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ABSTRACT 

DNA methylation is an important epigenetic mechanism that influences development 

and cancer by regulating gene transcription.  Aberrant DNA methylation is a feature 

of cancer including acute myeloid leukemia (AML). It was first established that 

global DNA hypomethylation combined with hypermethylation of specific gene 

promoters could often be observed as a DNA methylation signature in cancer. A 

common set of tumor suppressor genes are found consistently hypermethylated and 

silenced, suggesting that DNA methylation facilitates tumorigenesis. Lately, the more 

dynamic DNA methylation at non-CGI regions and CpG sparse regions of the 

genome has been observed, and it tightly corresponds to gene expression changes. In 

AML, highly distinctive genome-wide DNA methylation profiles have been linked to 

different molecular subtypes. It is now suspected that DNA methylation changes play 

a crucial role in AML development particularly since the identification of frequent 

somatic mutations in the DNA methylation machinery. 

 
This thesis is focused on characterizing aberrant DNA methylation changes in the 
subgroup of AML patients identified as cytogenetic normal (CN-AML). We 
described the mutation associated DNA methylation signatures for IDH and NPM1 in 
a CGI-focused analysis. We also found that PcG target genes were preferentially 
targeted by methylation changes and methylation of this group of genes predicted the 
patient clinical outcomes. In the following studies, we analyzed the DNA methylation 
in more border regions, and we classified the variably methylated CpG sites in 
correlations with genetic mutations. We found a predominant impact of DNMT3A 
mutation on determining leukemia-specific methylation patterns and such mutations 
were associated with a general hypomethylation phenotype, where HOX family was 
primarily affected. We also observed pronounced DNA methylation changes at non-
CGI regions, and these changes reflect the regulation of enhancer activity in leukemia. 
After integrating chromatin accessibility of DHS sequencing data and histone 
modification marks of H3K27ac, H3K4me1, H3K4me3 and H2A.Z with identified 
differentially methylated CpG sites, and our results show that DNA methylation 
alterations preferentially occur in regulatory regions. AML specific DNA methylation 
changes associated with altered enhancer activities, and these perturbations correlated 
with transcriptomic changes in CN-AML involving in oncogenesis and associated 
with patient prognosis.  

 

Our results provide evidence of aberrant DNA methylation in AML linked to patient 

molecular and genetic characteristics. Studying DNA methylation changes not only 

contributes to better characterizing subgroups of AML patients but also reveals 

potentially pathogenic mechanisms for AML development.   
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1.Introduction 

1.1    Epigenetics  

Every cell in the human body starts with the same genetic information, yet the body 

produces a variety of distinct cell types, all of which look and function in unique ways. 

The word "Epigenetics" was first coined by Conrad Waddington(1905-1975), who 

realized that phenotypic diversity amongst cell types could not be explained by 

genetics, given that most different cell types are genetically identical(Holliday 2006). 

Conrad Waddington stated epigenetics is "the branch of biology which studies the 

causal interactions between genes and their products, which bring the phenotype into 

being," introducing the idea of an "epigenetic landscape" which related to cell fate 

decisions during development(Waddington 1957; Waddington 1959). 

 

After Waddington, the following six decades of research into epigenetics has seen 

considerable developments in what epigenetics represents. Epigenetics has been used to 

refer to both heritable and non-heritable processes(Bird 2007). A consensus definition 

proposed at a Cold Spring Harbor meeting in 2008 suggested epigenetics was a "stably 

heritable phenotype resulting from changes in a chromosome without alterations in the 

DNA sequence"(Berger, Kouzarides et al. 2009). In a more recent study, the Roadmap 

Epigenome Project used the following definition: "epigenetics refers to both heritable 

changes in gene activity and expression (in the progeny of cells or of individuals) and 

also stable, long-term alterations in the transcriptional potential of a cell that are not 

necessarily heritable."(Skipper, Eccleston et al. 2015). Nowadays, researchers in the 

field of epigenetics study biological processes including DNA methylation, histone 

posttranscriptional modifications (histone modifications in short), chromatin 

remodeling, and non-coding RNA, which all regulate gene expression during 

development. These mechanisms play essential roles in normal development and 

disease, including hematological malignancies. 

 

1.1.1 DNA, histone, and chromatin 

There are approximately two meters in length of DNA stored in each human cell 

nucleus, which in turn is typically only six micrometers in diameter. The DNA, 

therefore, must be compacted and organized into a functional but extremely efficient 

space structure. It must also allow active transcription of the relevant genes while at the 

same time making sure unwanted genes are silent. Chromatin fulfills the requirement to 
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package, store, and regulate DNA.  The basic unit of chromatin is the nucleosome: 

146bp of DNA wrapped around an octameric protein complex consisting of histone 

proteins. Short stretches of linker DNA connect neighboring nucleosomes to one 

another like beads on a string. Chromatin is further compacted into thicker and thicker 

fibers. Euchromatin contains the part of the genome that has active genes and is 

relatively open in structure and accessible to DNA-binding factors such as transcription 

factors(Allis and Jenuwein 2016). In contrast, heterochromatin is more tightly packaged 

and contains mostly inactive regions like repetitive sequences or genes that are 

inactive(Allis and Jenuwein 2016). Chromatin dynamics are tightly regulated by post-

translational modifications of the histone proteins as well as methylation of the DNA 

itself, and the binding of transcription factors. Such regulation is in part what allows for 

the same genetic material to produce a variety of diverse cell types. 

 

1.1.2 DNA methylation and methyltransferases 

DNA methylation is a covalent chemical modification whereby a methyl group is 

added to the base cytosine or adenine(Weinberg 2014). In lower organisms, such as 

bacteria or protists, methylation occurs at either the 5' position of cytosine (5mC) or 

the 6' position of adenine (6mA)(Heyn and Esteller 2015). In vertebrates, 5mC is the 

predominant form of DNA methylation; it is assumed that 6mA is much less abundant, 

although recent studies have demonstrated that 6mA does occur in the human 

genome(Jiang, Wang et al. 2014; Wu, Wang et al. 2016). The modification of DNA 

through methylation regulates cell behavior and development(Yoder, Walsh et al. 1997; 

Zhu, Srinivasan et al. 2003; Fujimoto, Kitazawa et al. 2005; Chodavarapu, Feng et al. 

2010; Shukla, Kavak et al. 2011; Berman, Weisenberger et al. 2012; ENCODE 2012; 

Jimenez-Useche, Ke et al. 2013). 

 

In the human genome, 5mC makes up 1.5% to 2% of the total DNA and accounts for 

the majority (60% to 80%) of total CG sites(Lister, Pelizzola et al. 2009). In 

mammalian cells, the methyl group is supplied from the metabolite S-Adenosyl-

Methionine (SAM) (Takahashi, Wang et al.), and added at the 5' carbon of cytosine's 

pyrimidine ring to form 5-methylcytosine (5mC) (Figure 1). In eukaryotic organisms, 

5mC occurs symmetrically at CG dinucleotides, of which a cytosine nucleotide is 

located next to a guanidine; this is often referred to as a CpG site(Lister, Pelizzola et al. 

2009; Feng, Cokus et al. 2010). Although methylation could occur in CHG and CHH 

sites at different rates, their functions in the mammalian system remain 
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unknown(Schultz, He et al. 2015). It is thought that 5mC functions in suppressing 

transposon activity and regulating gene expression, as well as imprinting and the 

formation of heterochromatin(Mohandas, Sparkes et al. 1981; Li, Bestor et al. 1992; 

Okano, Bell et al. 1999; Jones and Liang 2009; Challen, Sun et al. 2014). One 

consequence of 5mC in the genome is that it favors the spontaneous deamination that 

results in the conversion of cytosine to uracil (U), which after DNA repair, produces a 

C>T mutation(Duncan and Miller 1980; Hitchins, Rapkins et al. 2011). Genome-wide 

studies have revealed that regions enriched with CG's are often gene promoters, of 

which CpG islands (CGI's) are often clustered(Deaton and Bird 2011; Hernando-

Herraez, Garcia-Perez et al. 2015). CGIs are defined as regions longer than 200bp 

with an expected CpG frequency more than 60% (Gardiner-Garden and Frommer 

1987). It is thought that CpG dinucleotides are globally underrepresented in the 

genome, which may be related to the deamination process in the germline(Law and 

Jacobsen 2010; He, Chen et al. 2011; Jiang, Wang et al. 2014). While, in general, CG 

sites are mostly methylated in the mammalian genome, but CGI's usually remain 

unmethylated(Illingworth and Bird 2009). It may be for the purpose of 

protection from the spontaneous mutation, and also, allowing access for transcription 

initiation. In the human genome, approximately 60-70% of genes contain CpG islands 

in their promoter regions, and many of them are so-called housekeeping genes and 

genes regulating essential developmental processes(Bird 2009; Deaton and Bird 2011; 

Smallwood, Tomizawa et al. 2011). These genes are thought to be only transiently or 

never methylated at the germline in order to ensure the maintenance of pluripotency 

during embryonic development(Smallwood, Tomizawa et al. 2011). On the contrary, 

CpG sites located in the gene body are often methylated in highly transcribed genes and 

positively correlates with gene expression(Oberdoerffer 2012). 

CpG methylation in the gene body is also related to the regulation of alternative 

splicing and the transcription of intronic repeat sequences(Lister, Pelizzola et al. 2009; 

Malousi and Kouidou 2012). The mechanisms that regulate this type of region/content-

dependent DNA methylation are not fully understood yet. One recent study revealed 

that gene body DNA methylation catalyzed by methyltransferase DNMT3B is 

regulated by local trimethylation at histone H3 lysine 36 (H3K36me3) in highly 

transcribed genes(Neri, Rapelli et al. 2017). However, an understanding of 

the functional differences and target preferences of human DNA 

methyltransferases is still lacking and may lead to a new research focus in the near 

future. 
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de novo methyltransferases involved in the establishment of DNA methylation marks 

on native DNA strands. Both enzymes contain a methylase catalytic domain and 

PWWP domain that promote association to heterochromatin. Another member of 

the DNMT3 subfamily is DNMT3L, which is a catalytic paralog of DNMT3A and 

DNMT3B involved in the re-establishment of genomic imprinting and methylation of 

transposon elements at gametogenesis(Bourc'his, Xu et al. 2001) . After somatic 

methylation is established, DNA methylation is maintained by DNMT1, which is 

recruited together with ubiquitin-like containing PHD and RING finger domain 

1(UHRF1) and methylates the newly synthesized DNA strand during each cell 

division(Sharif, Muto et al. 2007). In animal models, depletion of DNA 

methyltransferases influences embryonic development and survival of cells. Previous 

studies has reported that knocking out of Dnmt1 or Dnmt3b in mice is embryonic lethal, 

whereas Dnmt3a knockout mice are viable after birth but die 21 days postnatally(Li, 

Bestor et al. 1992; Okano, Bell et al. 1999). The other member of the human DNMT 

family, DNMT2, also exerts methyltransferase activity but only acts on tRNAs(Goll, 

Kirpekar et al. 2006).  

 

1.1.3    DNA demethylation and related enzymes 

To remove methylation marks from the DNA, there are two conceivable mechanisms: 

passive demethylation and active demethylation. Disruption to the maintenance of 

DNA methylation during replication leads to the passive erasure of DNA 

methylation(Jones 2012). This process can be exemplified by inhibition of DNMT1 

activity, for example by using the drug 5'-azacytidine(Issa, Kantarjian et al. 2005). It is 

a chemical analogue of native nucleoside cytosine and can be incorporated into DNA 

and RNA that inhibits methyltransferase activity. In lower organisms, the mechanism 

of active demethylation is through 5-methylcytosine DNA glycosylases (such as 

DME/ROS1 family in Arabidopsis) by working together with base excision repair 

(BER) pathway(Penterman, Zilberman et al. 2007). However, the orthologues of DME 

family is remaining under-discovered in mammals. In vertebrates, active demethylation 

can occur through cytosine deamination followed by DNA repair. It has been found  

that activation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme 

catalytic polypeptide 1 (APOBEC1) is able to convert 5mC to uracil (U) resulting in a 

T-G mismatch(Nabel, Jia et al. 2012). The T-G mismatch can then be removed through 

BER, nucleotide excision repair (NER), or mismatch repair (MMR). Another suggested 

mediator of DNA demethylation is the growth arrest and DNA damage-inducible 
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protein (GADD45) gene family, which may promote locus specific demethylation(Rai, 

Huggins et al. 2008; Engel, Tront et al. 2009). The discovery of ten-eleven-

translocation(TET) protein family and 5'-hydroxymethylcytosine (5hmC) suggests 

that active demethylation may function through "detour" pathways(Iyer, Tahiliani et al. 

2009; Tahiliani, Koh et al. 2009). 

 

TET family proteins were discovered as fusion proteins of MLL translocations in acute 

myeloid leukemia(Tahiliani, Koh et al. 2009). Since then, there have been three family 

members (TET1, TET2, TET3) identified in humans, of which all have been found to 

display oxidase activity converting 5mC to 5-hmC, 5-formylcytosine, 5-

carboxylcytosine in a serial of reactions using α-ketoglutarate (α-KG) as substrate and 

Fe2+ as a cofactor(He, Li et al. 2011; Ito, Shen et al. 2011). This chain of reactions leads 

finally to DNA demethylation via thymine DNA glycosylase (TDG) mediated BER 

mechanism. It has found that depletion of TET1 in human cells led to increased 5mC 

and decreased 5hmC globally(Xu, Wu et al. 2011). Other than catalytic activity, TET1 

was found to enriched bind to CpG dense regions in mouse embryonic stem cell. Loss 

of TET expression in mouse ES cells comprised their differentiation capacity by 

deregulation of gene expressions and global promoter hypermethylation was 

found(Dawlaty, Breiling et al. 2014). In the cells, α-KG is produced through the 

tricarboxylic cycle. The reaction is catalyzed by Isocitrate dehydrogenase (IDH), that 

D-isocitrate undergoes oxidative decarboxylation to α-KG(Medeiros, Fathi et al. 2017). 

Two isoforms of IDH, IDH1 and IDH2 are found in different cellular compartments. 

IDH1 is mainly found in cytoplasm and peroxisomes, whereas IDH2 locates in the 

mitochondrial matrix. Both IDH genes are frequently mutated in hematological 

malignancies, that leads to "gain-of-function" and abnormally produces an 

“oncometabolite”, 2-hydroglutarate (2-HG), instead of α-KG(Dang, White et al. 2009; 

Icard, Poulain et al. 2012). Therefore, mutations of IDH inhibit the TET's function and 

disrupt TET-mediated demethylation machinery. Moreover, 2-HG also inhibits α-KG-

dependent histone demethylases, which  leads to consequential increase of repressive 

chromatin marks, for instance, tri-methylation at histone H3 lysine 9 residue (Lu, Ward 

et al. 2012). 

 

1.1.4 Core histones and histone variants 

Histones, together with the DNA, make the two essential components of chromatin. 

There are four canonical core histone proteins. In addition to the linker histone H1 that 
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sits above on each nucleosome at the entry/exit of the linker DNA strand, the 

nucleosome core particle is made up of histones H2A, H2B, H3, and H4(Kornberg 

1974; Kornberg and Thomas 1974). Each octameric nucleosome contains two H2A-

H2B dimers and two H3-H4 dimers and their unpacked amino acid tails at both ends of 

each histone protein extend from complex core. Post-transcription modifications 

covalently occur on these histone amino acid tails and they are crucial to gene 

regulatory mechanisms. More than canonical histone proteins, histone variants exist for 

H3, H2A, and H2B(Buschbeck and Hake 2017). They give rise to diversity amongst 

nucleosomes, and often, these variant proteins are specified for different functional 

roles. For example, one major variant form of the H2A core protein, H2A.Z, is more 

often found in the promoter region of genes and enhancers and antagonizes DNA 

methylation(Raisner, Hartley et al. 2005; Ku, Jaffe et al. 2012). Another H2A variant, 

H2A.X, is highly involved in DNA double-strand break repair and undergoes 

phosphorylation to signal to the DNA repair enzymes(Kuo and Yang 2008; Mah, El-

Osta et al. 2010). Another example of histone variant centromere-specific H3 variant 

(CENP-A) is found in centromeric regions and is associated with repressive 

chromatin(Molina, Vargiu et al. 2016). 

 

1.1.5 Histone modifications 

Histones are subject to at least 15 different post-translational modifications, among 

which acetylation, methylation, and phosphorylation are the most studied 

ones(Bannister and Kouzarides 2011). These modifications occur on several amino acid 

residues including Lysine (K), Arginine(R), Serine(S), Glutamate(E), and Tyrosine(T) 

and serve in signaling to the transcription regulatory apparatus. 

 

Lysine is the most commonly modified amino acid residue in histone proteins.  

The acetylation of lysine neutralizes its positive charge and weakens the electrostatic 

association with wrapping DNA and is associated with active "open" 

chromatin(Bannister and Kouzarides 2011). This covalent change is tightly associated 

with the cellular factors that require access structure to the DNA. Histone acetylation is 

enriched at regions of transcription start sites (TSS) (such as H3K9ac) and presented 

through the gene body (such as H3K12ac) of actively transcribed genes and regulatory 

elements such as active enhancers (with the presence of H3K27ac, H3K122ac)(Wang, 

Zang et al. 2008; Tang, An et al. 2014).  This modification is catalyzed by a family of 



 

8 

enzymes named histone acetyltransferases (HATs) and can be removed by histone 

deacetylases (HDACs)(Bannister and Kouzarides 2011). 

 

The methylation of histone lysine residues has diverse impacts on function depending 

on the state of progressive methylation (since lysine residues can be mono-, di- and tri-

methylated) with different lysine residues playing distinct roles(Bannister, Schneider et 

al. 2002). This modification is catalyzed by histone lysine methyltransferases (HKMTs) 

with a methyl group donated from the metabolite SAM replacing each hydrogen of the 

lysine NH3- group(Audia and Campbell 2016). Most HKMTs are highly substrate-

specific and contain a highly conserved SET-domain often functioning within protein 

complex formed with other cofactors(Li, Han et al. 2016). More recently, enzymes 

without an SET-domain have been found to display similar HKMT activity, such as 

DOT1L, catalyze methylation of H3K79(Feng, Wang et al. 2002). The methylation of 

histone is considered a stable mark that helps to epigenetically stabilize chromatin 

states, yet there are also histone demethylase enzymes capable of removing methyl 

groups(Bannister, Schneider et al. 2002). Lysine-specific demethylase 1 (LSD1) was 

the first histone demethylase identified in 2004 that facilitates the removal of mono- 

and di-methylation of H3K9 and H3K4(Shi, Lan et al. 2004). In addition, a large family 

of enzymes containing a jumonji-domain was also discovered(Takeuchi, Watanabe et 

al. 2006). They catalyze histone demethylation by Fe2+-and-α-KG-dependent 

dioxygenase activity. The functional roles of methylation of histones are linked to 

active, repressive, or bivalent states of transcription. H3K4me3 has often been 

identified as the promoter of active gene whereas H3K27me3 marks repressed 

transcriptional activity when seen at promoter regions(Bannister, Schneider et al. 2002; 

Klose and Zhang 2007). However, H3K9me3 generally associates to heterchromatin 

states and transcription repression. It is also found that in the stem and progenitor cells, 

developmental-required genes often associate both H3K4me3 and H3K27me3 and are 

called "bivalent marks" whereby the switching on/off occurs at the appropriate time 

during lineage commitment(Marks, Kalkan et al. 2012; Vastenhouw and Schier 2012). 

 

1.1.6 Epigenetic cross-talks 

Our current understanding of cross-talk between epigenetic mechanisms is not yet 

completely understood; however, there do appear to be clear examples of such cross-

talks. For instance, methylated DNA can be recognized by protein families such as 

the methyl-CpG binding domain (MBD) protein family and SPA-family (such as 
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UHRF1)(Bogdanovic and Veenstra 2009). Five members are included in MBD family, 

MeCP2 and MBD1-4. They are believed to function as a mediator of transcriptional 

repression by recruiting HDACs and HKMTs. For example, MBD2 and MBD3 

participates in the nucleosome remodeling deacetylase (NuRD) complex together with 

other cofactors, such as HDAC1 and HDAC2, chromo domain3 (CHD3) or CHD4. 

Overexpression of MBD3 in the NuRD complex jeopardized the reprogramming of IPS 

cells through the enhancement of heterochromatin establishments and silencing of stem 

cell genes(Luo, Ling et al. 2013). On the other hand, unmethylated DNA can be 

recognized by proteins containing CXXC domain(Xu, Bian et al. 2011). Two members 

of the H3K4 methyltransferases MLL family (MLL1 and MLL2) contain the CXXC 

domain as well as the CXXC finger protein 1 (CFP1), two TET proteins (TET1, 

TET3), and H3K36 demethylases (KDM2A/2B)(Long, Blackledge et al. 2013). They 

are recruited to unmethylated DNA loci and facilitate active chromatin states and often 

promote gene expression. Moreover, transcription factors or DNA binding factors bind 

to and prevent methylation of such loci and interact with local histone 

modifications(Jones 2012). It can be exemplified by polycomb 2 (PRC2) complex 

occupancy at unmethylated CGI promoter catalyzing regional H3K27me3 and leading 

to the transcription repression of target genes(Khan, Lee et al. 2015). These interactions 

of epigenetic mechanisms help in the self-reinforcement of epigenetic states, therefore 

promoting phenotypic stability. 

 

1.1.7 Transcription regulatory sequences 

In eukaryotic cells, protein-coding genes are transcribed by RNA polymerase II (Pol 

II), and this process is precisely regulated by multiple factors to ensure appropriate 

transcription. Open reading frames consist of exons and introns to be transcribed into 

pre-mRNA. Intronic sequences will be later spliced out, and mRNA matures with 5'-

cap and 3'-poly-adenylation. The immediate sequences adjacent to the open reading 

frame are the 5' untranscribed region (UTR) upstream and the 3'UTR. Promoter 

sequences are defined as regulatory regions upstream of transcription start site (TSS) 

and contain binding platforms for Pol II (core promoter) and active transcription factors 

(proximal promoter). A core promoter serves as the entry site for Pol II complex and 

often contains TATA box and a B-recognition element(Lagrange, Kapanidis et al. 

1998; Smale and Kadonaga 2003). They are recognized by TATA-box binding protein 

(TBP) and promote the recruitment of general transcription factors (GTFs) to assemble 

into the transcription pre-initiation complex. The proximal promoter refers to the region 
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upstream of the core promoter and TSS containing sequence-specific transcription 

factor binding sites. It is recognized by activated TF proteins, which in turn facilitate 

the recruitment of coactivators or repressors thus regulating gene expression(Weake 

and Workman 2010). 

 

Other than gene promoter, regulation of transcription activity is fine-tuned by TSS-

distal regions called enhancers and insulators. These are cis-acting regulatory elements 

at various distances from target gene promoters(Visel, Rubin et al. 2009). Enhancers 

are non-coding DNA sequences containing binding sites for DNA–binding proteins, 

and range in size from 200 to 1000 bp(Andersson, Gebhard et al. 2014). It is believed 

that enhancers regulate their target gene's expression by promoting physical interactions 

with the cognate promoters through DNA looping (Visel, Rubin et al. 2009). It has 

been shown that enhancers can recruit the transcription pre-initiation complex at its 

locus(Andersson, Gebhard et al. 2014). Meanwhile, the co-localization of cohesin and 

mediator complexes, as well as the transcription factor CTCF helps on generating cell-

type specific DNA looping to activate gene expression(Wendt, Yoshida et al. 2008; 

Kagey, Newman et al. 2010; Deng, Lee et al. 2012). In this process, lineage-specific 

transcription factors are thought to be with a particular importance, for instance, 

pioneer transcription factors PU.1 and GATA1, can bind to chromatin and initiate cell 

type-specific histone modification changes during development(Xu, Watts et al. 2009; 

Heinz, Benner et al. 2010). These pieces of evidence suggest that enhancers deliver 

functional protein complexes to target promoters and facilitate changes to the local 

chromatin. 

 

In recent years, growing efforts have been put into identifying putative enhancers and 

their activities during development and in cell-specific stages. Similar to promoters, 

enhancers are also found with functional relevant histone modifications(Pennacchio, 

Bickmore et al. 2013; Heinz, Romanoski et al. 2015). Active enhancers are often 

marked with the absence of H3K27me3 but a high level of H3K4me1 and H3K27ac 

together. On the other hand, poised enhancers could display H3K27me3 and H3K4me1 

at the same time, both often at lower levels and in the absence of the active chromatin 

mark H3K27ac(Heintzman, Stuart et al. 2007; Visel, Blow et al. 2009; Kundaje, 

Meuleman et al. 2015). Moreover, active enhancers have been identified by the binding 

of the HAT enzyme called P300, or at DNaseI hypersensitive sites(DHSs), and often 

transcribed into non-coding/enhancer RNAs(Birney, Stamatoyannopoulos et al. 2007; 
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Li, Notani et al. 2013). Several international research consortiums have focused on 

identifying genome-wide putative enhancers for tissue/cell type-specific enhancers in 

large numbers of cell lines and primary human samples. By Sequencing of the 5-

Capped end of RNA (CAGE), the Fantom Consortium defined 43,011 putative 

enhancers cross more than 800 human cell types and reported a strong cell type-specific 

enhancer activity(Andersson, Gebhard et al. 2014).  



 

12 

1.2 Acute Myeloid Leukemia  

Acute myeloid leukemia (AML) is a group of hematological malignancies, whereby 

abnormal leukemic blast cells derived from the myeloid lineage go through clonal 

expansion in the bone marrow resulting in impaired normal bone marrow 

function(Liesveld 2015). Clinical signs are primarily a result of impairment of the 

production of normal functional blood cells and include pallor and dyspnea due to 

anemia, hemorrhages due to thrombocytopenia and increased frequency of infections, 

due to granulocytopenia and other immuncompromising conditions. AML is the most 

common acute leukemia in adults and but can also occur in pediatric patients(Gamis, 

Alonzo et al. 2013). Overall incidence of adult AML is in the range of 3–4 cases per 

100,000 inhabitants in Sweden and median age at diagnosis is approximately 71 

years(Juliusson, Antunovic et al. 2009). Despite treatment with intensive 

chemotherapy, median survival is less than 1 year and only a minority of the patients 

obtain a cure and a long-term(Juliusson, Abrahamsson et al. 2017). 

 

1.2.1 Risk factors 

In the majority of AML cases, no specific cause of AML development can be 

identified. However, environmental factors such as high dose radiation and benzene 

exposure are associated with an increased risk of AML development(Tsushima, 

Iwanaga et al. 2012; Liesveld 2015). Chemotherapeutic agents, including 

topoisomerase II inhibitors and alkylating agents, lead to an increased risk of 

developing AML, caused by exposure to mutagenic DNA damage (Park, Chi et al. 

2013). AML cases that develop after treatment for previous malignant diseases are 

referred as therapy-related. Chronic hematological diseases can evolve into AML as the 

secondary disease, preceded by antecedent disorders, such as myelodysplastic 

syndromes(MDS), myeloid proliferative diseases(MPD) and chronic myeloid 

leukemia(CML). (Behm 2003; Liesveld 2015). AML may also develop from other 

nonmalignant diseases or inherited or congenital conditions such as Fanconi Anemia 

and Blooms Syndrome.  

 

1.2.2 Classification of AML 

Traditionally and historically, AML was classified according to the French-American-

British Classification (FAB) where AML was subdivided into subclasses from M0 to 

M7 based on the morphological and cytochemical characteristics of bone marrow 

smears(Behm 2003). The WHO Classification of Myeloid Neoplasms was first 
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introduced in 2002, then updated in 2008, and very recently in 2016(Vardiman, Harris 

et al. 2002; Wandt, Haferlach et al. 2010; Arber, Orazi et al. 2016). This new 

classification system distinguished AML subclasses by their genetic characteristics, 

morphological features as well as clinical parameters and other background information 

such as if the patient has an antecedent hematological disorder or therapy-related 

AML(Table1). Overall, the diagnosis of AML is still primarily based on blast counts in 

the bone marrow. Cases with myeloid blasts exceeding 20% are sufficient to warrant a 

diagnosis of AML. However, lower blast counts can be confirmed as AML when the 

translocation t(15:17), t(8:21), or inv(16) is identified. Other than cytogenetic features, 

molecular genetic events of nucleophosmin1 (NPM1) mutation, biallelic mutation of 

CCAAT/enhancer-binding protein α (CEBPA), and patient with mutated Runt-related 

transcription factor 1(RUNX1) are incorporated as separate entities. 

 

Over the past 15 years, with the development of high-through-put sequencing 

techniques, the knowledge of the genetic changes in AML has grown 

significantly(Network 2013; Papaemmanuil, Gerstung et al. 2016). Several further 

somatic mutations have been discovered as recurrent events in AML and show 

evidence as important regulators of disease and treatment progression in experimental 

models. 

 

1.2.3 Prognostic factors 

Factors such as age, karyotype, and molecular genetic features are used to assess the 

patient’s prognosis and to choose therapeutic strategies and of AML, especially the 

decision to perform a hematopoietic stem cell transplantation (HSCT). In general, 

increasing age and coexisting health conditions are associated with poorer clinical 

outcomes and often treatment-related early death(Grimwade and Hills 2009; De 

Kouchkovsky and Abdul-Hay 2016). Based on both cytogenetic and molecular factors, 

AML patients can be divided into favorable, intermediate, and adverse outcome 

groups(Dohner, Estey et al. 2017). More than half of adult AML cases carry 

chromosomal arrangements, which significantly contribute to prognosis and clinical 

decision-making(De Kouchkovsky and Abdul-Hay 2016).  
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Table 1. WHO classification of acute myeloid leukemia and related myelodysplasia and neoplasm 2016* 

 

AML with recurrent genetic abnormalities

 AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1

 AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11

 APL with PML-RARAa 

 AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2Ab 

 AML with t(6;9)(p23;q34.1);DEK-NUP214

 AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM

 AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1c

 Provisional entity: AML with BCR-ABL1

 AML with mutated NPM1d

 AML with biallelic mutations of CEBPAd

 Provisional entity: AML with mutated RUNX1

AML with myelodysplasia-related changese

Therapy-related myeloid neoplasmsf 

AML, nonotherwise specified (NOS) 

 AML with minimal differentiation

 AML without maturation 

 AML with maturation 

 Acute myelomonocytic leukemia

 Acute monoblastic/monocytic leukemia

 Pure erythroid leukemia 

 Acute megakaryoblastic leukemia

 Acute basophilic leukemia 

 Acute panmyelosis with myelofibrosis

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome

 Transient abnormal myelopoiesis (TAM)

 Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dendritic cell neoplasm

Acute leukemias of ambiguous lineage 

 Acute undifferentiated leukemia

 Mixed phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1h 

 MPAL with t(v;11q23.3); KMT2A rearranged

 MPAL, B/myeloid, NOS 

 MPAL, T/myeloid, NOS 

for a diagnosis of AML, a marrow blast count of ≥20% is required, except for AML with the 

recurrent genetic abnormalities t(15;17), t(8;21), inv(16) or t(16;16). 
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a. Other recurring translocations involving RARA should be reported accordingly: e.g., AML with 
t(11;17)(q23;q12); ZBTB16- RARA; AML with t(11;17)(q13;q12); NUMA1-RARA; AML with 
t(5;17)(q35;q12); NPM1-RARA; or AML with STAT5B-RARA (the latter having a normal 
chromosome 17 on conventional cytogenetic analysis). 

b. Other translocations involving KMT2A (MLL) should be reported accordingly: e.g., AML with 
t(6;11)(q27;q23.3); MLLT4- KMT2A; AML with t(11;19)(q23.3;p13.3); KMT2A-MLLT1; AML 
with t(11;19)(q23.3;p13.1); KMT2A-ELL; AML with t(10;11)(p12;q23.3); MLLT10-KMT2A. 

c. Rare leukemia most commonly occurring in infants. 
d. Diagnosis is made irrespective of the presence or absence of multilineage dysplasia. 
e. ≥20% blood or marrow blasts AND any of the following: previous history of myelodysplastic 

syndrome (MDS), or myelodysplastic/myeloproliferative neoplasm (MDS/MPN); myelodysplasia-
related cytogenetic abnormality (see below); multilineage dysplasia; AND absence of both prior 
cytotoxic therapy for unrelated disease and aforementioned recurring genetic abnormalities; 
cytogenetic abnormalities sufficient to diagnose AML with myelodysplasia-related changes are: 

-Complex karyotype (defined as 3 or more chromosomal abnormalities in the absence of one of the 

WHO-designated recurring translocations or inversions, i.e., t(8;21), inv(16) or t(16;16), t(9;11), 

t(v;11)(v;q23.3), t(6;9), inv(3) or t(3;3); AML with BCR-ABL1); 

-Unbalanced abnormalities: -7 or del(7q); -5 or del(5q); i(17q) or t(17p); -13 or del(13q); del(11q); 

del(12p) or t(12p); idic(X)(q13); 

-Balanced abnormalities: t(11;16)(q23.3;p13.3); t(3;21)(q26.2;q22.1); t(1;3)(p36.3;q21.2); 

t(2;11)(p21;q23.3); t(5;12)(q32;p13.2); t(5;7)(q32;q11.2); t(5;17)(q32;p13.2); t(5;10)(q32;q21.2); 

t(3;5)(q25.3;q35.1). 
f. Cases should be classified with the related genetic abnormality given in the diagnosis. 
g. The former subgroup of acute erythroid leukemia, erythroid/myeloid type (≥50% bone marrow 

erythroid precursors and ≥20% myeloblasts among non-erythroid cells) was removed; myeloblasts 
are now always counted as percentage of total marrow cells. The remaining subcategory AML, 
NOS, pure erythroid leukemia requires the presence of >80% immature erythroid precursors with 
>30% proerythroblasts. 

h. BCR-ABL1 positive leukemia may present as mixed phenotype acute leukemia; treatment should 
include a tyrosine kinase inhibitor. 

*Reprint with permission from original publication by Arber D. et al. Blood,2016. 

 

 

Recently, European LeukemiaNet has revised the risk stratification of adult AML in 

which six well-studied genes (NPM1, FLT3-ITD, RUNX1, CEBPA, ASXL1, TP53) have 

been taken into consideration in clinical practice for prognosis (Table 2)(Dohner, Estey 

et al. 2017). Notably, among the risk group proposed by LeukemiaNet, a large 

proportion of the patients have a so-called cytogenetically normal AML (CN-AML). 

CN-AML is a subgroup that constitutes about 40% of adult AML cases and where a 

karyotypic analysis of the chromosomes of the leukemia cells do not show any 

abnormalities(Klepin, Rao et al. 2014). Although, with the most recent updates of risk 

assessments, where new mutations have been added that can help to prognostically 

stratify some additional CN-AML patients, there is still a lack of prognostic markers for 

intermediate-risk and CN-AML patients. This indicates a further need for information 

and factors that can help to accurately diagnose and prognostically assess AML 

patients.  
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Table 2. Risk Assessment of Acute Myeloid Leukemia according to ELN 2016* 

Risk Category Genetic Abnormality 

Favorable 

t(8;21)(q22;q22.1); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow(c) 

Biallelic mutated CEBPA 

Intermediate 

Mutated NPM1 and FLT3-ITDhigh(c) 

Wild type NPM1 without FLT3-ITD or with FLT3-ITDlow(c)  

(w/o adverse risk genetic lesions) 

t(9;11)(p21.3;q23.3); MLLT3-KMT2Ad 

Cytogenetic abnormalities not classified as favorable or adverse 

Adverse 

t(6;9)(p23;q34.1); DEK-NUP214 

t(v;11q23.3); KMT2A rearranged 

t(9;22)(q34.1;q11.2); BCR-ABL1 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) 

-5 or del(5q); -7; -17/abn(17p) 

Complex karyotype,e monosomal karyotypef 

Wild type NPM1 and FLT3-ITDhigh(c) 

Mutated RUNX1g 

Mutated ASXL1g 

Mutated TP53h 

  
a. Frequencies, response rates and outcome measures should be reported by risk category, and, if sufficient numbers are 

available, by specific genetic lesions indicated.  
b. Prognostic impact of a marker is treatment-dependent and may change with new therapies.  
c. Low, low allelic ratio (0.5); semi-quantitative assessment of FLT3-ITD allelic ratio (using DNA fragment analysis) is 

determined as ratio of the area under the curve (AUC) “FLT3-ITD” divided by AUC “FLT3-wild type”; recent studies 
indicate that acute myeloid leukemia with NPM1 mutation and FLT3-ITD low allelic ratio may also have a more 
favorable prognosis and patients should not routinely be assigned to allogeneic hematopoietic-cell transplantation.  

d. The presence of t(9;11)(p21.3;q23.3) takes precedence over rare, concurrent adverse-risk gene mutations.  
e. Three or more unrelated chromosome abnormalities in the absence of one of the World Health Organization-designated 

recurring translocations or inversions, i.e., t(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23.3), t(6;9), inv(3) or t(3;3); 
AML with BCR-ABL1.  

f. Defined by the presence of one single monosomy (excluding loss of X or Y) in association with at least one additional 
monosomy or structural chromosome abnormality (excluding core-binding factor AML).  

g. These markers should not be used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes.  
h. TP53 mutations are significantly associated with AML with complex and monosomal karyotype. 

* Reprint with permission from original publication by Döhner et al. Blood, 2016. 

 

1.2.4 Molecular genetic changes in CN-AML 

Although CN-AML is considered as negative for cytogenetic abnormalities by a 

clinical definition based on the karyotype, it displays a number of somatic mutations 

that have a role in the development of the disease(Welch, Ley et al. 2012; Miller, 

Wilson et al. 2013). During disease progression, founding cancerous clones may 

acquire additional mutations, forming subclones that contribute to secondary 

progression leading to relapses of AML(Genovese, Kahler et al. 2014; Yoshizato, 

Dumitriu et al. 2015). In one recent study, 76 somatic mutations were found to 
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recurrently occur in an AML cohort of over 1500 patients(Papaemmanuil, Gerstung et 

al. 2016). Notably, compared to other most other types of malignancies, the AML 

genome contain significantly fewer mutations in general(Miller, Wilson et al. 2013; 

Vogelstein, Papadopoulos et al. 2013). This highlights the importance of such 

mutations in relation to leukemic transformation and clonal evolution. 

 

1.2.5 Commonly mutated genes in CN-AML 

Nucleophosmin 1 (NPM1) 

The NPM1 gene encodes for a histone chaperone, located on chromosome 5q23. 

Mutations in the C-terminal of NPM1 result in an impaired DNA binding function, 

therefore aberrantly exporting and translocating NPM1 into the cytoplasm(Grisendi, 

Mecucci et al. 2006). NPM1 mutations are often found in association with mutations in 

the DNMT3A and FLT3-ITD genes in CN-AML(Papaemmanuil, Gerstung et al. 2016). 

The mutation predicts a favorable outcome in CN-AML in most of the age groups in 

the absence of FLT-ITD(Dohner, Schlenk et al. 2005; Verhaak, Goudswaard et al. 

2005; Becker, Marcucci et al. 2010; Schnittger, Bacher et al. 2011). The clinical value 

of NPM1 mutations for detection of minimal residual disease has recently been 

validated and shown to be the only independent molecular factor for predicting death in 

this group of patients(Hills, Ivey et al. 2016). 

 

Fms-related Tyrosine Kinase 3 (FLT3) 

The FLT3 gene encodes for a Class III tyrosine kinase receptor, expressed on the cell 

surfaces of hematopoietic progenitors. There are two types of mutations affecting the 

FLT3 gene with distinctive functional implications. An internal tandem duplication of 

FLT3 (FLT3-ITD) involves the juxtamembrane domain and occurs in nearly one-third 

of CN-AML patients(Rombouts, Lowenberg et al. 2001). It results in the constitutive 

activation of the tyrosine kinase, which consequentially leads to enhanced signaling 

through the RAS and STAT5 pathways(Neben, Schnittger et al. 2005; Chen, Drakos et 

al. 2010). There is evidence that the prognosis in patients with FLT3-ITD shows a 

dosage dependency of the mutated allele, where the presence of a high allelic burden 

(ratio of ITD/WT>0.5) is linked to a poorer prognosis of CN-AML. The other type of 

mutation affects FLT3 at D835 and I836 of the tyrosine kinase domain (TKD) and this 

is referred to as FLT3-TKD. FLT3-TKD is found in 11-14% of CN-AML, but its 

presence remains debatable with regard to its prognostic impact(Whitman, Ruppert et 

al. 2008; Santos, Jones et al. 2011). 
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DNA Methyltransferase 3A (DNMT3A) 

Somatic mutation in the DNMT3A gene in hematological malignancies was discovered 

and reported by several groups in 2010 and 2011(Ley, Ding et al. 2010; Yan, Xu et al. 

2011). It is found in 20-22% of total AML and with higher frequency in the normal 

karyotype group(Ley, Ding et al. 2010; Yan, Xu et al. 2011; Gaidzik, Schlenk et al. 

2013). In total, 35 point mutations have been found in the DNMT3A gene up to the 

date(Yang, Rau et al. 2015). Among these mutations, 58% harbor a mutation at 

arginine position 882 (R882). The R882 mutation is predominantly heterozygous in the 

most of the hematological malignancies except in T-cell acute lymphoblastic leukemia 

(T-ALL), in which biallelic mutations frequently occur(Grossmann, Haferlach et al. 

2013; Roller, Grossmann et al. 2013). Moreover, DNMT3A mutations are age related 

with increased frequency in elderly and associated with premalignant clonal 

expansion(Xie, Lu et al. 2014). Biochemical studies of the human DNMT3A with a 

mutation at position R882 as well as the mutated mouse equivalent R878 display an 

impaired catalytic activity and reduced DNA-binding efficiency comparing to wild type 

DNMT3A(Holz-Schietinger, Matje et al. 2012; Russler-Germain, Spencer et al. 2014). 

However, comparing to R882, much less attention has been drawn to non-R882 

mutations. Few studies have found decreased methylation capacity in non-R882 

mutations, which most likely leads to the loss of function of DNMT3A(Gowher, 

Loutchanwoot et al. 2006; Holz-Schietinger, Matje et al. 2011). However, despite the 

agreement of the high prevalence of DNMT3A mutations in AML, their impact on 

patients’ clinical outcomes remains surprisingly inconclusive. It was first reported 

associated with an adverse prognosis in AML by Ley and his colleague, however, 

contradictory results have been published by Patel et al. and Gaidzik et al.(Ley, Ding et 

al. 2010; Patel, Gonen et al. 2012; Gaidzik, Schlenk et al. 2013). Very recently, a more 

comprehensive characterization of a large AML cohort suggests a more complex 

prognostic interaction between NPM1, DNMT3A, and FLT3-ITD mutations, where 

mutations in all three genes confer a  poor survival(Papaemmanuil, Gerstung et al. 

2016).  

 

CCAAT/enhancer Binding Protein Alpha (CEBPA) 

CEBPA is a transcription factor belongs to leucine zipper family that is essential for 

lineage specification and granulopoiesis(Radomska, Huettner et al. 1998). Mutation of 

CEBPA leads to insufficient activation of granulocytic specific genes and a maturation 
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arrest in the myeloid lineage. Among all sequence variants reported, two types of 

mutations occur more frequently and that often involve one allele each, the out-of-

frame mutation at the N-terminal leading to a truncated protein that is dominant 

negative and the in-frame insertion/deletion at the bZip domain resulting in DNA 

binding defects(Pabst, Mueller et al. 2001; Carnicer, Lasa et al. 2008). Germline 

CEBPA mutations have been reported for familiar AML and somatic mutations are 

found in approximately 15% of CN-AML(Smith, Cavenagh et al. 2004; Green, Koo et 

al. 2010; Taskesen, Bullinger et al. 2011). Biallelic mutation in CEBPA confers a 

favorable prognosis for AML patients and has been incorporated into WHO 

classification since 2008. 

 

Runt-related Transcription Factor 1(RUNX1) 

RUNX1 is a transcription factor that regulates both primitive hematopoiesis during 

embryonic development and differentiation of blood cells in adults(de Bruijn and 

Dzierzak 2017). Animal studies of the Runx1 knockout model revealed embryonic 

lethality due to inadequate fetal liver hematopoiesis. Mutations in RUNX1 are reported 

in 6% to 18% of CN-AML with increasing frequency by age(Gaidzik, Bullinger et al. 

2011; Greif, Konstandin et al. 2012; Gaidzik, Teleanu et al. 2016). In contrast to core 

binding factor leukemias that are often characterized by a translocation involving the 

RUNX1 gene, non-translocation mutations in RUNX1 has been found to be associated 

with a negative prognostic impact in AML patients(Schnittger, Dicker et al. 2011; 

Greif, Konstandin et al. 2012; Mendler, Maharry et al. 2012). 

 

Isocitrate Dehydrogenase (IDH) 

Mutations in the IDH gene family were discovered in 2009, and both family members, 

IDH1 and IDH2, can be mutated in AML(Mardis, Ding et al. 2009; Marcucci, Maharry 

et al. 2010). The mutations are most frequently affecting IDH1 at the                   

arginine residue 132 (R132) while arginine 140 (R140) and arginine 172 (R172) 

are commonly mutated in the IDH2 gene. In contrast to IDH2R140, IDH2R172 is not 

associated with NPM1 mutations and is found to have a distinct gene expression 

profile(Marcucci, Maharry et al. 2010). Mutations in IDH1 and IDH2 are often 

mutually exclusive as well as mutually exclusive with TET2 mutations which suggest a 

functional convergence among these genes(Figueroa, Abdel-Wahab et al. 2010; Patel, 

Gonen et al. 2012). 
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Ten-Eleven-Translocation 2 (TET2) 

Mutations of TET2 have been found broadly associated with different myeloid 

malignant diseases including MDS, myeloproliferative neoplasm(MPN) as well as 

AML(Tefferi, Lim et al. 2009; Tefferi, Lim et al. 2009; Bowman and Levine 2017). 

Mutations of TET2 are detected in between 23% to 28% of AML patients with 

a slightly higher frequency in CN-AML(Tefferi, Lim et al. 2009; Papaemmanuil, 

Gerstung et al. 2016). They affect multiple exons and hotspots have not been clearly 

observed. TET2 mutation is age related and is associated with clonal hematopoiesis in 

elderly individuals(Xie, Lu et al. 2014; Bowman and Levine 2017).  No prognostic 

impact has been reported for AML patients in more recent publications despite lower 

rates of complete remission and shorter overall survival found by some earlier 

studies(Chou, Chou et al. 2011; Gaidzik, Paschka et al. 2012; Weissmann, Alpermann 

et al. 2012). 

 

Wilms’ Tumor 1 (WT1) 

The WT1 gene is located on chromosome 11p13 and encodes for a transcription factor 

that is essential for urogenital development(Yang, Han et al. 2007). Overexpression of 

WT1 has been known since long to be overexpressed in hematological malignancies 

including MDS, acute lymphoid and myeloid leukemia, as well as CML with blast 

crisis(Miyagi, Ahuja et al. 1993; Menssen, Renkl et al. 1995; Tamaki, Ogawa et al. 

1999; Barragan, Cervera et al. 2004). In MDS, the elevated WT1 expression is 

associated with a higher blast count and an increased risk of progression to secondary 

AML. It is also associated with a poor overall survival and a higher incidence of 

relapses in AML patients(Miyagi, Ahuja et al. 1993; Tamaki, Ogawa et al. 1999). 

Interestingly, along with increased gene expression, mutations in WT1 was initially 

discovered in nephroblastoma in pediatric patients and as first identified in AML in 

1996(King-Underwood, Renshaw et al. 1996). Somatic mutations of WT1 recurrently 

occur in approximately 10% of AML patients with a slightly higher incidence in CN-

AML(Barragan, Cervera et al. 2004; Network 2013; Papaemmanuil, Gerstung et al. 

2016). The mutations of the WT1 gene involve primarily exons 1, 7, and 9 and mainly 

results in a loss of function caused by either a truncated protein, lacking zinc finger 

domains, or a premature stop codon(Hou, Huang et al. 2010). Yet frequently 

overexpressed, WT1 may function both as a tumor suppressor and an oncogene(Yang, 

Han et al. 2007). The mechanisms and the role of the paradoxical aberrations in WT1, 



 

  21 

including both overexpression of the wild type protein as well as loss of function 

mutations remains to be elucidated. 

 

Additional Sex Combs Like 1 (ASXL1) 

ASXL1 is the human homolog of Drosophila Asx, which is a polycomb group (PcG) 

associated protein that acts on transcriptional regulation(Fisher, Berger et al. 2003). By 

interacting with PcG complexes, it plays an important role in regulating histone 

modifications and homeotic gene expression(Abdel-Wahab and Dey 2013). Mutations 

of ASXL1 are more frequently seen in myelomonocytic leukemia and MDS but are 

found in approximately 6–16% of AML patients with increasing frequency in older 

patients(Boultwood, Perry et al. 2010).  The vast majority of the ASXL1 mutations 

involve exon 12, leading to a truncated C-terminal, losing the NHR binding domain and 

the PHD domain. It is often heterozygous and probably dominantly negative when 

forming interacting complexes. The studies of ASXL1 mutations in myeloid 

malignancies have shown that the mutations are mediating HOX gene repression by 

H3K27me3 through cooperation with PRC2 complex(Gelsi-Boyer, Trouplin et al. 

2009; Abdel-Wahab, Adli et al. 2012). MDS patients with ASXL1 mutations have a 

poorer clinical outcome and shorter time to progression to AML(Thol, Friesen et al. 

2011). Among AML patients, ASXL1 mutations are associated to an adverse 

prognosis(Metzeler, Becker et al. 2011; Paschka, Schlenk et al. 2015). 
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1.3 Epigenetic mechanisms in hematopoiesis and AML 

1.3.1 Hematopoiesis 

Hematopoiesis is the developmental process by which hematopoietic stem cells 

produce differentiated blood cells(Jagannathan-Bogdan and Zon 2013). Two major 

lineages exist: the myeloid and lymphoid (Figure 2). Myelopoiesis starts with the 

common myeloid progenitor (CMP) and generates megakaryocytes, erythrocytes, mast 

cells, and mature granulocytes including neutrophils, basophils, and eosinophils. 

Meanwhile, T cells, B cells, natural killer cells, and lymphoid dendritic cells are 

produced from the common lymphoid progenitor (CLP). Lineage choices are thought to 

depend on growth factor signals, which lead to the upregulation of cell type-specific 

genes in tandem with the repression of paternal pluripotent genes. In hematopoiesis 

during fetal development, GATA1 and PU.1 are the two key transcription factors that 

regulate erythroid-myeloid fates by cross-inhibitory mechanisms(Ferreira, Ohneda et al. 

2005; Chou, Khandros et al. 2009). In adult life, RUNX1 is known for its essential role 

in the regulation of hematopoietic stem cells(Zhu and Emerson 2002). Early decisions 

during myeloid/lymphoid commitment are also regulated by transcription factors. For 

instance, C/EBPα, GATA1, and PU.1 are crucial for generating CMP and support 

further myeloid differentiation, whereas IL-7 receptor is a highly expressed in CLP but 

absence in CMPs(Schlenner, Madan et al. 2010; Ohlsson, Schuster et al. 2016). 

 

1.3.2 Epigenetic mechanisms in normal hematopoiesis 

During these developmental stages of hematopoiesis, DNA methylation levels change 

dynamically. The lymphoid lineage somewhat gain methylation during differentiation, 

but myeloid and erythroid development is associated with a significant DNA 

demethylation globally(Ji, Ehrlich et al. 2010; Hodges, Molaro et al. 2011; Shearstone, 

Pop et al. 2011). At promoter level, methylation changes of lineage-specific genes lead 

to transcriptional activation during blood cell differentiation(Calvanese, Fernandez et 

al. 2012). During the myeloid-lymphoid lineage choice, DNA methylation was found to 

regulate the activation of lineage-specific genes and the repression of transcription 

factors from other lineages(Hodges, Molaro et al. 2011). Meanwhile, the increased 

DNA methylation of myeloid transcription factor binding sites of GATA1, RUNX1, 

and LMO2 was found in CLP cells, suggests that DNA methylation also facilitates the 

modulating sensitivity to differentiation signaling.  It can be further exemplified by 

DNA methylation of enhancers during granulopoiesis, that major difference is found 
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methylation and elevated expression of myeloerthyroid signature genes such as GATA1 

and CEBPA. This represents an excellent example of how DNA methylation is 

involved in lineage-specific regulation during hematopoiesis. 

 

Other epigenetic mechanisms, such as histone modifications, also correspond to these 

types of lineage differential signals. The differentiation from CMP to erythroid or 

myeloid cells is coupled with HDAC1 expression by upstream signaling of GATA1 

and CEBPA(Wada, Kikuchi et al. 2009). Lineage-specific genes such as PAX5 and 

GATA3 are poised with bivalent histone marks (H3K4me3 and H3K27me3) in 

hematopoietic progenitor cells and are associated with increased levels of H3K4me1 

and H2A.Z upon differentiation(Cui, Zang et al. 2009; Abraham, Cui et al. 2013). 

 

More recent genome-wide analyses of DNA methylation have suggested that lineage- 

and cell type-specific methylation changes occur more frequently in CGI proximal 

regions (CGI shores) rather than in CGIs themselves. Also, a stronger correlation to 

gene expression has been suggested as a result of methylation changes CGI 

shores(Irizarry, Ladd-Acosta et al. 2009; Shearstone, Pop et al. 2011). Since then, the 

focus of DNA methylation studies has expanded from a previous focus on methylation 

changes in CGIs to other genomic areas such regions distal to TSSs and in gene bodies. 

Notably, DNMT3B may contribute to changes in intragenic methylation and the 

interaction with other epigenetic modifiers(Weisenberger, Velicescu et al. 2004; 

Duymich, Charlet et al. 2016). It has been shown that one isoform of DNMT3B lacks 

the catalytic domain but that is able to recruit DNMT3A, mediating gene body 

methylation in relation to H3K36me3. 

 

On the other hand, demethylation is also crucial for hematopoietic development. 

Disruption of Tet2 by Cre-mediated deletion of exon 3 resulted in enhanced 

proliferation and self-renewal of HSC and differentiation towards the myeloid 

lineage(Moran-Crusio, Reavie et al. 2011). Tet -/- mice developed multiple myeloid 

malignancies that resemble conditions with recurrent mutations of TET2 in humans(Li, 

Cai et al. 2011). All of these consequences coincide with a substantial loss of 5hmC 

and an increase of 5mC, especially at lineage-specific genes. It has been suggested that 

TET2 may also respond to modulation of enhancer activity of key lineage-specific 

genes. A recent study of Dnmt3a and Tet2 double-knockout mice suggests that these 

genes cooperate in repressing HSC genes and promote erythroid-specific genes (such as 
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Klf4) during hematopoiesis(Zhang, Su et al. 2016). Moreover, the TET2 protein also 

interacts with transcription factors such as PU.1 together and DNMT3B, regulating the 

differentiation of monocyte to osteoclast (de la Rica, Rodriguez-Ubreva et al. 2013). 

 

1.3.3 Aberrant epigenetic changes in AML 

In hematological malignancies such as AML, whole genome and exome sequencing 

have revealed several classes of recurrently mutilated genes, of which mutations in 

epigenetic modulators have attracted a special interest. Recurrent mutations have been 

identified in DNA methylation regulators (DNMTs, TET2, IDHs), chromatin 

modification regulators (MLL, ASXL1, EZH2 etc.) as well as in cohesion complex 

components(Network 2013; Papaemmanuil, Gerstung et al. 2016). It should be noted 

that compared to other frequently mutated genes such as FLT3, mutations affecting 

epigenetic mechanisms occur significantly earlier during clonal evaluation of AML and 

are stable during relapse. Mutations in epigenetic regulators are often mutually 

exclusive with gene fusions involving transcription factors(Network 2013; Faber, Chen 

et al. 2016).  This suggests that mutations in epigenetic factors may constitute distinct 

pathogenic events that are complementary to the direct disturbance of lineage 

transcription factor signaling.  

 

In line with the frequent mutations found in DNA methylation regulating genes, 

aberrant DNA methylation has been extensively studied and reported in AML. In 

general, the AML methylome shows the decreased level of methylation globally but 

also hypermethylation at CGI containing promoter regions, typically affecting tumor 

suppressor genes, as such it follows a similar pattern as compared to other cancer 

types(Deneberg, Grovdal et al. 2010; You and Jones 2012). Genome-wide methylation 

signatures correlate to the patients’ cytogenetic and genetic subtypes suggesting a 

biological and pathological relevance.  The first methylation profiling of a large AML 

cohort was published by Figueroa et al. in 2010 and demonstrated an important link 

between aberrant DNA methylation and known genetic lesions that drive 

leukemogenesis(Figueroa, Lugthart et al. 2010). It is worth mentioning that the 

recognition of such methylation alterations was described before the discovery of 

recurrent mutations in DNA methylation regulators. 

 

Although some chromosomal rearrangements are discordant with mutations involving 

epigenetic mechanisms, AML with recurrent gene fusions such as RUNX1-RUNX1T1, 
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PML-RARA, CBF-MYH11, as well as fusions involving MLL, still show distinct 

methylation patterns(Figueroa, Lugthart et al. 2010; Network 2013; Conway O'Brien, 

Prideaux et al. 2014). The mechanisms of how these translocations alter DNA 

methylation remain unclear. A recent study shows that DNMT3A is dispensable for 

leukemic blasts with RUNX1-RUNX1T1 or MLL-AF9 but that it is required for APL 

transformation due to PML-RARA rearrangements(Cole, Verdoni et al. 2016). MLL is 

a histone methyltransferase and frequently affected by translocations and partial tandem 

duplication (PTD)(Krivtsov and Armstrong 2007). It is known that MLL fusion 

proteins, compared to the wild type MLL, are misguided to aberrant target regions, 

such as HOXA9 and MEIS1 loci which lead to transcriptional activation by catalyzing 

local H3K4me2 and preventing CpG methylation, resulting in impairment of normal 

hematopoietic differentiation(Wang, Lin et al. 2009).  

 

Notably, almost all regulators of DNA methylation are recurrently mutated in AML. 

Mutation of DNMT3A results in a dominant negative protein that out-competes 

the formation of the most catalytically active homotetramer of wild-type DNMT3A and 

this change decreases its methylation activity by 80% on DNA strands(Holz-

Schietinger, Matje et al. 2012; Kim, Zhao et al. 2013; Russler-Germain, Spencer et al. 

2014). Logically, a hypomethylated signature has been reported in hematological 

malignancies with mutated DNMT3A(Hajkova, Markova et al. 2012; Russler-Germain, 

Spencer et al. 2014; Xu, Wang et al. 2014). It is known that loss of DNMT3A results in 

large hypomethylated canyons close to stem cell specific genes such as the Homeobox 

family(Jeong, Sun et al. 2014). Interestingly, Dnmt3a null mice develop both myeloid 

and lymphoid malignancies, however, mice transplanted with Dnmt3a+/- HSC, 

generates only myeloid cancers(Challen, Sun et al. 2014; Mayle, Yang et al. 2015). It is 

in line with the observation that biallelic DNMT3A mutations are found in T-cell acute 

leukemia but not in AML(Grossmann, Haferlach et al. 2013). These findings highlight 

the pathological relevance of impaired DNA methylation as a transforming event in 

leukemogenesis. Nevertheless, demethylation pathways are also frequently disrupted in 

AML. Increased 5mC together with decreased 5hmC are significant findings in both 

IDH and TET2 mutated AML(Figueroa, Abdel-Wahab et al. 2010). Although TET2 

and DNMT3A functions are thought to counteract each other, a recent study suggests 

that they may work in cooperation in regulating HSC homeostasis and mutations of 

both genes induce T-ALL(Scourzic, Couronne et al. 2016; Zhang, Su et al. 2016).  
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As discussed in the previous sections, DNA methylation interacts with chromatin 

modifications, and thus, mutations in chromatin modifiers crosstalk with DNA 

methylation and histone modifications in inducing aberrant gene transcription patterns. 

For example, the PRC2 core component EZH2 is known to interact with DNMTs, 

mediating promoter DNA methylation of polycomb targets(Vire, Brenner et al. 2006). 

Mutations of EZH2 can be either gain-of-function or inactivating mutations and 

interestingly, both these types of mutations can be found in AML. It has been shown 

that AXSL1 mutations are associated with a decrease in H3K27me3 and may act 

through an EZH2-dependent mechanism, resulting myeloid expansion(LaFave, 

Beguelin et al. 2015). A recent study showed that AXSL1 is an important functional 

partner to the cohesion complex by frequently sharing binding sites, regulating 

telophase chromatid disjunction in hematopoietic cells(Li, Zhang et al. 2017). To note, 

mutations in cohesin complex also recurrently occur in AML(Network 2013).  

 

Conspicuously, these gene mutations are often found in hematologically healthy elderly 

individuals. Mutations of DNMT3A, TET2, and AXSL1 are among the most frequent 

somatic mutation events reported in age-related clonal hematopoiesis and this is 

significantly associated with an increased risk of developing hematological 

malignancies including AML(Genovese, Kahler et al. 2014; Xie, Lu et al. 2014; Kwok, 

Hall et al. 2015). All these findings suggest that alterations in epigenetic mechanisms 

are of particular importance in hematological malignancies and that they likely 

contribute to the transformation of normal hematopoietic progenitors, leading to the 

development of leukemia. 
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2. Aim of The Thesis 

 

The aim of this thesis is to explore epigenetic changes in cytogenetically normal AML 

with a particular focus on alterations of DNA methylation. In addition, to correlate the 

aberrations to clinical and biological characteristics.  

   

Paper I 

To characterize CGI focused aberrant DNA methylation in cytogenetically normal 

AML and study its role in relation to prognostic outcome.  

 

Paper II 

To study the genome-wide aberrant DNA methylation in CGI as well as in CGI distal 

regions in cytogenetically normal AML in relation to genetic mutations and gene 

expression.  

 

Paper III 

To identify AML specific changes in DNA methylation of enhancer elements and 

characterize their associations with changes in histone modification and gene 

expression.  
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3. Methodological Approaches 

In this thesis, we have used multidisciplinary approaches to address the aberrant 

epigenome in CN-AML and their potential impact on the transcriptome and the clinical 

outcome of the patients. Methods including Illumina® Methylation Arrays, 

pyrosequencing, DNase I hypersensitivity site sequencing (DHS-seq), chromatin 

immunoprecipitation and sequencing (ChIP-seq), RNA sequencing and CRISPR-Cas9 

for genomic editing, are discussed in this chapter. Comprehensive experimental 

protocols are described in detail in the methods and material sections for each 

publication. 

 

3.1 DNA methylation detection 

Papers included in this thesis are primarily focusing on aberrant DNA methylation in 

CN-AML. The discovery of bisulfite treatment has opened the possibility of profiling 

methylation patterns in targeted regions and on a genome-wide level. In recent years, 

with advances of microarray platforms such as the Illumina arrays and next generation 

sequencing technologies, methylation patterns can now be detected at single CpG level 

throughout the whole genome. In this thesis, two versions of the Illumina human 

methylation arrays (27K and 450K) have been used. In addition, the pyrosequencing of 

bisulfite-converted DNA has also been extensively used for locus-specific methylation 

analyses. 

 

3.1.1 Bisulfite conversion 

To detect methylation in the genome, technologies must allow recognition of cytosine 

modifications and quantification of their frequency either globally or site specifically. 

The degree of methylation in the DNA sequence can be detected by sequencing after 

bisulfite conversion treatment(Hayatsu 2008). Sodium bisulfite chemically modifies 

cytosine(C), converting it to uracil(U) through deamination. However, during bisulfite 

exposure, cytosine with 5' modifications, including methylation and 

hydroxymethylation, remain unchanged. Based on this process, the methylation level of 

the given cytosine position can be detected by analyzing single nucleotide 

polymorphisms between C and T after PCR amplification. This provides a technical 

base for several methods including pyrosequencing, methylation specific PCR, 

hybridization-based microarray methods, etc.(Shapiro R. 1970; Sasaki, Anast et al. 

2003). The common disadvantage of bisulfite conversion-based methods is its inability 
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captured by a camera that will give the final readout in a pyrogram. For detection of 

DNA methylation, PCR amplification of the target of interest after bisulfite conversion 

produces a single-stranded DNA template linked to biotin. At the site of the CpG 

dinucleotide, the ratio of light signals is proportional to the incorporated C/T (Figure3). 

The method of bisulfite conversion followed by pyrosequencing has been extensively 

used in all three papers for locus-specific methylation detection. 

 

3.1.3 Illumina methylation arrays 

The Illumina Methylation Arrays, including the 27K and the 450K array (referred to as 

27K and 450K), are probe-based array platforms designed to cover genome-wide CpG 

sites with two different resolutions(Bibikova, Lin et al. 2006). Illumina 27K is an 

earlier version that contains only Infinium I assay for more than 27,000k probes, 

exclusively targets CGIs. Its update, the Illumina 450K, contains more than 480,000 

probes of both Infinium I and Infinium II types of assays extending to more CpG-

sparse regions and regulatory elements in the human genome(Roessler, Ammerpohl et 

al. 2012). Both assays require bisulfite conversion of genomic DNA followed by whole 

genomic amplification. Successful single nucleotide extension with labeled 

dideoxynucleotides results in incorporation of fluorescence signals that are captured 

and methylation levels which are computed from fluorescence intensities. For Infinium 

I, a pair of probes is designed to target the same locus for either methylated (end with 

CG) or unmethylated allele (ended with CA). In Infinium II, a single probe ending with 

an open position (ending with C) is targeting the cytosine of the CpG site of interest. 

Therefore, incorporation of either G or A at the next base determines the methylation 

status for the designated locus. 

 

Two types of values from the Illumina Methylation Arrays have been used in various 

publications, including the papers in this thesis, the β-value and the M-value(Marabita, 

Almgren et al. 2013).  The β-value of each probe is computed as a methylation signal 

versus the sum of methylated and unmethylated signals. It ranges from 0, for a 

completely unmethylated site, to 1 for a fully methylated site. The M-value is the log2 

transformed ratio of signal from a methylated site versus unmethylated site. There are 

pros and cons for these two types of methylation estimations. For example, compared 

to the M-value, the β-value presents a more intuitive interpretation the β-value may 

provide an easier solution for direct comparisons between studies. Due to its 

logarithmic scale, the M-value presents as a typical bimodal distribution which is 
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difficult to directly link to the degree of methylation but gives a better statistical 

applicability(Bibikova, Lin et al. 2006). Bioinformatic validations have shown that the 

profound homoscedasticity of the M-value provides a better base for statistical 

modeling of a differential methylation analysis. Both of these two types of estimations 

are generally accepted, and they are both widely used in various studies. In this thesis, 

methylation profiles patients samples and of normal counterparts were analyzed by the 

Illumina arrays and in the paper I and paper II the estimations are based on β-value 

whereas, in the paper III, the M-value was used.   

 

3.1.4 Other genome-wide methylation platforms 

Whole genome bisulfite sequencing(WGBS) is the most comprehensive method for 

methylome profiling, however, the method requires extensive efforts. Due to the still 

high cost of next generation sequencing, the theoretical "whole genome" is often 

represented by methylation analyses of enriched sequences, namely reduced 

representative bisulfite sequencing (RRBS)(Meissner, Gnirke et al. 2005). This 

technique uses methylation-insensitive restriction enzymes(such as MspI) with a 

combination of fragments size selection(often 40bp-200bp) to yield CpG containing 

sequences that are sequenced in the next step. Thus, RRBS is effective for 

moderate/high CpG content regions but less informative for CpG sparse regions such as 

regions distal to promoters.  Similarly, methylated DNA immunoprecipitation(MeDIP), 

which utilizes an antibody against 5mC to pull down DNA fragments with methylated 

cytosine that are then subjected to sequencing, also results in an uneven coverage of 

pulled-down genomic regions due to differences in CpG density and antibody 

affinity(Jacinto, Ballestar et al. 2008).  

 

Although the 450K array has limitations with respect to the coverage of the genome, 

due to the easier bioinformatic pipeline, the lower cost and the probe-based design, it 

offers some advantages and can determine DNA methylation that occurs not only in 

CpG dense regions but also in sites distal to CGIs and promoters. 

 

3.2 Chromatin accessibility and modification analysis 

The chromatin is centered with the histone core complex and the DNA that is wrapped 

around it. The density of nucleosomes and the modifications on the histone tails 

affect the availability of particular DNA sequences that results in different levels of 

binding accessibility and recruitment of DNA binding proteins and protein 
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complexes(Marabita, Almgren et al. 2013). DNase I hypersensitivity sites (DHSs) refer 

to accessible regions that are sensitive to DNase I catalyzed cleavage in the genome. 

DHSs often relate to cis-regulatory elements such as promoters, enhancers and 

insulators(Sabo, Kuehn et al. 2006). Other than being sensitive for DNase I mediated 

cleavage, these regions are also characterized by specific histone 

modifications(Aparicio, Geisberg et al. 2004). As a result of the advances in the 

technique of chromatin immunoprecipitation followed by massive parallel 

sequencing(ChIP-seq), this now allows for global analyses of these histone codes, and 

together with detection of DHSs, it maps the chromatin status and status of gene 

regulation process.  

 

3.2.1 DNase I hypersensitivity site and sequencing 

DNase hypersensitivity site sequencing (DHS-seq) is a tool that combines DNase 

digestion and next generation sequencing to map highly accessible regions at a 

genome-wide level(Berger 2007). After digesting the chromatin with DNase I, exposed 

DNA strands are cleaved into small fragments, whereas tightly packed nucleosomes 

will remain intact. These sites can be detected with a PCR-based method for a specific 

locus of interests, or map DHSs on the genome-wide scale by sequencing. A short read 

sequencing library is generated after a biotinylated linker sequence has been added to 

the DNase I digested ends of DNA fragments. In order to describe the degree of 

accessibility of a sequenced regions, the reads per million (RPM) value is commonly 

applied for this estimation(Li, Carey et al. 2007). In paper III, DNase-seq data from the 

ENCODE project and a previously published paper have also been integrated(Birney, 

Stamatoyannopoulos et al. 2007) (Rosenbloom, Dreszer et al. 2012).  

 

3.2.2 Chromatin immunoprecipitation and sequencing 

Chromatin immunoprecipitation and sequencing(ChIP-Seq) is a method to study the 

interactions between a DNA binding protein and the DNA sequence that is bound to the 

protein(Kumar, Muratani et al. 2013). Using an antibody against the protein of 

interests, affinity-based chromatin pulling-down will extract the DNA regions that are 

bound to the protein. This DNA is then identified by massive parallel sequencing after 

being transformed into a cDNA sequencing library. In ChIP-Seq analysis, protein-DNA 

interactions are preserved by fixation, usually by paraformaldehyde, resulting in 

reversible cross-linking. Following the cross-linking, chromatin will be sheared by 

sonication in order to yield the fragments. Often, magnetic beads are linked to the 
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antibody against the protein of interest, such as a transcription factor or a histone 

modification and this is used to separate the target chromatin fragments. After 

denaturation, DNA sequences are released and purified. These DNA fragments are 

ligated to an adapter sequence and sometimes together with an additional barcode, and 

then amplified before being analyzed by a sequencer. ChIP-Seq generates a reading that 

covers the genomic regions that interact with the protein or histone modification at 

interest. ChIP-Seq represents advancement from the ChIP-on-chip technology, which is 

a microarray-based methodology that also provides a genome-wide view of protein-

DNA interactions. To analyze datasets generated from ChIP-seq experiments, peak-

calling is often needed. This uses computational algorithms to define the regions with 

signals (reads) over the whole background. In ChIP-Seq, sensitivity can be determined 

by sequencing depth, whereas the specificity of ChIP results critically depends on the 

chosen antibody. Often an isotype control is needed. In paper III, histone modifications 

of H3K27ac, H3K4me, and H2A.Z have been analyzed by ChIP-Seq. After genomic 

alignment by bowtie2, representative peaks of histone modifications were defined by 

MACS peaks builder, using the SeqMonk program. 

 

3.3 Transcriptome profiling 

Analysis of the gene transcription on a genome-wide scale is referred to as 

transcriptome profiling and several high-throughput methods have been developed for 

this purpose. Based on a DNA chip, a gene expression microarray has been widely 

applied in numerous studies during the past twenty years. In recent time, next 

generation sequencing has taken over the role as the most used technique in 

transcriptome profiling. In the current thesis, both microarrays and RNA sequencing 

have been applied for transcriptome profiling.  

 

3.3.1 Gene expression microarray 

Gene expression microarrays are one of the most popular applications of DNA chips, 

which use microscopic probes fixed to a solid surface in order to capture nucleotide 

sequences for a target(Rosenbloom, Dreszer et al. 2012).  These probes are designed to 

target known gene transcripts, and genome-wide gene expression levels can be 

measured simultaneously. Depending on the platforms, one or several probes may 

target same genes/transcripts and will hybridize to input cDNA, reverse transcribed 

from an RNA sample. The hybridization generates signals due to the complete 

complementation of the designed probe and the fluorescently-labeled cDNA input 
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sequence. The strength of these signals provides a quantitative result that represents the 

level of transcription for each gene/transcript. However, gene expression microarrays 

can only detect known gene transcripts. Moreover, unavoidable background signals and 

batch effects may lead to the requirement for additional data normalization(Ramsay 

1998). Nevertheless, gene expression microarray provides a cost-effective platform and 

can provide meaningful and reproducible results. In paper II, the Human Genome U133 

Plus2.0 Array from Affymetrix was applied to analyze the global gene expression in 

CN-AML patients. 

 

3.3.2 Messenger RNA sequencing 

Messenger RNA (mRNA) sequencing, in other words, whole transcriptome shotgun 

sequencing, is a high-throughput technique to characterize the transcriptome at a given 

time point(Holt and Jones 2008). In brief, mRNA is purified from total RNA by 

the removal of ribosomal RNA and then reverse-transcribed to cDNA. These cDNAs 

are used as the template to generate a DNA library after covalently adding synthetic 

adaptor sequences at the end of the cDNA fragments by DNA ligase. Essentially, 

library construction is amplification based, which ensures sufficient signal intensity at 

the sequencing step. For each platform, the adaptor sequence is specific. It ensures the 

fixation of sequencing templates onto a solid surface (such as a flowcell of Illumia 

HiSeq 2000) and allows for the parallel reaction of extension for every fragment. 

The sequencing step is carried out by cycles of adding labeled single nucleotides 

followed by washing, then scanning. The camera captures the signals at each cycle and 

translates this into a nucleotide code. These massive simultaneous reactions generate 

millions of reads at desired length and, after alignment to the reference genome, it will 

produce information of gene expression at a genome-wide level. 

 

The bioinformatic analysis is required to quantify gene expression in RNAseq 

experiments. Output reads are trimmed and aligned to the genome and the reads 

mapped to repetitive regions and those with ambiguous mapping are often eliminated at 

this step. Naturally, the number of reads that is mapped to a given gene corresponds to 

the amount of mRNA that is subjected to sequencing. However, due to the fact that the 

number of reads per gene is affected by the sequencing depth and initially determined 

by the total length of the gene, instead of the raw read counting per gene, reads (for 

single end sequencing)/fragments (for paired ends) per kilo base per million reads 

(RPKM/FPKM) are often computed to normalize the gene expression(Holt and Jones 
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2008). In Paper III, mRNA sequencing was performed on the Illumina HiSeq2000 

platform. mRNA was purified from total RNA that was extracted by TRIzol®, then 

reversely transcribed to cDNA and constructed into the sequencing library by 

the TruSeq RNA Library Preparation Kit v2. Library from 12 samples (7 CN-AML and 

5 NBM CD34+ cells) was barcoded and pooled in six lanes. A total of 1.4 billion reads 

were produced with 97% mapping efficacy and an average of 114 million reads per 

sample. In this paper, gene expression levels were estimated in FPKM values after 

being aligned first by Tophat to human genome version GRCh37, and then analyzed in 

the Cufflinks and R program. 

 

3.4 Genome editing with the CRISPR-Cas9 system 

The adaptation of Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) and CRISPR-Associated (Cas) system provides a powerful tool to introduce 

targeted editing into an established genome(Burgess 2013). Before the CRISPR-Cas 

system, this purpose is often taken with protein-based targeting methods, such as 

transcription activator-like effector nuclease (TALEN) systems and zinc finger 

nuclease (ZFN) technology, which often have lower efficiency, long experimental 

protocols and high off-target rates(Veres, Gosis et al. 2014; Koo, Lee et al. 2015). The 

CRISPR-Cas system is carried out with a simplified cloning protocol and DNA 

sequence-based complimentary targeting ensures a more specific knocking out at the 

targeted site. In Paper III, we applied CRISPR-Cas9 system onto KG1a leukemic cell 

line to introduce the site-specific knocking-out of selected enhancer elements in order 

to study the resulting effects on their putative target genes. 

 

CRISPR was first discovered in bacterial genomes and later in archaea as acquired 

sequences. The Cas genes, often located at neighboring sites of CRISPR sequences in 

bacteria genome, possesses helicase and nucleases activity(Burgess 2013). Based on 

these observations, the CRISPR-Cas system was developed for mammalian genome 

engineering(Figure 4). Two major components constitute the basis of the CRISPR-

Cas9 system, the single guider RNA (sgRNA) together with the CRISPR scaffold RNA 

sequence and the human codon optimized endonuclease Cas9 protein. sgRNA is a 

synthetic short nucleotide sequence that is often 20nt in length and is complementary to 

the sequence of the target as a "seed"(Ran, Hsu et al. 2013).  At the following position 

to the target sequence, it must contain a species-specific protospacer motif (PAM) 

sequence. After introducing a CRISPR-Cas vector into the experimental model, 
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vector with the same backbone but with different fluoresce reporters (PLKO5-sgRNA-

EFS vector with eGFP/RFP, Addgene  #57823/57822). The vector carrying the human 

codon optimized S.Pyrogenes Cas9 (PX458, Addgene #48138), was co-transfected by 

electroporation into KG1a cells by the Neon® Transfection system (Invitrogen). Cells 

were cultivated for 48 hours before harvested for FACS sorting(BD, Aira II). Double 

positive cells were sorted into both a bulk population and into 96 well plates with single 

cells in order to generate clones. Single cell colonies were propagated for 3 weeks 

under controlled conditions and then expended for genotyping and RNA extraction. 

Four clones of each, either with a double allelic deletion or wild-type enhancers were 

selected. Expressions of putative target genes were tested using q-PCR.  
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4. Results and Discussion 

In the three studies presented in this thesis, we characterized aberrant DNA methylation 

in CN-AML, correlated the methylation signatures with patient genetic features for 

CGIs (paper I), promoter-distal regions (enhancers, paper III) as well as in genome-

wide level (paper II). We investigated the relationships between alternated DNA 

methylation and gene expression changes, chromatin states, and prognostic values for 

patient clinical outcomes. The gene mutation associated methylation changes in CN-

AML were specifically addressed for NPM1, IDH (Paper I), and DNMT3A (Paper II). 

Prognostic values of DNA methylation PcG target genes were discussed (Paper I). 

Moreover, we addressed the AML associated aberrant enhancer activity in Paper III.  

 

4.1 Paper I 

In Paper I, promoter-focused DNA methylation was profiled on genome level for 58 

AML patients with normal karyotype by Illumina methylation27k arrays (27k, in a total 

of 27,578 probes, 72.5% annotated to CGI) in test cohort, and 60 additional CN-AML 

patient samples were analyzed for validation by 27k and 450k arrays. In this paper, we 

found a significant increase in methylation associating to IDH mutations after 

comparing global average methylation level of each mutation with its wild type 

counterpart. We observed possible differences between IDH1 and IDH2 mutations 

where an elevated methylation level was found only in CGI regions of IDH1 mutated 

but among non-CGI sites for IDH2.  We also found that mutations of IDH and NPM1 

were significantly associated with aberrant DNA methylation signatures as defined by 

unsupervised clustering. This study provides additional evidence for and highlights the 

role of specific mutations in relation to methylation changes in cytogenetic normal 

AML. In later studies, the hypermethylation phenotype related to IDH mutations has 

been well defined by both genetically manipulated cell models and other tumor types 

harboring IDH mutations(Figueroa, Abdel-Wahab et al. 2010; Duncan, Barwick et al. 

2012; Lu, Ward et al. 2012). This hypermethylation phenotype has been linked to TET-

mediated oxidative carboxylation of 5mC and recurrent mutations of TET2, IDH1 and 

IDH2 have been shown to be mutually exclusive in AML. The difference in the 

functional impact of IDH1 and IDH2 mutations are unknown. Along with a difference 

in the localization in different cellular compartments, a more robust 2-HG production 

has been found for mutated IDH2 compared to IDH1 (Ward, Lu et al. 2013). These 
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findings suggest a difference in the dysregulating mechanisms between the two IDH 

mutations.  

 

By hierarchal clustering, we also found that HOX genes are enriched for differential 

methylation changes in AML. Among four differentially methylated CpG clusters 

(DMCs), HOX genes were particularly represented in the groups with methylation 

changes predominantly in CGI regions. The homeobox gene family is a well-defined 

polycomb target which plays an important function during the developmental 

process(Bird 2007; Khan, Lee et al. 2015). Moreover, the key developmental genes are 

marked with both H3K27me3 and H3K4me1 at the same time(Bernstein, Mikkelsen et 

al. 2006). Based on this knowledge, we further integrated PRC2 ChIP-seq data and 

genes with bivalent histone marks with the results from our Illumina 27K array. Both 

genesets were found to have significantly increased CGI methylation. Moreover, PRC2 

targets had greater changes than non-PRC2 targets. After addressing the prognostic 

value of methylation level of the PRC2 targets gene in CN-AML patients, we found 

that increased PRC2 target methylation was associated with a better clinical outcome. 

Overexpression of HOX genes is well documented in AML with mixed lineage 

leukemia and results suggest a more unfavorable clinical outcome for these 

patients(Krivtsov and Armstrong 2007). Our study showed that elevated HOX 

expression may associate with low DNA methylation, and the DNA methylation 

signature of HOX genes can be an independent predictor for patient prognosis. 

 

4.2 Paper II 

In the past decades, methylation studies have been focused on CpG rich promoter 

regions. However, more recent study by Feinberg et.al., have shown a higher degree of 

methylation variation in cancer cells in regions adjacent to CGIs (named CGI shores) 

and even further distal regions(Irizarry, Ladd-Acosta et al. 2009). This finding has 

raised questions about the functional role of genome-wide DNA methylation changes 

outside CGIs and their relation to gene expression regulation and chromatin 

organization. The updated Illumina Methylation array platform, Illumina 450K, is 

composed of over 480,000 probes covering genome-wide CGIs, CGI adjacent regions 

(shores, <2kb), near proximal regions (shelves, 2-4kb) and distal regions (open sea 

>4kb)(Dedeurwaerder, Defrance et al. 2011). In paper II, by using the Illumina 450K 

array, we characterized methylation of 62 CN-AML patients on genome-wide level 

together with CD34+ cells from the bone marrow of healthy donors. Indeed, 
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methylation changes were observed in regions ranging from CGIs to open seas and 

differentially methylated CpG residues (DMCs) were found to be enriched in regions 

farther from CGIs (shelves and open seas, p<10-3). Although promoter 

hypermethylation has been well recognized in most type of malignant diseases, DNA 

methylation changes in non-CGI regions in AML have not previously been well 

defined. Our study, among others, provides an overlook of altered methylation in non-

CGI regions. We demonstrated that methylation changes affect regions distal to 

promoters more frequently compared to promoter CGIs, and moreover, we found 

enhancer probes, as defined in the Illumina array, to be over-represented for DMCs. 

Meanwhile, we have also addressed dynamic methylation changes during normal 

granulopoiesis in collaboration with Rönnerblad et al.(212). Therefore, we 

hypothesized that differential methylation in CGI distal regions affects enhancer 

activity and that this can have a role in the leukemogenic process in AML. This 

question was further addressed in paper III. 

 

Transcription factors (TFs) drive the cell differentiation process and typically, the 

normal function of lineage-specific TFs is disrupted in hematological malignancies, 

especially in AML. We hypothesize that transcription factors are preferentially targeted 

by DNA methylation changes. We analyzed the methylation changes in a list of 1620 

TFs obtained from Fantome project (Forrest, Kawaji et al. 2014) and found that 

aberrant methylation was preferentially located in TF genes compared to the genes at a 

global level (p<10-4). Among TFs, WT1 gene was most enriched for DMCs with 

consistent hypermethylation in the intragenic region but not main promoter (p<10-4). 

WT1 is known to be overexpressed and yet recurrently mutated in myeloid 

malignancies (see introduction). Its intragenic site has previously shown allelic-specific 

methylation and is believed to regulate both an alternative transcript of WT1 and an 

antisense transcript(Hancock, Brown et al. 2007; Brown, Power et al. 2008). In the 

hematological system, overexpression of WT1 leads to both G1 arrest of progenitor 

cells and promoted differentiation towards the myeloid monocyte lineage(Ellisen, 

Carlesso et al. 2001). In AML, overexpression of WT1 has been linked to 

hypermethyaltion of an intragenic CTCF binding site(Zitzmann, Mayr et al. 2014). 

Taken together with our findings, the WT1 gene serves an example of how 

dysregulation at several levels may occur.  Interestingly, it is also found that the 

occurrence of WT1 mutation not only anti-correlate with TET2 or IDH mutations, but 

that it also is regulating 5hmC through interacting with TET2 and TET3, inducing 
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target gene expression(Rampal, Alkalin et al. 2014; Wang, Xiao et al. 2015). Therefore, 

WT1 may mediate an oncogenic mechanism that is the result of the loss of imprinting 

and that induces leukemogenesis via TET-mediated epigenetic reprogramming. 

 

Our previous study showed methylation patterns in CN-AML associated with IDH or 

NPM1 mutations, using a strongly CGI biased global methylation analysis (Illumina’s 

27K methylation array). In this study, we extended the window and investigated DNA 

methylation with better coverage also including methylation outside of CGIs using the 

450K array. We then found mutations of DNMT3A to have the most pronounced impact 

in defining methylation-based clusters by consensus clustering on the most variably 

methylated CpG residues (overall SD>0.15)(Senbabaoglu, Michailidis et al. 2014; 

Kiselev, Kirschner et al. 2017). Clusters in the lower hierarchy were linked to the 

mutations of NPM1 and IDH and in the least step to FLT3 mutations. Unsupervised 

consensus clustering not only determines the hierarchy of the dataset but also assesses 

the stability of the discovered clusters. Our result highlighted the importance of 

DNMT3A mutations in determining the leukemia-specific DNA methylation signatures 

in relation to other gene mutations. By further analysis, we found that DNMT3A 

mutations resulted in a clear genome-wide hypomethylated pattern where the HOX 

gene family was the only protein family that was significantly affected. 

 

Before us, DNMT3A mutation associated hypomethylation was observed in specific 

gene promoters (Hajkova, Markova et al. 2012). It is also found that HOX loci are 

located in hypomethylated DNMT3A dependent canyons(Jeong, Sun et al. 2014). 

Exogenous expression of mutated DNMT3A in mice results in a dominant negative 

effect on establishing DNA methylation(Kim, Zhao et al. 2013). In addition, mutations 

in the DNMT3A gene result in reactivation of MEIS1 and HOX in hematological 

malignancies(Ferreira, Heyn et al. 2016; Tan, Sun et al. 2016). One study pointed out 

that dysregulation of HOX genes is a result from BMI1 dysfunction due to DNMT3A 

mutations. Interestingly, a specific interaction between the PRC1 complex and 

DNMT3AR882 mutations has been also reported(Koya, Kataoka et al. 2016). These 

findings also suggested a leukemogenic mechanism where PRC1 mediates suppression 

of differentiation-associated genes while dysregulation of genes such as the HOX 

family leads to enhanced HSC proliferation in DNMT3A mutated leukemia.  
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4.3 Paper III 

In this study, we explored AML specific methylation induced dysregulation of 

enhancer elements as well as its effects on chromatin status and putative target genes.  

We integrated information on enhancers, as defined by the FANTOM consortium based 

on CAGE analysis, with our Illumina 450K data for 57 CN-AML patients and normal 

bone myeloid cells representing 4 differentiation stages (CMP to PMN). Our results 

revealed pronounced cell type-specific signatures of CAGE-defined enhancers by the 

methylation status. This suggests that DNA methylation potentially could be involved 

regulating hematopoietic cell states through methylation of enhancers. We defined 

changes in DNA methylation located in enhancers as belonging to one of three groups: 

either changes specific for normal myeloid development, specific for AML compared 

to any normal myeloid cells or finally as changes that were shared between normal 

myeloid development and those found in AML. Our observations showed that enhancer 

methylation in AML could represent both changes the parental epigenome as well as 

cancer specific changes. Moreover, recurrent mutations occurring in AML were found 

influence DNA methylation to a lesser degree in CAGE enhancer compared to the rest 

of the genome. This may suggest that different pathogenetic mechanisms converge to 

altered enhancer activities. A similar observation has been made in leukemic stem cells 

where mutation-independent methylation signatures have been defined(Jung, Dai et al. 

2015). However, it has also been shown that Tet2 mutation leads to enhancer 

hypermethylation in mice(Rasmussen, Jia et al. 2015). Furthermore, it would be of 

interest to analyze 5hmC levels of differentially methylated enhancers and integrate this 

with information of the samples’ TET2 mutation status.  

 

Moreover, we linked DNA methylation changes to chromatin states and histone marks. 

Firstly, we found that differential methylation primarily occurred at regulatory regions 

of marked by DHSs in CD34+ cells. By further analyses of DHS-seq data from two 

leukemia cell lines and 4 AML patient samples together with the analysis of the histone 

marks H3K4me1, H3K4me3, H3K27ac, and H2A.Z.  We found that hypermethylated 

DMCs are simultaneously associated with a reduced accessibility and a loss of active 

histone marks. Among hypomethylated DMCs, although no overall pattern of 

chromatin changes was observed, we found that a subset of enhancers undergone DNA 

hypomethylation was aberrantly activated accommodating with an increase in active 

histone marks (H3K27ac and H2A.Z). Moreover, we also found that DNA 

hypomethylation occurred in both poised enhancers marked with H3K4me1 in normal 
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CD34+ and the newly formed enhancer sites in leukemia. These aberrantly activated 

enhancers were associated with an increased transcription of their target genes, and this 

activation of transcription could be modified using CRISPR-mediated knock out of the 

enhancer sequences. 

 

In this study, we could demonstrate a link between aberrant DNA methylation and 

acquired enhancer activity changes in AML. We could show that gaining methylation 

at enhancers corresponds to a repressed activity, however, losing methylation alone is 

not sufficient to induce enhancer activation. Silencing of active enhancers has been 

previously shown in multiple myeloma where enhancers required for B-cell 

differentiation can be targeted and silenced(Agirre, Castellano et al. 2015). Moreover, a 

tumor-related gain of DNA methylation in super-enhancers has been linked to 

transcriptionally repressive effects on corresponding genes in a recent study(Heyn, 

Vidal et al. 2016). It is noteworthy that hypermethylation can be found at the same 

enhancer loci across several cancer types in this study. It is not known how these 

enhancers acquire aberrant DNA methylation changes and how this related to tissue 

specificity. Transcription factors are likely to coordinate with DNA methylation 

mechanisms when establishing activate enhancers(Stadler, Murr et al. 2011; Feldmann, 

Ivanek et al. 2013). For example, hypomethylated super-enhancers co-occur with 

upregulated TFs in colon cancer(Heyn, Vidal et al. 2016). To note, we observed distinct 

enrichments of transcription factor binding motifs in hyper- and hypomethylated 

CAGE-enhancers, respectively. PU.1 and AP1 binding sites were found significantly 

enriched in hypomethylated sites. Further studies should address the question what 

transcription factors mediate additional signals to activate hypomethylated enhancer in 

AML. 
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5. Concluding Remarks  

These three studies represent an effort to characterize aberrant DNA methylation in 

cytogenetically normal AML in relation to genetic mutations, transcriptomic 

alterations, histone modification marks as well as clinical outcome. The research focus 

has extended from primarily an interest in methylation of promoters, and CGI enriched 

regions to TSS-distal regulatory elements and this development is also reflected in this 

thesis. 

 

A CGI dominated differential methylation pattern in CN-AML has been linked to 

mutations in the IDH and NPM1 genes in the paper I. Moreover, clusters of differential 

methylation revealed preferential methylation of genes in the HOX family, which lead 

to a more focused analysis on PRC2 targets. The prognostic value of using DNA 

methylation of PRC2 targets as a predictor of patient outcome was particularly 

discussed in this work. The data proposed DNA methylation as a novel marker for 

predicting patient outcome in CN-AML, and potentially this could indicate that new 

subgroups of AML could be discovered based on DNA methylation. 

 

With the extended view on DNA methylation in paper II, we found an enrichment of 

leukemia-specific DNA methylation changes in regions distal to CGIs in CN-AML. We 

also found that transcription factors are a preferred target of aberrant DNA methylation. 

Moreover, we described a pattern of global hypomethylation of AML samples with 

DNMT3A mutations as we further classified the hierarchy of the relationships between 

gene mutations and DNA methylation profiles. 

 

The study of leukemic specific enhancer methylation changes in paper III revealed an 

interplay between aberrant DNA methylation and altered enhancer activity in relation 

to the leukemic transcriptome, highlighting the pathogenic dysregulation of enhancer 

elements in leukemia. This study provided novel observations regarding the regulatory 

function of DNA methylation in the AML epigenome and provided evidence of 

acquired aberrant enhancer activities in CN-AML. 

 

Nevertheless, technical limitation of Illumina platforms as the restricted coverage and 

their inability to distinguish 5hmC from 5mC leaves remaining questions. By 
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considering TET mutations and integrating this with a 5hmC analysis, this would give a 

more comprehensive of AML specific DNA methylation changes in the future. 

 

To conclude, leukemia-specific changes of DNA methylation correlates with patient 

genotypes and the clinical outcome of CN-AML patients. It is coherent with pathogenic 

mechanisms and the changes contribute to a certain degree of transcriptomic 

alterations. Characterization of genome-wide DNA methylation profiles does not only 

provide a more comprehensive view of the AML epigenome and aberrant molecular 

events but also serves to identify potentially novel mechanisms of leukemia 

transformation and may also identify targets for novel AML treatments. The exact 

contribution of DNA methylation changes and other epigenetic mechanisms to the 

leukemogenic process needs to be further studied and so do their relation to genetic 

mutations. If epigenetic changes can precede and pave the way for genetic changes is 

cancer is still an unknown question. Also, as all novel prognostic markers in AML, they 

need to be further validated in relation to treatment decisions such as how 

hematopoietic stem cell transplantation can impact the prognostic predictions of 

epigenetic marks. Such studies are needed before they could be implemented as new 

prognostic factors in the clinical routine.  
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