds at a future BM relapse. Another compound which 
was not included, not being FDA approved, but that have shown high efficacy in 
KMT2A-PTD experimental models is the DOT1L inhibitor EPZ004777 [402]. 

General conclusion 
This study highlights the potential clinical benefit of performing comprehensive 
genomic characterization of the full spectra of genetic lesions in hematological 
malignancies. 
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Article II 

De novo activating mutations drive clonal evolution and enhances clonal fitness in 
KMT2A-rearranged leukemia 
KMT2A-Rs are a common feature of infant ALL, a patient group with particularly poor 
prognosis. These patients have an overall low frequency of additional genetic lesions, 
but still, a high frequency of them harbor activating mutations (47%) in 
kinases/PI3K/RAS signaling pathways [213]. A majority of these activating mutations 
are found at a subclonal level (MAF <30%), indicating that they are secondary to the 
KMT2A-R [190,213]. Interestingly, the leukemic clone harboring the activating 
mutation is often reduced in size at relapse, and sometimes even lost, suggesting that 
these mutations mutations confer a proliferative advantage during leukemia onset, but 
that they are not required for leukemia maintenance in the context of KMT2A-Rs 
[213,344]. We assessed the role of activating mutations in KMT2A-R leukemogenesis 
by using retroviral bone marrow transplantation assays, in which the KMT2A-MLLT3 
fusion gene was combined with either FLT3ITD, FLT3N676K, or NRASG12D. Mutations in 
these genes are among the most common ones that deregulate signal transduction in 
AML. Further, to determine the biological impact of subclonal mutations, we 
optimized the co-transduction in order to establish leukemia subclones containing 
FLT3N676K. Molecular analyses including gene expressions profiling, quantitative 
proteomics, and targeted deep sequencing were performed to characterize the resultant 
mouse leukemias as a way to increase our understanding on how KMT2A-R develop 
and best can be treated. 

Results in short 
• Co-expression of FLT3ITD, FLT3N676K, or NRASG12D significantly accelerate 

KMT2A-MLLT3 leukemogenesis. 
• Presence of subclonal FLT3N676K also accelerates disease latency, a majority of 

these subclones were selected for in secondary recipients. 
• De novo mutations in Braf, Cbl, Kras, and Ptpn11 were identified in KMT2A-

MLLT3 cells lacking forced expression of an activating mutation. 
• Activating mutations enforce KMT2A-R associated gene signatures. 
• The pro-inflammatory cytokine Mif increases the survival of KMT2A-R 

leukemia cells and is upregulated in the presence of an activating mutation. 

Activating mutations cooperate with KMT2A-MLLT3 
Recipients engrafted with cells expressing either of the activating mutations in 
combination with KMT2A-MLLT3 succumbed to disease at a significant shorter 
disease latency than those engrafted with cells expressing solely the KMT2A-R. This is 
in line with previous studies that have demonstrated a cooperating interplay between 
KMT2A-Rs and activating mutations [368,379-381,385-387,389]. However, this was 
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the first time, to the best of our knowledge, that a tyrosine kinase domain mutation in 
FLT3 have been shown cooperate with a KMT2A-R. Interestingly, when performing 
secondary transplantations of these leukemic cells all recipients displayed a significantly 
shorter disease process than their primary counterpart, with the most apparent 
reduction in latency seen for leukemias expressing only KMT2A-MLLT3. This could 
imply that the impact of an activating mutation is most substantial during disease 
initiation, rather than for its maintenance. 

Subclonal FLT3N676K accelerates AML onset 
By optimizing the co-transduction and altering the ratio between the cells expressing 
KMT2A-MLLT3+FLT3N676K and those expressing only KMT2A-MLLT3, we were able 
to generate KMT2A-MLLT3 leukemia subclones harboring the FLT3N676K mutation. 
Engraftment of these cells revealed that a subclonal activating mutation was sufficient 
to influence disease latency, by accelerating disease onset. Infant ALLs harboring 
KMT2A-AFF1 exhibit a similar trend, in that an activating mutation confer a worse 
prognosis irrespective of their clonal size and the presence of an activating mutation 
also correlates to an average younger age at diagnosis, suggesting that they impact 
disease latency [213,343]. The same phenomena has been described for CLL patients 
where subclonal mutations have an impact on prognosis [403-405]. The reason for the 
reduced latency in the presence of a subclonal activating mutation is unclear, especially 
given that leukemia clones with activating mutations regularly disappear after treatment 
and therefore are not the cause of relapse. One explanation could be that the presence 
of subclone is a risk factor reflecting a more aggressive pathological phenotype, e.g. 
increased genetic instability, cell-cycle rate, or invasiveness, of leukemia cells. However, 
experimental studies using mouse and Drosophila melanogaster have shown that distinct 
solid tumor clones harboring Ras mutations can provide soluble factors that support 
the growth of separate cancer clones [348-352]. KMT2A-MLLT3 leukemia cells co-
expressing FLT3N676K exhibited significantly higher cell-cycle rate, and secondary 
transplantations revealed that FLT3N676K subclones expanded to clonal dominance in 
most cases. However, one primary FLT3N676K subclone failed to expand in secondary 
recipients, suggesting that a competing somatic clone with a selective advantage had 
ascended from remaining KMT2A-MLLT3 leukemia cells. 

KMT2A-MLLT3 cells acquire de novo mutations involved in signal transduction  
In order to determine if somatic mutations in relevant genes had occurred during 
leukemogenesis and clonal evolution in secondary recipients, we performed targeted 
resequencing of 41 genes, associated with human KMT2A-R leukemia, on 92 mouse 
KMT2A-MLLT3 leukemias with or without activating mutations. This analysis 
revealed that de novo activating mutations had occurred in Braf, Cbl, Kras, and in 
Ptpn11. Only Ptpn11 was recurrently mutated. Notably, all these mutations occurred 
in KMT2A-MLLT3 leukemia cells lacking a constitutively expressed activating 
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mutation. This suggest that there is a lack of any further selective advantage for an 
additional activating mutations in the presence of a strong signaling mutation. In one 
leukemia with a de novo subclonal KrasG12D, which gained clonal dominance in the 
secondary recipient, fluorescence in situ hybridization analysis revealed a continued 
clonal evolution at the Kras locus with chromosomal gain of the Kras locus in subclones 
constituting 40% of the leukemia. This indicate that gene dosage of mutant Kras and/or 
its ratio toward wild-type Kras confer increased competitive fitness. The same 
phenomena was recently shown in a different mouse model of AML which highlighted 
that increased KrasG12D gene dosage further drove leukemic outgrowth, but that loss of 
wild-type Kras rendered the leukemia more sensitive toward MAPK inhibition, 
suggesting increased oncogenic dependence on this pathway [406]. One de novo 
mutation, CblA308T, occurred in a leukemia with a subclonal FLT3N676K mutation that 
failed to expand in secondary recipients. Instead, the identified CblA308T had gained 
clonal dominance upon secondary transplantation, implying that it had outcompeted 
the FLT3 mutant subclone. Combined, this suggests that the acquisition of de novo 
activating mutations is limited during high clonal burden of a mutation that confer 
constitutively active signal transduction, and that changes in mutant gene dosage can 
further modulate the fitness of a leukemic clone harboring a signaling mutation. 

Activating mutations enforce gene programs associated with KMT2A-R  
By gene expression profiling and quantitative proteomics we could show that activating 
mutations further enforce signatures commonly assigned to KMT2A-Rs. These 
included Myb- and Myc gene programs that previously have been linked to leukemia 
maintenance and self-renewal in KMT2A-R leukemogenesis [339,341,342,388]. The 
role of MYC in self-renewal has been intensively debated and it has been suggested that 
Myc signaling activates dormant HSCs and drives differentiation and proliferation of 
progenitors [341,407]. We could also show that both the Myb- and Myc signatures 
were more associated with committed myeloid progenitors rather than HSCs or MPPs 
and it is therefore possible that these signatures reflect a highly proliferative progenitor 
state instead of self-renewal. 

KMT2A-MLLT3 leukemias lacking an activating mutation, on the other hand, 
displayed evident expression and translation of genes involved in intracellular signaling 
pathways. It is possible that high expression of parts of signaling pathways might 
represent contributing oncogenic event and/or could explain the high prevalence of 
mutations of such genes in KMT2A-R leukemia, indicating that interference of 
intracellular signaling might be an effective therapeutic approach also in leukemias 
lacking an activating mutation [345,399]. Caution is, however, warranted when 
targeting a specific pathway, given that alternative pathways might exert compensatory 
signals. Therefore, kinase inhibition might be more beneficial as a combinatorial 
treatment. 
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Mif is upregulated in the presence of an activating mutation 
From the expression data we could show that KMT2A-R leukemias with an activating 
mutation upregulated the pro-inflammatory cytokine Mif. Previous work have shown 
that the absence of Mif delays leukemia development in a CLL mouse model [408]. 
Further, it was recently shown that primary human AML secrete MIF which stimulates 
stromal cells to secrete IL-8, which in turn promotes survival of AML cells [409]. MIF 
is also known to suppress P53-induced apoptosis [410,411]. In line with this we could 
show that MIF improved the survival of KMT2A-MLLT3 leukemia cells ex vivo. 
Therefore, it is possible that elevated levels of Mif are provided by KMT2A-R leukemia 
cells harboring an activating mutation, and that exogenous Mif supports 
leukemogenesis of leukemia cells lacking such a mutation. 

General conclusion 
This study demonstrates the immense biological and molecular autonomous and non-
autonomous impact of activating mutations in KMT2A-R leukemia. Understanding 
the mechanistic interplay between genetic alterations will be instrumental for 
improving the treatment of KMT2A-R leukemia. 

Article III 

FLT3N676K drives myeloid leukemia in a xenograft model of KMT2A-MLLT3 
leukemogenesis 
KMT2A-Rs are found in ALL, AML and MPAL, however, the frequency of different 
fusion partners varies between leukemia type and age. One fusion partner that is found 
in both BCP-ALL and AML is MLLT3 [233]. Although syngeneic mouse models are 
able to recapitulate KMT2A-MLLT3 driven AML, this model lack lymphoid potential. 
Conversely, xenograft models of human KMT2A-MLLT3 leukemia display a high 
lymphoid bias and only stably exhibit myeloid potential in immunodeficient mice 
expressing nonphysiological levels of certain human cytokines [367,370]. The cell 
autonomous and/or non-autonomous cues underlying the decisive rise of either ALL 
or AML in KMT2A-R leukemia remains elusive. Several primary AML samples have 
been shown to contain a primitive population similar to LMPPs, suggesting the 
presence of leukemia progenitors with lymphoid and myeloid potential. Further, 
immunophenotypically distinct leukemia cells have previously shown to switch lineage 
affiliation in response to forced exposure to certain lineage factors [367,370]. Increased 
understanding of the elemental processes determining lineage commitment in leukemia 
is needed, not the least given recent advancements in immunotherapy targeting lineage 
markers in leukemia [412]. In this study, we investigated the impact of the FLT3N676K 
mutation in KMT2A-MLLT3 driven leukemogenesis in human hematopoietic cells and 
characterized the resultant leukemia populations. 
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Results in short 
• FLT3N676K drives myeloid expansion in a human KMT2A-R leukemia model. 
• CD19+CD33+ KMT2A-R leukemia cells share high GEP resemblance to 

KMT2A-R ALL cells. 
• KMT2A-R ALL cells are more sensitive toward SMAD inhibition compared 

to KMT2A-R AML cells and sensitizes the cells towards glucocorticoid 
treatment. 

• KMT2A-MLLT3 leukemia cells are immunophenotypically plastic. 

FLT3N676K drives myeloid expansion of KMT2A-MLLT3 leukemia cells 
Engraftment of KMT2A-MLLT3 expressing human CB cells in immunodeficient NS, 
NS-B2m, or NSG mice commonly results in the establishment of CD19+ ALL. We 
could show that concurrent expression of FLT3N676K and KMT2A-MLLT3 strongly 
promoted the expansion of myeloid leukemia cells in NSG mice. The strong lymphoid 
bias when modeling normal hematopoiesis and KMT2A-R leukemia in human cells in 
these mouse systems, together with myeloid potential of KMT2A-MLLT3 leukemia 
cells in NS-SGM3 and NSG-SGM3 mice, suggest that FLT3N676K provide either 
deterministic and/or permissive signals allowing for the outgrowth of myeloid leukemia 
cells [10,367,369,370]. 

By separate survival analysis of ALL and AML leukemias, with or without the presence 
of FLT3N676K, we could show that AML samples displayed a significantly more 
aggressive phenotype in mice. This pattern is not seen for infant leukemia, were 
KMT2A-R BCP-ALL are associated with a slightly more dismal prognosis than 
KMT2A-R AML [152,234,413]. This could highlight that infant leukemia, which 
likely arise in ontogenically younger hematopoietic cells than CB, are phenotypically 
different to those established in our model system. It could also reflect shortcomings of 
the mouse as a host in mirroring the human hematopoietic environment. Nevertheless, 
our data illustrate the biological impact of co-occurring genetic lesions in KMT2A-R 
leukemia. 

Immunophenotypically distinct leukemia populations display specific GEPs 
Our xenograft samples enabled the isolation of lymphoid-, myeloid-, and dual-
phenotypic (DPL, expressing both lymphoid and myeloid surface markers) leukemia 
populations. Global gene expression analysis showed that, as expected, ALL and AML 
cells, respectively, expressed befitting lineage specific genes. Interestingly, DPL cells 
shared high GEP resemblance with ALL, suggesting that DPL may originate from the 
same ancestor as ALL and thus aberrantly express myeloid surface markers. 
Interestingly, all leukemia populations exhibited an evident expression of the myeloid 
transcription factor CEBPA. Using publically available expression data of normal 
human populations, CEBPA was seen to be expressed in myeloid cells and most HSPCs 
with the clear exception being mature B-cells and lymphoid committed CLPs. This 
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could allow for a certain retention of myeloid potential in KMT2A-R ALL cells, and 
consequently that DPL are lymphoid cells with aberrant expression of a myeloid surface 
marker potentially influenced by CEBPα. 

The expression data also allowed us to unravel disparities of potential importance in 
signaling pathway activity between KMT2A-R ALL and AML cells. This highlighted 
possible differences in SMAD signaling between lymphoid and myeloid leukemia 
populations, which could be further corroborated in a gene expression dataset of 
primary infant and pediatric BCP-ALL and AML [213]. The use of a SMAD3 specific 
inhibitor in cell lines revealed that KMT2A-R BCP-ALL cells displayed increased 
sensitivity to such treatment as compared to KMT2A-R AML cells. This emphasize the 
differences in reliance on certain signaling pathways between lymphoid and myeloid 
leukemia cells. Another well established example of this is the clinical beneficial efficacy 
of glucocorticoid treatment in BCP-ALL that is not seen in for AML patients [414]. 
Further, glucocorticoids have been shown to interfere with SMAD signaling and we 
could show that SMAD3 inhibition enhanced glucocorticoid sensitivity in both 
sensitive and resistant KMT2A-R BCP-ALL cells [415]. 

KMT2A-MLLT3 leukemia cells are immunophenotypically plastic 
Both KMT2A-MLLT3 and KMT2A-AFF1 cells have been described to possess an 
inherent lineage promiscuity [367,370]. Using a similar approach of ex vivo 
manipulation, we could show that BCP ALL, DPL and AML cells all possessed a 
limited but distinct ability to express a surface marker of the opposite lineage. In 
contrast to what have been described for human cells transformed in vitro, our in vivo 
established leukemia cells appeared more lineage restricted, proposing an increased 
complexity in the regulation of lineage plasticity beyond external factors [370]. 
Combined with the myeloid expansion seen in the presence of FLT3N676K in vivo, this 
would suggest that external factors play more of a permissive role in KMT2A-R lineage 
determination. Deciphering the decisive mechanisms of lineage affiliation in KMT2A-
R leukemia will be instrumental for our biological understanding of this disease. 

General conclusion 
Taken together, this study demonstrates that FLT3N676K can drive myeloid expansion 
of human KMT2A-R leukemia cells in vivo. It also highlights the molecular differences 
and similarities between lymphoid and myeloid KMT2A-R leukemia cells and imply 
distinct biological discrepancies between the two that potentially could be utilized to 
sensitize such leukemias to glucocorticoid treatment. 
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Article IV 

Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-
cell precursor acute lymphoblastic leukaemia 
Although a majority of pediatric cases of BCP-ALL harbor established genetic 
alterations that currently are used for clinical risk stratification, until recently, an 
estimated 25% could still not be classified into any defined molecular entity. 
Subdivision of BCP-ALL based on the underlying characterized genetic event have 
played an instrumental role in the improved treatment of these patients as well as for 
the development of targeted therapy. Advancements in high-throughput sequencing 
have allowed for an unbiased and scrutinizing screening of patient samples in search of 
new classifying biomarkers. Recently, a new subgroup of BCP-ALL was identified 
through a shared GEP to that of Ph-positive BCP-ALL, which was aptly termed Ph-
like BCP-ALL [161,164]. Using mRNA-sequencing we sat out to define the gene 
fusion landscape of 195 pediatric BCP-ALL. 

Results in short 
• Identification of 27 novel gene fusions in pediatric BCP-ALL. 
• Identification of a novel subtype of pediatric BCP-ALL with similar GEP to 

ETV6-RUNX1 cases and characterized by coexisting deletions of ETV6 and 
IKZF1. 

• Identification of recurrent rearrangements involving DUX4, constituting 4% 
of our cohort of pediatric BCP-ALL. 

Identification of novel fusion transcripts in pediatric BCP-ALL 
High-throughput sequencing of mRNA transcripts from 195 pediatric BCP-ALL 
identified in-frame fusion transcripts in a high proportion of the cases (65%). Of the 
remaining cases, all but four could be classified to an established or novel, identified 
herein, BCP-ALL subgroup, thus enabling classification of 98% of BCP-ALL cases. 
Most of the cases lacking an in-frame fusion were HeH (94%). Out of the identified 
and validated in-frame fusions, 27 (counting reciprocal fusions as one) fusions, most of 
which were non-recurrent, had not been described before. Many of the novel in-frame 
fusion genes found in cases lacking a genetic stratifying marker involved genes 
important for B-cell development or that are recurrently rearranged in BCP-ALL. This 
study emphasizes the significance of chromosomal aberrations in BCP-ALL and 
highlights the powerful capability of high-throughput sequencing as an unbiased tool 
for gene fusion identification. The high detection rate, low cost, and quick turnaround 
time of mRNA sequencing advocate it as a powerful clinical diagnostic approach.  
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Identification of a subset of leukemias displaying an ETV6-RUNX1-like GEP  
A recent advancement in the classification of BCP-ALL was the identification of the 
Ph-like subtype through gene expression analysis [161,164]. This subtype was shown 
to confer a poor prognosis and to be characterized by kinase-activating lesions 
[144,165]. Using comparable clustering approaches, we were able to distinguish a 
number of leukemias (3%) displaying similar GEPs to those of ETV6-RUNX1 cases. 
All these cases, termed ETV6-RUNX1-like, were confirmed to lack any molecular 
support of an ETV6-RUNX1 fusion gene as well as any other stratifying traits. Further 
comprehensive analysis revealed that this subtype harbored concurrent genetic lesions 
in ETV6 and IKZF1, two genes with important roles in normal B-cell development. 
Additional cases of ETV6-RUNX1-like BCP-ALLs have since been described, providing 
confirming independent evidence on the presence of this subtype [416]. 

Recurrent DUX4 rearrangements in patients lacking molecular stratification 
Among the novel fusion genes, we identified recurrent (4% of total cohort) 
rearrangements involving the transcription factor DUX4 (DUX4-R). All these fusion 
transcripts appeared in cases lacking established stratifying molecular markers and 
composed samples with a unique GEP. This GEP have previously been described to be 
associated with intragenic ERG deletions [163,417]. In line with this, we could confirm 
that identified DUX4-R cases commonly harbored ERG deletions (50-63%). 
Coinciding studies to our, involving pediatric and young adult BCP-ALL, also 
described the existence of the DUX4-R subgroup. These studies also provided 
functional evidence of the leukemic potential of a DUX4-R and proposed a functional 
importance of an alternative ERG transcript in this process [166,167]. 

General conclusion 
This study provides a comprehensive analysis of the fusion genes underlying pediatric 
BCP-ALL. Through the identification of new genetic subgroups and novel fusion 
genes, this will help improve current classification of pediatric BCP-ALL and provide 
new pathogenetic insight that hopefully can improve future treatment of these patients. 
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Concluding remarks 

Genetic lesions are a hallmark of hematological malignancies and the work included in 
this thesis has focused on the identification and functional characterization of 
coinciding and/or novel genomic alterations in acute leukemia.  

Different genetic alterations often co-occur in hematological malignancies. This co-
existence can center among specific genes, but also involve genetic alterations in genes 
with analogous biological functions. In line with this, we report that targeted treatment 
of a patient’s underlying mutations could serve as a beneficial clinical treatment option 
(Article I). By combining selected mutations in experimental models, we have been able 
to demonstrate and characterize the immense biological and molecular impact of this 
genetic crosstalk. Molecular signatures originating from these experimental models 
overlap with patients harboring similar genetic profiles, confirming the validity of the 
experimental models (Article II). Further, a causative genetic lesion is typically highly 
associated with the phenotype of the resultant disease. However, the processes 
underlying lineage commitment in leukemia with ambiguous genetic alterations remain 
largely unclear. We showed that the presence of an additional mutation was able to 
influence the lineage of the established leukemia, implying that faulty activation of 
certain signaling pathways can contribute to lineage determination (Article III). 

Finally, we identified novel subgroups of pediatric BCP-ALL that were linked to 
specific genetic alterations. However, future studies are needed to elucidate the 
functional effect of these genetic lesions and the importance of the co-occurring 
intragenic deletions seen in these patients, such as for ERG in DUX4-R BCP-ALL or 
for ETV6 and IKZF1 in ETV6-RUNX1-like BCP-ALL (Article IV). 

This thesis has hopefully contributed to our understanding of the biological and 
molecular crosstalk between specific genetic lesions in acute leukemia. The work also 
emphasizes the significance of deep genetic interrogation in patients and experimental 
models for full biological and diagnostic comprehension. 
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Populärvetenskaplig sammanfattning 

Leukemi är ett samlingsnamn på den typ av cancer som drabbar de blodceller som är 
en del av vårt immunförsvar. Leukemi orsakas av genetiska förändringar som uppstått 
i dessa cellers arvsmassa. Dessa förändringar rubbar cellernas normala mognadsprocess 
och orsakar en ohämmad tillväxt vilket leder till en ansamling av omogna blodceller i 
framförallt benmärgen och blodet. Därav namnet leukemi, vilket är grekiska för ”vitt 
blod”. Ansamlingen av omogna blodceller i benmärgen stör den normala 
blodbildningen och ökar risken för blodbrist, infektioner och blödningar. Beroende på 
vilken specifik celltyp som drabbas så kan leukemi delas upp i framförallt två 
undergrupper, akut lymfatisk leukemi (ALL) och akut myeloisk leukemi (AML). Av 
dessa är AML vanligast förekommande hos äldre medan ALL framförallt drabbar barn. 

De genetiska förändringar som orsakar leukemi är tätt kopplade till sjukdomsbilden 
och används därför kliniskt för att dela upp patienter i olika diagnostiska och 
prognostiska grupper. Den specifika genetiska förändringen som påvisas vid diagnos 
har därmed ofta direkt betydelse för vilken behandling patienten ges. Genom den 
senaste tidens utveckling av avancerade sekvenseringstekniker så är det nu möjligt att 
läsa av och studera leukemicellernas arvsmassa. Detta har ökat vår förståelse över 
förekomsten av återkommande genetiska förändringar vid leukemi och vilka 
kombinationer av förändringar som förekommer. Genom att förstå hur olika genetiska 
förändringar tillsammans samverkar i utvecklingen av leukemi ökar vi möjligheten att 
förbättra och utveckla behandlingsstrategier för olika typer av leukemi. 

Den övergripande målsättningen för denna avhandling har varit att öka vår förståelse 
för hur leukemi uppkommer och bäst kan behandlas. I en första studie (Artikel I) 
använde vi oss av olika typer av dessa högupplösta sekvenseringstekniker för att 
karakterisera de underliggande genetiska förändringarna hos en patient som uppvisade 
en ovanlig utveckling av AML. Genom att identifiera dessa förändringar kunde vi välja 
ut läkemedel som var skräddarsydda för just den här patienten, och sedan testa dessa 
på patientens egna AML celler för att visa att patienten skulle kunna dra fördel av riktad 
behandling vid eventuellt återfall i sjukdomen. 

Det har nyligen påvisats att en stor del av leukemi patienter med genetiska förändringar 
i KMT2A genen ofta har ytterligare genetiska förändringar i en typ av gener som 
aktiverar celldelning och förhindrar celldöd, biologiska processer som ofta är felaktigt 
aktiverade vid cancer. Genom att studera dessa specifika förändringar i KMT2A och i 
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de ”aktiverande” generna i möss, lyckades vi återskapa patienternas sjukdomsbild och 
kunde se att de genetiska förändringarna samarbetade för att skapa en extra aggressiv 
leukemi (Artikel II). Förändringarna behövde inte förekomma i samma cancercell, utan 
detta samarbete kunde ske mellan olika cancerceller som innehöll olika uppsättningar 
av förändringarna. Detta stämmer väl med vad som har observerats hos patienter, där 
den genetiska förändringen av KMT2A finns i alla sjuka leukemiceller medan de 
aktiverande förändringarna oftast endast förekommer i en mindre del av 
leukemicellerna. Vi kunde även visa att vissa möss, som initialt bara hade KMT2A 
förändringen, också spontant utvecklat egna genetiska förändringar i aktiverande gener, 
vilket framhäver hur viktiga dessa aktiverande mutationer är för utvecklingen av 
leukemi. 

Baserat på vilken celltyp som utgör en leukemi klassas den antingen som ALL eller 
AML, vilket påverkar patientens behandling och prognos. Som en utveckling av den 
föregående studien valde vi att undersöka en genetisk förändring av KMT2A 
tillsammans med en specifik mutation i en ”aktiv gen” i en musmodell av leukemi där 
sjukdomen startas i humana navelsträngsblodsceller (Artikel III). Resultaten visar att 
kombinationen av dessa genetiska förändringar gynnar utveckling av AML, till skillnad 
från ALL som framförallt utvecklas när KMT2A förändringen fanns ensam. Detta visar 
att olika uppsättningar av genetiska förändringar kan påverka vilken celltyp som 
leukemin utgörs av. Genom att odla olika leukemiska celltyper i kultur kunde vi 
dessutom visa att de kan stimuleras så att de kan uppvisa likheter med en helt annan 
celltyp. Detta antyder att leukemiska celler med en KMT2A förändring har en viss 
formbarhet när det kommer till celltyp, och att celltypen kan påverkas av både 
ytterligare genetiska förändringar och yttre faktorer. 

Vissa patienter med leukemi saknar de specifika genetiska förändringar som idag 
används för att bestämma patientens diagnos och behandling. I den sista studien 
undersökte vi därför leukemiceller från runt 200 barn med ALL med högupplösta 
sekvenseringstekniker (Artikel IV). Förutom att vi kunde identifiera redan kända 
genetiska förändringar, så upptäckte vi även två helt nya grupper av ALL. Båda dessa 
nya grupper kunde kopplas till specifika genetiska förändringar som inte var kända 
tidigare och utgjorde tillsammans nästan 10% av patienterna. Framtida studier krävs 
nu för att förstår hur de funna genetiska förändringarna bidrar till leukemiutveckling. 

Sammanfattningsvis har studierna i denna avhandling bidragit till en ökad kunskap om 
hur genetiska förändringar bidrar till leukemiutveckling, hur förekomsten av dem i 
olika celler kan påverka sjukdomen, samt hur de stör viktiga biologiska processer i 
cellerna. Förhoppningsvis kan denna informationen bidra till att bättre diagnostiskt 
klassificera patienter och, i framtiden, till utvecklingen av bättre och effektivare 
behandling av de patienter som idag fortfarande har en dålig klinisk prognos. 
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