

From the Department of Medicine, Huddinge – MedH
Karolinska Institutet, Stockholm, Sweden

Induced pluripotent stem cell models of hematopoiesis in development and disease

Jonas Thier

Stockholm 2026

All previously published papers were reproduced with permission from the publisher.

Published by Karolinska Institutet.

Printed by Universitetsservice US-AB, 2026

© Jonas Thier 0009-0007-5226-0372

ISBN 978-91-8017-974-4

DOI <https://doi.org/10.69622/30811007>

Cover illustration: Hand-drawn illustration for this thesis by Corinna Mayer, depicting the generation of hematopoietic cells from patient-derived iPSCs for disease modeling and drug discovery.

Induced pluripotent stem cell models of hematopoiesis in development and disease

Thesis for Doctoral Degree (Ph.D.)

By

Jonas Thier

The thesis will be defended in public in Erna Möllersalen, Neo, Blickagången 16, Huddinge, on February 13, 2026, 09:00

Principal Supervisor:

Vanessa Lundin, PhD
Karolinska Institutet
Department of Medicine, Huddinge
Center for Hematology and Regenerative Medicine

Co-supervisors:

Professor Eva Hellström Lindberg
Karolinska Institutet
Department of Medicine, Huddinge
Center for Hematology and Regenerative Medicine

Andreas Lennartsson, PhD
Karolinska Institutet
Department of Medicine, Huddinge
Center for Hematology and Regenerative Medicine

Opponent:

Professor Ivo Touw
Erasmus University Medical Center
Department of Hematology

Examination Board:

Charlotta Böiers, MD, PhD
Lund University
Faculty of Medicine
Department of Laboratory Medicine
Division of Molecular Hematology (DMH)

Professor Johan Holmberg
Umeå University
Faculty of Science and Technology and
Faculty of Medicine
Department of Molecular Biology

Peter Svensson, PhD
Karolinska Institutet
Department of Medicine, Huddinge
Center for Infectious Medicine

"There is no knowing for a fact. The only dependable things are humility and looking."

— Richard Powers, *The Overstory*

Popular science summary of the thesis

Our bone marrow continually makes new blood cells, including oxygen-carrying red cells, infection-fighting immune cells, and platelets that prevent bleeding. This process, hematopoiesis, depends on stem and progenitor cells that must tightly balance self-renewal with differentiation. When these cells acquire disease-driving genomic changes, blood production can become unbalanced, abnormal clones can expand, and disorders such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) can develop. Studying disease mechanisms directly in patients can prove difficult because bone marrow samples are limited, heterogeneous, and hard to maintain in long-term culture. This thesis therefore uses patient-derived induced pluripotent stem cells (iPSCs), which can be expanded indefinitely and differentiated into blood progenitors, to recreate disease-relevant models of hematopoietic development in a controlled system and to test whether specific genetic lesions create targetable weaknesses.

Study I investigated *SF3B1*-mutant MDS, where RNA splicing is altered. Using genetically matched *SF3B1*-mutant and control iPSCs, we identified an *SF3B1*-specific mis-splicing event in *UBA1*, detected in iPSC-derived progenitors, cell lines, and supported by MDS patient cohort data. While the mis-spliced *UBA1* RNA was stable, the resulting protein product was rapidly degraded, lowering total *UBA1* protein levels. *UBA1* is essential to maintain cellular protein balance and the reduced *UBA1* reserve created a vulnerability. *SF3B1*-mutant cells showed greater sensitivity to the *UBA1* inhibitor TAK-243 across cell models, iPSC-derived CD34⁺ progenitors, and primary patient colony assays.

Study II focused on aggressive *KMT2A*-rearranged AML. Patient-derived AML iPSCs and isogenic controls were transcriptionally similar at the iPSC stage but diverged during hematopoietic specification, when AML-like progenitors showed abnormal repression of developmental and hematopoietic programs. Multiple analyses connected this state to a Polycomb (PRC2)-mediated epigenetic repression. Targeting PRC2 by pharmacologic EZH1/2 inhibition with UNC1999, especially in combination with 5-azacitidine, derepressed Polycomb-associated gene sets and preferentially impaired clonogenic output and replating capacity in *KMT2A*-rearranged models. Together, these studies show how iPSC-based disease modeling can connect defined genetic variants to tractable mechanisms and actionable vulnerabilities, supporting *UBA1* targeting in *SF3B1*-mutant MDS and Polycomb-linked epigenetic dependency in *KMT2A*-rearranged AML.

Allgemeinverständliche Zusammenfassung

Unser Körper produziert ständig neue Blutzellen, darunter rote Blutkörperchen, Immunzellen und Blutplättchen. Dieser Prozess, die Hämatopoese, beruht auf Stamm- und Vorläuferzellen, die Selbsterneuerung und Differenzierung im Gleichgewicht halten müssen. Erwerben diese Zellen krankheitstreibende genetische Veränderungen, können sich abnorme Zellen ausbreiten und Erkrankungen wie myelodysplastische Neoplasien (MDS) und akute myeloische Leukämie (AML) entstehen. Krankheitsmechanismen lassen sich im Patientenmaterial oft nur schwer untersuchen, weil Proben begrenzt, heterogen und in Kultur schwer zu erhalten sind. Diese Arbeit nutzt daher induzierte pluripotente Stammzellen (iPSCs) von Patienten, um krankheitsrelevante Prozesse in Kultur kontrolliert nachzubilden und gezielt angreifbare Schwachstellen zu identifizieren.

Studie I untersucht *SF3B1*-mutiertes MDS, bei dem die RNA-Spleißeung verändert ist. Mithilfe *SF3B1*-mutierter und Kontroll-iPSCs identifizierten wir ein *SF3B1*-spezifisches Fehl-Spleißen in *UBA1* (*UBA1^{ms}*), nachweisbar in iPSC-abgeleiteten Blutzellen und gestützt durch Patientenkohortendaten. Obwohl die fehl-spleißte *UBA1*-RNA stabil bleibt, war das entstehende Proteinprodukt instabil und wurde rasch abgebaut, wodurch die Gesamtmenge an *UBA1*-Protein sank. *UBA1* ist ein Schlüsselenzym des Proteinhaushalts und die verringerte *UBA1*-Reserve stellte eine Verwundbarkeit dar. Entsprechend waren *SF3B1*-mutierte Zellen gegenüber dem *UBA1*-Inhibitor TAK-243 in Zellmodellen, iPSC-abgeleiteten CD34⁺-Vorläuferzellen und primären Patientenzellen empfindlicher.

Studie II fokussiert auf aggressive *KMT2A*-rearrillierte AML. AML-iPSCs und isogene Kontrollen waren im iPSC-Stadium ähnlich, entfalteten jedoch während der Differenzierung unterschiedliche genetische Programme, in denen AML-Vorläuferzellen eine abnorme Repression entwicklungs- und hämatopoese-assoziierter Vorgänge zeigten. Mehrere Analysen verknüpften diesen Zustand mit Polycomb (PRC2). Die Hemmung mit UNC1999, insbesondere in Kombination mit 5-Azacitidin, stellte Polycomb-assozierte Genprogramme teilweise wieder her und beeinträchtigte in *KMT2A*-rearrangierten Modellen die leukämische Kapazität.

Zusammen zeigen diese Studien, wie iPSC-basierte Krankheitsmodelle definierte genetische Veränderungen mit untersuchbaren Mechanismen und therapeutisch nutzbaren Verwundbarkeiten verknüpfen können. Sie stützen *UBA1* als Zielstruktur bei *SF3B1*-mutiertem MDS und eine Polycomb-assozierte epigenetische Abhängigkeit bei *KMT2A*-rearrangierter AML.

Abstract

Hematopoiesis is a tightly regulated process that sustains the production of blood cells. Disruption in hematopoietic stem and progenitor cells (HSPCs) can impair differentiation, promote clonal expansion, and lead to myeloid malignancies such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). Mechanistic studies and drug discovery are often limited by the availability, heterogeneity, and limited ex vivo stability of primary patient material. In this thesis, patient-derived induced pluripotent stem cells (iPSCs), together with isogenic wild-type controls, were used to model hematopoietic differentiation and link recurrent disease-defining lesions to downstream mechanisms and therapeutic vulnerabilities.

In **Study I**, we investigated *SF3B1*-mutant MDS, a distinct subgroup characterized by RNA mis-splicing and erythroid dysplasia. Isogenic *SF3B1*^{K70OE} and *SF3B1*^{WT} iPSCs from an MDS patient were differentiated into hematopoietic cells and analyzed by full-length RNA sequencing, uncovering mutated *SF3B1*-specific mis-splicing of *UBA1*, which encodes the major E1 enzyme at the apex of the ubiquitination cascade. While the mis-spliced *UBA1* transcript was stable, its protein product was rapidly degraded, lowering total *UBA1* levels and rendering *SF3B1*-mutant cells particularly sensitive to the *UBA1* inhibitor TAK-243. CD34⁺ RNA sequencing from an MDS patient cohort confirmed *UBA1* mis-splicing as a prevalent feature of MDS-*SF3B1*, absent in other spliceosome-mutant MDS cases and healthy controls. Functionally, TAK-243 selectively reduced *SF3B1*-mutant primary CD34⁺ cells and decreased mutant colony output, sparing wild-type hematopoietic progenitors.

In **Study II**, we addressed epigenetic and transcriptional deregulation in *KMT2A*-rearranged (*KMT2A*-r) AML using patient-derived iPSCs. Transcriptional analysis during iPSC-directed hematopoietic development identified key activators and repressors contributing to the altered regulatory landscape in *KMT2A*-r AML. Integration with chromatin immunoprecipitation sequencing analyses indicated that a substantial fraction of genes downregulated in AML iPSC-derived HSPCs were direct targets of Polycomb Repressive Complex 2 (PRC2). Pharmacologic inhibition PRC2 via EZH1/2 using UNC1999, in combination with 5-azacitidine, reactivated PRC2 target genes specifically in AML-HSPCs, shifting expression toward a more normal hematopoietic program and reducing leukemic properties in *KMT2A*-r cells. Together, these findings support targeting Polycomb-associated repression as a potential epigenetic strategy in *KMT2A*-rearranged AML.

List of scientific papers

I. ***SF3B1*-mutant models of RNA mis-splicing uncover *UBA1* as a therapeutic target in myelodysplastic neoplasms**

Thier J, Hofmann S, Kirchhof KM, Todisco G, Mortera-Blanco T, Barbosa I, Björklund AC, Deslauriers AG, Papaemmanuil E, Papapetrou EP, Hellström-Lindberg E, Moura PL, Lundin V. Leukemia 2025; 39:2801-2811.

<https://doi.org/10.1038/s41375-025-02740-1>.

II. **Targeting dysregulated epigenetic and transcription factor networks in *KMT2A*-rearranged AML using iPSC models**

Palau A[#], Thier J[#], Naughton A[#], Tae-Jun Kwon A, Kaczkowski B, Cabrerizo Granados D, Hofmann S, Kaczkowski B, Zhong X, Lehmann S, Arner E, Lundin V*, Lennartsson A*.

#Equal contribution. *Shared last authorship.

Blood Neoplasia 2025; 3(1):100172.

<https://doi.org/10.1016/j.bneo.2025.100172>.

Scientific papers not included in the thesis

I. Targeting IMPDH to inhibit SAMHD1 in *KMT2A*-rearranged leukaemia

Klootsema Y, Tsesmetzis N, Sharma S, Hofmann S, Thier J, Dirks C, Hormann FM, Yagüe-Capilla M, Bohlin A, Bengtzen S, Lehmann S, Chabes A, Jädersten M, Lundin V, Rudd SG, Lilienthal I*, Herold N*. Cell Cycle 2025; 1-9.

<https://doi.org/10.1080/15384101.2025.2601796>.

II. Human uterine NK cells express CD96/TACTILE under the regulation of IL-15 and TGF β 1

Mayer C, Sun D, Thier J, Strunz B, Schott K, Kaipe H, Lundin V, Gidlöf S, Björkström NK, Ivarsson MA.

Journal of Reproductive Immunology 2025; 172:104647.

<https://doi.org/10.1016/j.jri.2025.104647>.

Contents

1	Background	1
1.1	Hematopoiesis	1
1.1.1	Developmental hematopoiesis	1
1.1.2	Adult hematopoiesis	2
1.1.3	Erythropoiesis	3
1.1.4	The bone marrow niche	4
1.1.5	Clonal hematopoiesis	5
1.2	Myelodysplastic neoplasms	6
1.2.1	MDS diagnosis	7
1.2.2	Classification and prognosis	9
1.2.3	Treatment of MDS	9
1.2.4	Genomic landscape of MDS	10
1.2.5	<i>SF3B1</i> -mutant MDS and MDS-RS	12
1.2.6	<i>UBA1</i> mutations	14
1.3	Acute myeloid leukemia	15
1.3.1	Presentation and diagnosis	15
1.3.2	Classification and prognosis	15
1.3.3	AML therapy	17
1.3.4	Genomic landscape of AML	18
1.3.5	<i>KMT2A</i> -rearranged AML	20
1.4	Experimental models of myeloid neoplasms	22
1.5	Induced pluripotent stem cells	24
1.5.1	Hematopoietic differentiation protocols	25
1.5.2	Erythroid differentiation of iPSCs	26
1.5.3	iPSCs as models of hematopoietic malignancies	27
2	Research aims	33
3	Materials and Methods	35
4	Results and Discussion	45
4.1	Study I	45
4.2	Study II	52
5	Conclusions	59
6	Points of perspective	61
7	Acknowledgements	69
8	Declaration about the use of generative AI	75
9	References	77

List of abbreviations

3D	three-dimensional
AGM	aorta–gonad–mesonephros
AML	acute myeloid leukemia
ANOVA	analysis of variance
ATM	ATM serine/threonine kinase
BFU-E	burst-forming unit–erythroid
BMP4	bone morphogenetic protein 4
CAGE	cap analysis of gene expression
CCUS	clonal cytopenia of undetermined significance
CD235a	glycophorin A
CD34	sialomucin
CD43	leukosialin
CD45	protein tyrosine phosphatase, receptor type, C
CD71	transferrin receptor protein 1
cDNA	complementary DNA
CFU	colony-forming unit
CFU-E	colony-forming unit–erythroid
CH	clonal hematopoiesis
CHIP	clonal hematopoiesis of indeterminate potential
ChIP	chromatin immunoprecipitation
CLP	common lymphoid progenitor
CMP	common myeloid progenitor
CO ₂	carbon dioxide
ddPCR	droplet digital PCR
del(...)	deletion of chromosome ...
DMEM	Dulbecco's Modified Eagle Medium
DMSO	dimethyl sulfoxide

DNA	deoxyribonucleic acid
DNMT	DNA methyltransferase
ELN	European LeukemiaNet
EMP	erythro-myeloid progenitor
EPO	erythropoietin
FAB	French–American–British (classification)
FBS	fetal bovine serum
FDA	Food and Drug Administration
FISH	fluorescence in situ hybridization
FLT3-ITD	FMS-like tyrosine kinase 3-internal tandem duplication
G-CSF	granulocyte colony-stimulating factor
H3K27me3	histone H3 lysine 27 trimethylation
H3K4me3	histone H3 lysine 4 trimethylation
H3K79	histone H3 lysine 79
hESC	human embryonic stem cell
HOX	homeobox (gene family shorthand)
HRP	horseradish peroxidase
HSC	hematopoietic stem cell
HSCT	hematopoietic stem cell transplantation
HSPC	hematopoietic stem and progenitor cell
ICC	International Consensus Classification
IL	Interleukin
inv(...)	inversion of chromosome ...
iPSC	induced pluripotent stem cell
IPSS	International Prognostic Scoring System
IRB	Institutional Review Board
KMT2A	lysine methyltransferase 2A (formerly MLL)
KMT2A-r	<i>KMT2A</i> -rearranged

LT-HSC	long-term hematopoietic stem cell
MARA	motif activity response analysis
MDS	myelodysplastic neoplasms
MDS-RS	MDS with ring sideroblasts
MDS- <i>SF3B1</i>	MDS with <i>SF3B1</i> mutation
MEP	megakaryocyte–erythroid progenitor
MG-132	proteasome inhibitor
MLLT3	Mixed-lineage leukemia translocated to 3 (AF9)
MPP	multipotent progenitor
mRNA	messenger RNA
NFYA	nuclear transcription factor Y subunit alpha
NMD	nonsense-mediated mRNA decay
P/S	penicillin–streptomycin
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PRC1/2	Polycomb repressive complex 1/2
RBC	red blood cell
RNA-seq	RNA sequencing
RPMI 1640	Roswell Park Memorial Institute medium 1640
RT-PCR	reverse transcription PCR
RT-qPCR	reverse transcription quantitative PCR
SCF	stem cell factor
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM	standard error of the mean
SF3B1	splicing factor 3B subunit 1
ST-HSC	short-term hematopoietic stem cell
STRING	Search Tool for the Retrieval of Interacting Genes
t-AML	therapy-related acute myeloid leukemia

t(...;...)	chromosomal translocation notation
TAK-243	selective UBA1 inhibitor
TGF- β	transforming growth factor beta
TPO	thrombopoietin
UBA1	ubiquitin-like modifier activating enzyme 1
<i>UBA1^{ms}</i>	UBA1 mis-spliced transcript/isoform
UNC1999	dual EZH1/2 inhibitor
VAF	variant allele frequency
VEGF	vascular endothelial growth factor
VEXAS	vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome
WHO	World Health Organization

Introduction

The Background section of this thesis sets the conceptual framework for the two studies that use patient-derived induced pluripotent stem cells (iPSCs) to model myeloid disease in a human, stage-specific hematopoietic context. It begins with an overview of normal hematopoiesis, spanning developmental and adult blood formation, to establish a physiological reference point. Since iPSC-based hematopoietic differentiation draws heavily on early developmental programs, a working understanding of developmental hematopoiesis is important for interpreting differentiation protocols and for recognizing the strengths and limitations of iPSC-derived models. The next section reviews myelodysplastic neoplasms (MDS), including diagnosis, mutations and risk stratification, and current therapeutic strategies, before focusing on *SF3B1*-mutant MDS/MDS-RS and the rationale for examining *UBA1* in **Study I**. The chapter then turns to acute myeloid leukemia (AML), covering clinical features, classification, treatment, and the broader genetic landscape, followed by a focused presentation of *KMT2A*-rearranged AML, which provides the disease context for **Study II**. The final sections summarize commonly used experimental model systems for myeloid neoplasms and introduce iPSC approaches, including key principles of hematopoietic and erythroid differentiation and how iPSC-based platforms enable mechanistic interrogation and therapeutic testing in genetically defined settings.

1 Background

1.1 Hematopoiesis

Hematopoiesis is the process by which all cellular components of blood are generated and replenished throughout life. These cells perform essential functions, including oxygen transport, hemostasis and wound repair, and immune defense against pathogens and malignant transformation [1,2]. Although blood cells are highly specialized according to their function, their developmental programs are remarkably conserved among vertebrates. This has enabled the study of hematopoietic development and function using animal models, primarily mouse and zebrafish [3].

1.1.1 Developmental hematopoiesis

Given the essential functions of blood cells, the hematopoietic system is established early in embryogenesis, producing cells adapted to the demands of the developing conceptus [4]. In mammals, developmental hematopoiesis proceeds through three successive, spatially and temporally distinct waves (Figure 1) [5–8]. The extraembryonic yolk sac, a membranous structure outside the embryo, is the first site of hematopoietic development [4,9]. Here, mesoderm-derived blood islands predominantly generate large, nucleated primitive erythroblasts, along with primitive macrophages and megakaryocytes [10–12]. With the onset of cardiac activity, these primitive erythroblasts enter the circulation and supply oxygen to meet the demand for growth and organ development [13]. This wave is short-lived and followed by a second, yolk sac-derived, wave of erythro-myeloid progenitor cells and the first progenitors with lymphoid potential [7,14–16].

Definitive hematopoietic cells, capable of long-term multilineage reconstitution, originate from a third, intraembryonic wave within the aorta–gonad–mesonephros (AGM) region of the dorsal aorta [17,18]. Here, a specialized subset of CD34⁺ hemogenic endothelial cells change identity through endothelial-to-hematopoietic transition, budding from the endothelium and ultimately generating the first hematopoietic stem cells (HSCs) [2,19–25]. The genesis and population size of AGM HSCs have been debated. Lineage-tracing experiments based on vascular endothelial cadherin expression, imaging of AGM explants in mouse and *in vivo* imaging of the AGM region in zebrafish embryos collectively support an endothelial origin of definitive HSCs [26–28]. Fluorescent reporter and

genetic barcoding approaches indicate that approximately 500 distinct clones arise from the AGM and go on to sustain adult hematopoiesis [29–31]. Detached from the aortic wall, this small pool of cells enters the bloodstream and migrates to the fetal liver to mature and expand further, before homing to the bone marrow to establish life-long niches and largely enter quiescence [32–35]. These AGM-derived HSCs are defined by long-term, multilineage reconstitution and self-renewal and support lifelong hematopoiesis [18,36].

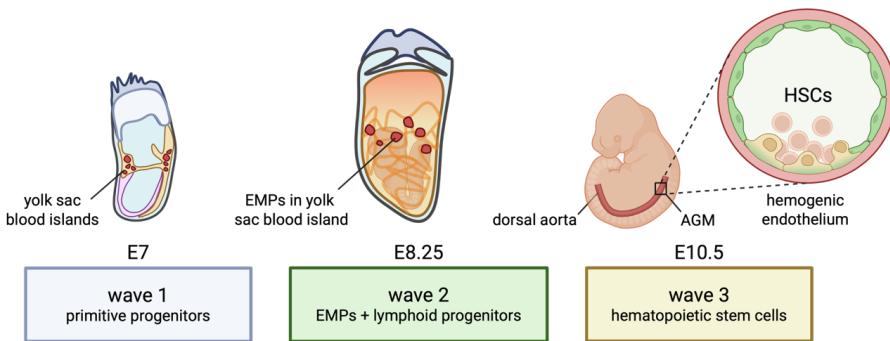


Figure 1: Sites of hematopoiesis during embryonic development adapted from Yoder (2014) [37]. E7, 8.5, and 10.5 correspond to mouse developmental stages. EMP, erythromyeloid progenitor; HSC, hematopoietic stem cell; AGM, aorta-gonad-mesonephros. Created with BioRender.com.

1.1.2 Adult hematopoiesis

The classical model for the generation of hematopoietic lineages has been described as a hierarchical (tree-like) structure with terminally differentiated cells arising from a small pool of self-renewing HSCs at the apex, generating distinct sets of progenitors that become progressively specialized and restricted to their respective lineages (Figure 2, left) [3,38,39]. The HSC compartment can be further subdivided by characteristics such as reconstitution capacity, quiescence, and lineage output into long- and short-term HSCs [38,40,41]. Long-term (LT) reconstituting HSCs persist over the lifetime, remaining largely quiescent but able to transition in and out of the cell cycle [42–44]. LT-HSCs give rise to short-term (ST) HSCs, which can still reconstitute all blood lineages but may exhaust their self-renewal capacity, as evidenced by failure to engraft secondary recipients in serial transplantation experiments [45]. ST-HSCs differentiate into multipotent progenitors (MPPs) that proliferate and give rise to progenitors with lymphoid and myeloid potential (often described as CLPs and CMPs in classical models).

Although this scheme of organized cell identities and stepwise lineage restriction is convenient for assigning markers and attributes, the classical model is increasingly challenged by advancements in the field. Advances in single-cell isolation and profiling, including single-cell RNA sequencing (RNA-seq), suggest that hematopoietic specification and cell fate restriction may occur along a continuum, with a more heterogeneous HSC and progenitor pool exhibiting plasticity and lineage biases (Figure 2, right) [46–53]. Investigating the properties of lineage biases within the HSC compartment and identifying new markers that distinguish specific populations have further demonstrated that cells collectively referred to as HSCs comprise multiple subsets of cells with distinct clonal contributions [54–58].

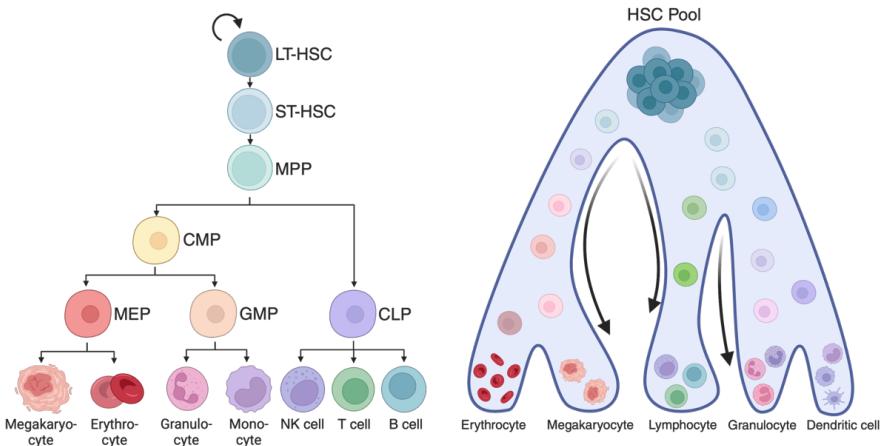


Figure 2: Hematopoiesis models as a “stepwise” process (left), compared to the “continuous” model (right), adapted from Laurenti and Göttgens (2018) [44]. LT, long-term; ST, short-term; MPP, multipotent progenitor; CMP, common myeloid progenitor; MEP, megakaryocyte–erythroid progenitor; GMP, granulocyte–monocyte progenitor; CLP, common lymphoid progenitor. Created with BioRender.com.

1.1.3 Erythropoiesis

The remarkable generative capacity of the hematopoietic system is illustrated by the large numbers of red blood cells (RBCs) that must be replenished constantly to sustain gas exchange throughout the organism [59]. In healthy adults, erythropoiesis produces on the order of 2×10^{11} new RBCs per day [60], which corresponds to roughly two million erythrocytes every second, about one for every inhabitant of the Stockholm metropolitan area.

To meet this demand, RBCs are the product of a series of expansion and differentiation steps, along which hematopoietic progenitors become increasingly lineage-restricted (Figure 3) [59]. The earliest committed erythroid progenitors,

burst-forming unit–erythroid (BFU-E) and colony-forming unit–erythroid (CFU-E), arise from megakaryocyte–erythroid progenitors (MEPs) and are defined by their *in vitro* colony-forming capacity [61,62]. Along the trajectory from CFU-E to mature erythrocytes, erythroid precursors progressively decrease in size, accumulate hemoglobin, clear organelles, and condense their nuclei, culminating in enucleation [59,60,63]. Proerythroblasts progress through basophilic, polychromatic, and orthochromatic erythroblast stages, which can be distinguished morphologically or by surface expression of CD49d, CD71, CD105, CD233, and CD235a [64–67]. Nuclear extrusion generates reticulocytes, which complete terminal maturation by clearing residual organelles and entering the circulation, where they acquire the characteristic biconcave shape [60].

A primary regulator of erythroid expansion, differentiation, and survival is erythropoietin (EPO), produced by the kidneys in response to hypoxia [68]. Iron delivery via transferrin is crucial for heme synthesis and hemoglobinization of cells [69,70]. Additional regulators of erythroid development include insulin and insulin-like growth factors, interleukin-3 (IL-3) and IL-10, activin and other TGF- β family ligands, thrombopoietin (TPO), and angiotensin [71–76].

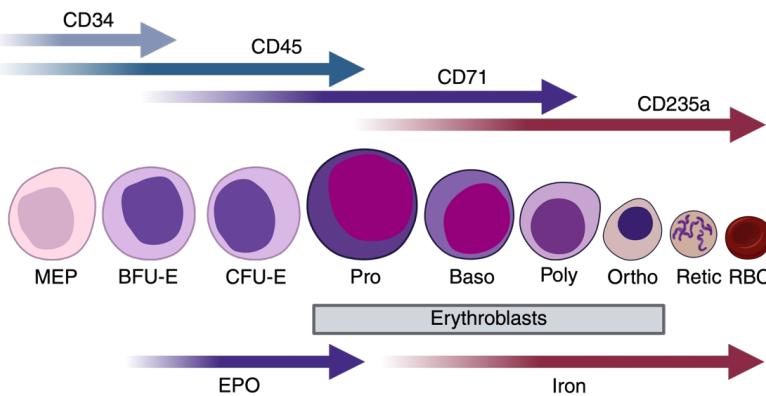


Figure 3: Key erythroid maturation stages, surface marker dynamics, and supplementation dependencies, adapted from Elvardsdóttir (2019). BFU-E, burst-forming unit–erythroid; CFU-E, colony-forming unit–erythroid; Pro, proerythroblasts; Baso, basophilic; Poly, polychromatic; Ortho, orthochromatic; Retic, reticulocyte; RBC, red blood cell. Created with BioRender.com.

1.1.4 The bone marrow niche

To maintain steady-state hematopoiesis while enabling rapid responses to demand, the hematopoietic system is subject to complex regulation from cell-intrinsic mechanisms and the external environment. This specialized bone marrow

microenvironment, composed of cellular and acellular components, is commonly referred to as the HSC niche [77,78].

The niche concept was proposed as early as the 1970s by Schofield [79]. Scadden later defined it as a specific anatomic location that integrates local and systemic signals to regulate stem cell self-renewal, differentiation, and protection from both exhaustion and uncontrolled proliferation [80]. The cellular compartment comprises a heterogeneous mixture of lineages, including endothelial, osteolineage, fibroblastic, stromal, neuronal, macrophage, and mesenchymal cells [32,81–86]. These cells regulate HSC quiescence, survival, proliferation, and differentiation in part by providing ligands and cytokines. A key cytokine for HSC maintenance is stem cell factor (SCF), which promotes anti-apoptotic signaling and can act systemically or proximally through soluble and membrane-bound forms [87]. Similarly, TPO, more commonly known for its role in thrombopoiesis, is also a critical factor in HSC maintenance [88].

In addition to cell-cell interactions and signaling through soluble factors, acellular factors of the niche, such as the extracellular matrix composition, mechanical properties, and oxygen tension, play important roles in the regulation of hematopoiesis [89,90]. Major components of the bone marrow extracellular matrix are collagens, proteoglycans, and glycoproteins, acting as scaffolding for cells and growth factors [91]. Biophysical properties (e.g., stiffness, topography, porosity) also influence stem cell behavior. This has been observed in various stem cell subtypes, such as neural stem cells, mesenchymal stem cells, muscle stem cells, and hematopoietic cells [92–97]. The role of the extracellular matrix in hematopoiesis has been reviewed in detail by Lee-Thedieck and colleagues [98–102].

Overall, the hematopoietic niche integrates signals that regulate HSC fate decisions and maintains hematopoietic homeostasis. The importance of this role becomes evident when dysregulation of HSCs or the niche occurs, which can eventually amount to hematopoietic malignancies [103,104].

1.1.5 Clonal hematopoiesis

Somatic variants arise continuously throughout life and are acquired across cell types, including stem cells. HSCs are therefore not spared; they accumulate somatic mutations over time (estimates are ~17 variants per year), leading to substantial accumulation over an individual's lifetime [105–108]. While most alterations change the nucleotide sequence, many do not affect the amino acid

sequence or measurably alter protein function. These variants remain largely inconsequential and are commonly referred to as passenger mutations.

By contrast, specific genetic abnormalities can confer a fitness advantage to the affected HSC, promoting clonal outgrowth of the mutant cell and its descendants through positive selection; these events are termed driver mutations. The process of expansion and increasing prevalence of such clones is known as clonal hematopoiesis (CH) [109,110]. Several studies have identified a recurring pattern of driver mutations in a small set of genes, often found in myeloid malignancies, in individuals without a diagnosis of hematological neoplasms [111–114]. These studies further reported that the prevalence of CH rises with age, reaching approximately 10–20% among individuals aged ≥ 70 years. Notably, germline genetic background can also shape CH dynamics by modifying the growth advantage of mutant clones. In a recent genome-wide association study, Agarwal et al. identified a protective noncoding regulatory variant (rs17834140-T) that downregulates expression of musashi RNA-binding protein 2 in HSCs and is associated with slower CH expansion and reduced risk of CHIP and myeloid malignancies [115]. Using next-generation sequencing approaches, Young et al. described CH-associated variants as ubiquitous in adults, detectable in a large fraction of individuals aged 50–60 when very low variant allele frequencies (VAFs) were included [116].

With advancements in our understanding of the underlying molecular mechanisms and their consequences, CH has been further subdivided. The presence of a CH clone with a VAF $\geq 2\%$ in the absence of cytopenias is commonly termed clonal hematopoiesis of indeterminate potential (CHIP), whereas clonal cytopenia of undetermined significance (CCUS) refers to otherwise unexplained cytopenias with evidence of clonality [109,117,118]. While CH remains subclinical in most individuals, factors such as higher VAF, mutations in spliceosome components, and overall mutational burden increase the risk of disease progression [119–121].

1.2 Myelodysplastic neoplasms

Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous set of myeloid neoplasms arising from HSPCs and characterized by ineffective, dysregulated hematopoiesis [122]. Key features of MDS include hematopoietic cell dysplasia, cytopenias—especially of the erythroid lineage—bone marrow failure, and an elevated risk of progression to AML [123–126]. MDS presents in

approximately 3–5 cases per 100,000 individuals in Sweden and the US. MDS is largely a disease of older individuals, with a median age at diagnosis >70 years. The incidence increases markedly with advancing age and is higher in men than in women, placing MDS among the most frequent hematologic malignancies in older populations [127–129].

Most MDS cases are *de novo*, arising without a clear precipitating cause. However, several risk factors have been identified. Prior exposure to cytotoxic chemotherapy and/or radiation is a well-established risk factor: therapy-related MDS (or therapy-related myeloid neoplasms) comprises ~10–20% of cases and is associated with substantially poorer outcomes than *de novo* disease [130–133]. Similarly, prolonged exposure to benzene and organic solvents has been connected to an increased risk of developing MDS [134]. Aside from acquired risk factors, there is growing recognition of hereditary predispositions to MDS. Together, these findings underscore that MDS pathogenesis is multifactorial, involving environmental exposures, genetic predispositions, and acquired somatic mutations, which will be described in a later section.

1.2.1 MDS diagnosis

MDS presents with a broad range of clinical features, reflecting the heterogeneous nature of the disease. Symptoms that raise suspicion of MDS are associated with an underlying cytopenia: anemia (fatigue, dyspnea, reduced exercise tolerance), neutropenia (recurrent infections), or thrombocytopenia (bruising, bleeding) [135–137]. Some patients are asymptomatic at diagnosis, with MDS first suspected due to abnormal routine blood counts. The initial clinical findings are not specific to MDS, and other causes of cytopenias—such as dietary deficiencies, chronic disease, medications, and other factors from the patient’s history—must be ruled out. In clinical practice, older patients with persistent, unexplained cytopenias should be considered for bone marrow examination to evaluate for MDS [138]. Diagnosis and categorization are based on integrated clinicopathologic evaluation according to the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumours and the International Consensus Classification (ICC), incorporating morphologic, cytogenetic, and molecular genetic features [139,140].

1.2.1.1 Laboratory findings

Laboratory findings are not specific to MDS and are often linked to the underlying cytopenias. This can include elevated erythrocyte sedimentation rate and C-

reactive protein levels, low hemoglobin levels (<10 g/dL), and macrocytosis [136,141–143].

1.2.1.2 *Bone marrow examination*

The gold standard for the diagnosis of MDS is bone marrow examination via bone marrow aspirate and/or biopsy [135]. May–Grünwald–Giemsa staining enables assessment of cell identity and morphology, lineage dysplasia, and hypocellularity or hypercellularity [138]. Quantification of the percentage of nucleated bone marrow blasts is important for categorizing disease, predicting prognosis, and distinguishing higher-risk MDS from AML [139,140,144,145]. The 5th edition WHO distinguishes MDS from AML at a blast threshold <20%, whereas the 2022 ICC introduces the subgroup MDS/AML from 10–20% blasts. Additional iron staining with Prussian blue can detect ring sideroblasts [144]. While bone marrow aspirates remain essential to diagnosis, sampling error and subjective interpretation can limit reliability [135].

1.2.1.3 *Cytogenetics*

Cytogenetic analyses are performed using G-banding (karyotyping) and fluorescence *in situ* hybridization (FISH). Chromosomal abnormalities are present in around half of MDS cases; thus, their identification is essential to obtain a complete diagnosis. The most common aberrations in MDS involve partial deletion of large chromosomal segments [del(5q), del(7q), del(20q)], loss or gain of entire chromosomes (monosomy 7, trisomy 8), or an accumulation of multiple events referred to as a complex karyotype [146,147].

1.2.1.4 *Targeted sequencing*

Targeted next-generation sequencing (NGS) is a key component of the MDS diagnostic workup and is incorporated into the current classification frameworks. Both the 5th WHO classification of hematolymphoid tumors and the ICC include MDS subtypes defined by specific genetic variants, such as TP53 alterations or somatic mutations in *SF3B1* [139,140]. Because most MDS driver lesions occur in a core set of ~50 recurrently mutated genes, targeted panels enable sensitive detection of recurrent mutations that complement morphology, cytopenias, and cytogenetics by providing molecular evidence of clonality [148]. Diagnostic interpretation should account for both the mutational profile and clonal burden: the presence of multiple mutations and higher VAFs supports an underlying myeloid neoplasm, whereas the absence of detectable driver mutations has a high

negative predictive value but does not fully rule out MDS [148]. Testing can be done in peripheral blood and bone marrow which have been shown to be concordant for mutation detection [149]. NGS may also flag possible germline predisposition variants (often ~40–60% VAF), warranting confirmatory testing in non-hematopoietic tissues [150].

1.2.1.5 *Clinical flow cytometry*

Flow cytometric analysis of bone marrow cells can be a complementary tool to further refine diagnosis and classification, enabling analysis of antigen expression patterns across samples [151,152]. This is employed for assessment of lineage distribution, maturation patterns, and abnormal populations [153]. Consensus recommendations on sample preparation methods and staining panels can further improve reproducibility and interpretation of results [154].

1.2.2 **Classification and prognosis**

In summary, a confirmed MDS diagnosis involves correlating clinical, morphologic, and laboratory findings while excluding other conditions that can mimic MDS. Based on diagnostic findings, the underlying disease is then further categorized. Historically, classification systems mostly recognized morphological features and peripheral blood cytopenias [144]. However, cytogenetic and molecular events have gained importance in the most recent classification schemes of the WHO and ICC, both published in 2022. These include MDS subtypes defined by specific genetic lesions, such as TP53 alterations or somatic mutations in *SF3B1* [139,140]. Risk stratification for MDS patients has similarly evolved since implementation of the International Prognostic Scoring System (IPSS) in 1997, which was revised 15 years later (IPSS-R) [141,145]. In its latest iteration in 2022, referred to as IPSS-M, Bernard et al. proposed a molecularly informed scoring system based on 22 variables that assigns patients to one of six risk categories [155].

1.2.3 **Treatment of MDS**

Following diagnosis, therapeutic approaches focus on prolonging survival and, if possible, curing the patient; otherwise, improving the quality of life is the priority. The treatment approach for MDS patients depends on the specific risk score and generally distinguishes lower-risk from higher-risk MDS. This section summarizes the general treatment strategies, but a more detailed compilation can be found in a recent review series by Merz and Platzbecker, and Kröger [156,157].

Treating higher-risk MDS focuses on reducing disease burden and preventing progression to AML. Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for MDS. Thus, eligibility should be considered following careful evaluation and, when appropriate, performed promptly to improve outcomes for higher-risk patients [158–160]. The hypomethylating agents azacitidine and decitabine are widely used disease-modifying therapies, either as a bridge to allogeneic HSCT or to delay progression in patients who are not transplant candidates.

Treatment strategies for lower-risk disease center on supportive care, focused on improving cytopenias. Erythropoiesis-stimulating agents are the standard-of-care first-line treatment to boost RBC counts and are administered alone or combined with granulocyte colony-stimulating factor (G-CSF). Thrombopoietin receptor agonists can improve platelet counts in some patients [161]. More recently, treatment of patients with MDS with ring sideroblasts (MDS-RS), which is described in more details in a later section, using luspatercept, a TGF- β superfamily ligand trap, has received Food and Drug Administration (FDA) approval [162–164]. For patients harboring del(5q), treatment with lenalidomide should be considered [165,166]. RBC transfusions are frequently administered to combat anemia, and transfusion dependency is common in patients (30–50% at diagnosis) [129,140]. While more liberal transfusion strategies may improve quality of life, transfusion dependency at diagnosis and within the first year is associated with worse outcomes. Thus, starting treatment with erythropoiesis-stimulating agents early and achieving transfusion independence can improve prognosis [167–169].

1.2.4 Genomic landscape of MDS

With the advent of reliable and widely available next-generation sequencing techniques over the past decades, it has become evident that genetic mutations are major drivers of malignant clonal evolution in many cancers, including MDS [135,170]. In 2013 and 2014, two landmark papers by Papaemmanuil et al. and Haferlach et al. provided detailed descriptions of the genomic landscape of MDS in large patient cohorts [171,172]. This was later complemented by an analysis of nearly 3,000 MDS patients from 24 centers by the International Working Group for Prognosis in MDS [155,173]. Within the cohort, 90% of patients harbored at least one oncogenic mutation (out of 9254 identified in total) distributed across 121 genes [155].

This diverse spectrum of recurrently mutated genes can be grouped into several functional groups, outlined in

Table 1. Somatic mutations in epigenetic regulators involved in DNA methylation and histone modification include *DNMT3A*, *TET2*, *ASXL1*, and *EZH2*, which are implicated in clonal expansion. Heterozygous spliceosome mutations involving *SF3B1*, *SRSF2*, *U2AF1*, or *ZRSR2* are associated with widespread RNA mis-splicing, often leading to nonsense-mediated mRNA decay (NMD) and reduced functional expression of some genes [174]. These effects can confer a fitness advantage, leading to clonal expansion, and/or impair progenitor maturation. A more detailed description of the role splicing factor mutations have in MDS is included in an upcoming section. Other somatic mutations involve transcription regulators, the DNA repair machinery and cohesion complex, as well as signaling pathways [173]. Mutation frequencies are not uniformly distributed across the mutational landscape. Instead, a small set of events is clearly overrepresented. This includes mutations in *TET2*, *ASXL1*, or *SF3B1* in >20% of patients, and *DNMT3A*, *SRSF2*, *RUNX1*, or *TP53* in approximately 10–20%.

Mutated genes	
Epigenetic regulators	<i>TET2</i> (>20% of patients) <i>ASXL1</i> (>20% of patients) <i>DNMT3A</i> (10–20% of patients) <i>EZH2</i> , <i>BCOR</i> , <i>IDH2</i> , <i>IDH1</i> , <i>PHF6</i> , <i>BCORL1</i> , <i>ZBTB33</i> , <i>EP300</i> , <i>KMT2D</i>
RNA splicing	<i>SF3B1</i> (>20% of patients) <i>SRSF2</i> (10–20% of pts) <i>U2AF1</i> , <i>ZRSR2</i> , <i>PRPF8</i> , <i>U2AF2</i>
Transcription regulation	<i>RUNX1</i> (10–20% of patients) <i>CUX1</i> , <i>MLL</i> (<i>KMT2A</i>), <i>ETV6</i> , <i>CEBPA</i> , <i>CTCF</i> , <i>WT1</i> , <i>ZBTB33</i> , <i>GATA2</i> , <i>NFE2</i>
DNA repair control	<i>TP53</i> (10–20% of patients) <i>PPM1D</i> , <i>BRCC3</i>
Cohesin complex	<i>STAG2</i> , <i>SMC1A</i> , <i>RAD21</i>
Signaling	<i>CBL</i> , <i>NRAS</i> , <i>KRAS</i> , <i>JAK2</i> , <i>MPL</i> , <i>SH2B3</i> , <i>PTPN11</i> , <i>GNB1</i> , <i>FLT3</i>
Miscellaneous	<i>SETBP1</i> , <i>DDX41</i> , <i>ETNK1</i> , <i>KMT2C</i> , <i>CSNK1A1</i> , <i>NPM1</i> , <i>GNAS</i> , <i>ARID2</i>
Cytogenetic alterations	
Alterations	<u>del(5q)</u> (10–20% of patients) complex karyotype +8, -Y, -7, <u>del(7q)</u> , <u>del(11q)</u> , -13, +21, <u>del(4q)</u> , <u>del(1p)</u>

Table 1: Overview over recurrent (>1% of patients) gene mutations and cytogenetic alterations in patients with MDS [155]. Events used for IPSS-M prognostic calculations are underscored. Adapted from Cazzola and Malcovati (2025) [173]

Large-scale genomic studies and investigations of familial histories of hematologic malignancies have identified a group of germline mutations (e.g., *GATA2*, *RUNX1*, *DDX41*, *TP53*, *SAMD9/SAMD9L*) that confer inherited susceptibility to MDS/AML and collectively account for up to 15% of cases [173,175–181]. These germline predisposition syndromes can significantly influence therapeutic choices and the selection of suitable donors for transplantation.

1.2.5 *SF3B1*-mutant MDS and MDS-RS

Next-generation sequencing studies of large patient cohorts established that MDS is frequently driven by mutations in spliceosome components, with *SF3B1*, *SRSF2*, *U2AF1*, and *ZRSR2* among the most commonly mutated splicing factor genes [155,171,172]. Among these, *SF3B1* mutations uniquely stand out as they are tightly linked to the disease phenotype of MDS-RS [182]. MDS-RS is a distinct subset of MDS which was originally described in the 1950s and later recognized as a separate entity in the French–American–British (FAB) and WHO classifications [144,183,184]. The defining morphological feature is the presence of ring sideroblasts in the bone marrow of patients (Figure 4). These aberrant erythroblasts contain iron-laden mitochondria forming a perinuclear ring, which becomes visible after iron staining [124,185].

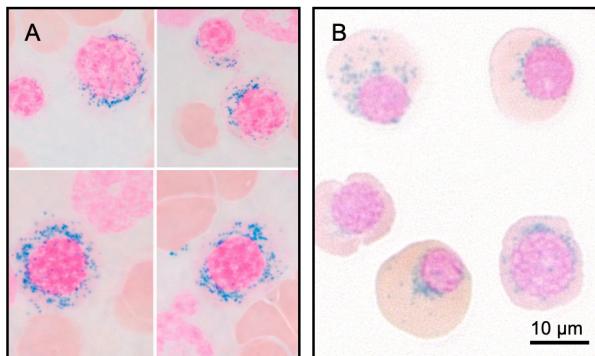


Figure 4: Ring sideroblasts stained with Perls' Prussian blue stain. (A) RS from MDS-RS patient bone marrow samples. Image adapted from Lours et al. (2022) [186], licensed under CC BY 4.0. Modifications include removal of labels and image sharpening. (B) Isolated RS from MDS-*SF3B1* patient-derived iPSCs from **Study II**.

The *SF3B1* protein encodes a core component of the U2 small nuclear ribonucleoprotein complex that contributes to 3' splice site recognition during spliceosome assembly [187–189]. *SF3B1* mutations in MDS typically constitute heterozygous missense substitutions, clustering in the HEAT repeat domain with K700 as a common hotspot [190–193]. Mechanistically, *SF3B1* mutations drive

misrecognition of 3' splice sites on pre-mRNAs, resulting in widespread cryptic splicing (Figure 5) [194,195]. Aberrantly spliced transcripts are frequently targeted for degradation by NMD, reducing functional protein levels. *In vitro* studies connected mis-splicing of key erythroid genes, including the mitochondrial iron transporter *ABCB7* and genes involved in heme biosynthesis (*ALAS2*, *TMEM14C*, *PPOX*, *MAP3K7*), to impaired heme production, mitochondrial iron accumulation, and RS generation [185,196–201]. Further, RNA mis-splicing increases during erythroid differentiation, causing cells to engage pathways that downregulate oxidative stress and NMD, which promotes cell survival and may contribute to clonal expansion [202].

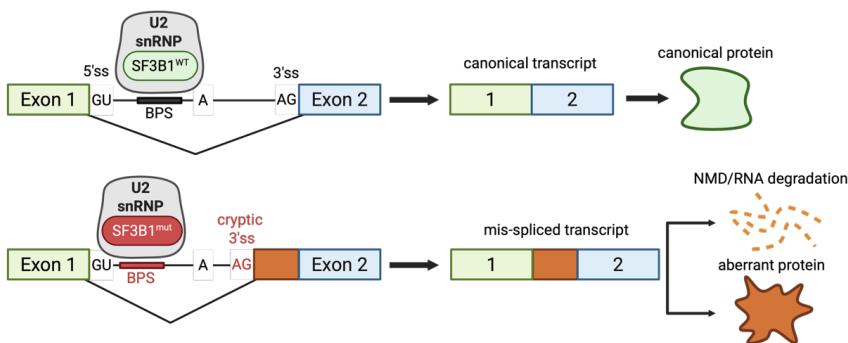


Figure 5: Mechanism-of-action and downstream consequences of wild-type SF3B1 (SF3B1^{WT})- and mutant SF3B1 (SF3B1^{mut})-mediated mRNA splicing, adapted from Zhou et al. [203]. U2 snRNP, U2 small nuclear ribonucleoprotein; ss, splice site; BPS, branchpoint sequence; NMD, nonsense-mediated mRNA decay. Created with BioRender.com.

Across patients, *SF3B1* mutations occur in most MDS-RS cases, have a strong positive predictive value, and have been incorporated into diagnostic frameworks as a defining feature of the MDS-RS entity [126,139,140]. From an evolutionary perspective, *SF3B1* mutation is considered an early event in MDS-RS, often represented in the dominant clone and present at higher VAFs than other genetic lesions [171,204]. Clinically, MDS-RS is relatively indolent compared to higher-risk disease and has one of the most favorable outcomes across MDS subtypes [182,205]. Subsequent studies demonstrated that *SF3B1*-mutant MDS-RS represents a relatively homogeneous subgroup characterized by erythroid dysplasia and abnormal erythroid maturation. Accordingly, treatment typically focuses on alleviating anemia through erythropoiesis-stimulating agents and establishing transfusion independence [206]. However, it is increasingly understood that favorable prognosis is not uniformly distributed but depends on co-mutations. Isolated *SF3B1* mutations or a “simple” co-mutation pattern

involving epigenetic regulators retains favorable prognosis, whereas del(5q) or mutations in *BCOR*, *NRAS*, *RUNX1*, and others are associated with worse outcome [155,207,208].

1.2.6 *UBA1* mutations

Despite major advances in identifying genetic alterations and integrating them into modern classification, treatment, and risk-stratification systems, 5–10% of patients still lack an identifiable disease-defining mutation [139,140,155,172,209]. In addition, a sizable fraction of patients (approximately 10–30%) develop inflammatory manifestations without an obvious etiology, which can complicate both diagnosis and management and has been associated with higher-risk disease features [209–213]. A major advance in this area came in 2020, when Beck et al. identified somatic *UBA1* mutations as the cause of a subset of these unexplained inflammatory phenotypes and introduced the entity VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome [214]. *UBA1* encodes the principal ubiquitin-activating E1 enzyme, which is essential for initiating protein ubiquitination and thereby influences protein homeostasis and diverse downstream cellular processes (Figure 6, left). Pathogenic variants in VEXAS commonly disrupt expression of the cytosolic *UBA1b* isoform, frequently by affecting translation initiation (Figure 6, right) [214–217]. Clinically, the overlap with myeloid disease is notable: MDS is reported in roughly 25–55% of individuals with VEXAS, and in a large, representative diagnostic MDS cohort, about 1% of patients carried likely pathogenic *UBA1* variants [209,218,219]. Collectively, these data support considering *UBA1* mutation testing in the diagnostic work-up of MDS when inflammatory features are prominent and particularly in male, given the X-linked nature of *UBA1* and the marked male predominance of VEXAS syndrome.

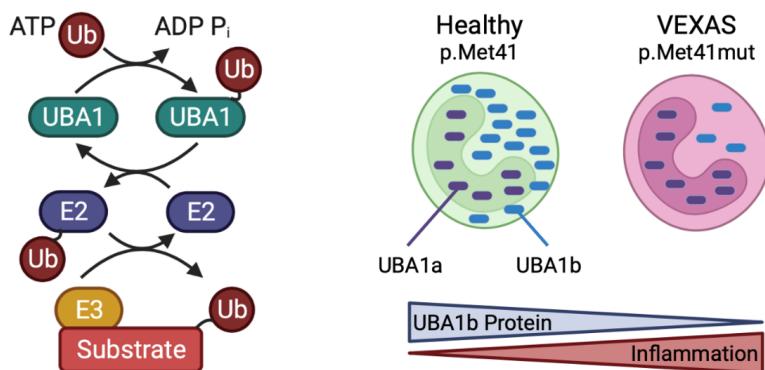


Figure 6: UBA1 mechanisms of action (left), and role in VEXAS (right), adapted from Ferrada et al. (2022) [220].

1.3 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a myeloid neoplasm closely related to MDS and can arise from MDS when additional genetic and/or cytogenetic events drive leukemic transformation. AML is defined by excessive proliferation of leukemic blasts (poorly differentiated hematopoietic progenitors) that infiltrate the bone marrow, blood, and other tissues [221]. The resulting disruption of normal hematopoiesis causes severe cytopenias, and AML remains a life-threatening diagnosis. Outcomes have nevertheless improved over recent decades. Whereas AML was historically associated with very poor long-term survival, 5-year survival rates now stand at 62% for patients diagnosed before age 50, 37% for those aged 50–64, and 9.4% for patients 65 years and older [222]. A Swedish registry study reported that survival gains over the past 20 years were most pronounced among middle-aged men [223]. While AML often presents sporadically, an increased risk of development has been associated with the same factors as in MDS, including exposure to certain chemicals, cytotoxic therapies, and germline predispositions [126].

1.3.1 Presentation and diagnosis

AML is a medical emergency that requires urgent evaluation and management. Similar to MDS, symptoms are often non-specific but typically reflect suppression of normal hematopoiesis and may raise suspicion of a hematological malignancy. This includes severe cytopenias (anemia, thrombocytopenia, and/or neutropenia) and, in some patients, abnormally high white blood cell counts (leukocytosis). Patients may present with fatigue, dyspnea, bleeding, infections, or headaches.

Historically, AML diagnosis required a minimum of 30% myeloid blasts in the bone marrow or peripheral blood according to the FAB system, later revised to $\geq 20\%$ in WHO classifications. In the most recent frameworks, AML may be diagnosed below the 20% blast threshold for specific genetically defined entities. A comprehensive diagnostic work-up includes assessment of morphology, immunophenotype, cytogenetics, and molecular genetics, while the patient is closely monitored and acute complications are managed [140,224,225].

1.3.2 Classification and prognosis

The classification of AML has evolved from the morphology-based FAB system to frameworks that increasingly emphasize cytogenetic and molecular features, as reflected in the 2022 5th edition WHO and ICD systems. Both prioritize genetic

abnormalities over morphology in defining AML subtypes by recurrent gene mutations and chromosomal rearrangements [139,140,144]. Despite minor differences, both systems broadly agree on genetically defined entities, but they apply blast thresholds differently. WHO 2022 permits diagnosis of many AML entities with defining genetic abnormalities even when blasts are <20%, while maintaining a ≥20% blast requirement for selected entities, including *BCR::ABL1* fusion AML and AML with *CEBPA* mutation [139]. The ICC defines many genetically recurrent AML categories with a blast threshold of ≥10%, while maintaining a ≥20% blast requirement for patients with the *BCR::ABL1* fusion to limit overlap with chronic myeloid leukemia [140]. An additional change in the ICC is the introduction of “MDS/AML” for cases with 10–19% blasts in settings that do not otherwise meet criteria for a genetically defined AML entity, reflecting the biologic and clinical continuum and potentially expanding access to therapies and trials [226,227]. The ICC also recognizes “AML with mutated *TP53*” as a distinct, high-risk category with particularly poor prognosis. In contrast to WHO, the ICC does not retain therapy-related, secondary, or germline-associated myeloid neoplasms as separate AML entities; instead, these features are used as diagnostic qualifiers alongside the genetically defined diagnosis.

Prognosis is informed by biological and clinical factors at diagnosis. Besides age, performance status, comorbidities, and prior history, prognosis is largely determined by the genetic background of the leukemia [223,228–231]. The current European LeukemiaNet (ELN) guidelines stratify AML patients undergoing intensive chemotherapy into favorable, intermediate, and adverse risk groups based on cytogenetic events and genetic events [232]. The core-binding factor leukemias, *NPM1* mutations without *FLT3*-ITD, and AML with in-frame *CEBPA* bZIP mutations comprise the favorable risk group. These subtypes are generally more chemotherapy-sensitive and are characterized by higher remission rates and improved survival. Conversely, the adverse-risk category is linked to poorer response, with fewer patients achieving complete remission, and a propensity for relapse. This group includes *TP53* mutations, specific adverse cytogenetic abnormalities (including monosomies such as -5 and -7, inv(3)), complex karyotype, and myelodysplasia-related gene mutations. The remaining ~40% of cases fall within the intermediate risk group, including many patients with normal cytogenetics and, as of the 2022 ELN update, *FLT3*-ITD-mutated cases in the absence of favorable or adverse defining features [225]. Recently, the ELN also proposed risk models tailored to patients receiving less-intensive therapies [233].

1.3.3 AML therapy

Recent years have seen advances in AML treatment options, moving beyond conventional chemotherapy to incorporate more targeted approaches. Treatment is generally divided into an induction phase (to achieve complete remission, defined by <5% bone marrow blasts with peripheral blood count recovery), followed by consolidation to eliminate residual malignant cells and prevent relapse [234]. An upfront evaluation of patient fitness guides treatment decisions, as intensive chemotherapy is not advised for patients of higher age or with significant comorbidities [235–237]. While there is no universal tool to assess fitness, the Ferrara criteria are often used to identify patients unfit for intensive chemotherapy [238].

The standard intensive approach is the “7+3” induction regimen, consisting of 7 days of continuous cytarabine plus 3 days of an anthracycline (daunorubicin or idarubicin) [239]. In Sweden, a modified “5+3” regimen with higher-dose cytarabine is commonly used; reported remission rates in younger adults are ~60–85% following this intensive induction strategy [239,240]. Several additions to 7+3 have improved outcomes in selected molecular and clinical subgroups [241]. Incorporation of *FLT3* inhibitors (midostaurin, quizartinib) for *FLT3*-mutated AML has been associated with improved remission rates and long-term survival [242,243]. Secondary AML and therapy-related AML (t-AML) benefit from CPX-351, a liposomal daunorubicin–cytarabine formulation, compared to conventional 7+3 in selected settings [244,245]. Immunotherapy approaches, including antibody-based therapies, cancer vaccines, immune-checkpoint inhibitors, and adoptive T-cell therapies, are under active investigation to address primary and acquired resistance [246,247]. Following induction, patients in remission receive consolidation therapy. Allogeneic HSCT is recommended for intermediate- and adverse-risk AML in first remission, whereas favorable-risk patients frequently undergo intensive post-remission chemotherapy [234].

In patients who are ineligible for, or elect not to receive, transplant, remission can be prolonged through maintenance therapy, including oral 5-azacitidine (CC-486) [248]. Patients evaluated as unfit for intensive chemotherapy are generally treated with a low-intensity regimen, often combining hypomethylating agents with the BCL-2 inhibitor venetoclax [249,250]. In addition, targeted inhibitors (e.g., IDH1/IDH2 or *FLT3*-directed agents) have shown promising results in molecularly defined subsets [251–253]. Prognosis remains unfavorable in relapsed or refractory disease, and only a small proportion of patients attain a second

remission with salvage therapy. [237,254]. When remission is achieved, salvage allogeneic HSCT remains the best option for durable cure [255–257].

1.3.4 Genomic landscape of AML

Large sequencing studies report that ~97% of AML patients harbor at least one recurrent somatic mutation [258]. These variants frequently co-occur, and most patients harbor multiple mutations at diagnosis. Recurrent AML mutations can be clustered into functional groups including signaling/kinase pathways, *NPM1*, epigenetic modifiers, transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes (Table 2) [221,259,260]. Together, these alterations illustrate how AML pathogenesis involves combinations of proliferative signaling lesions, differentiation blockades, epigenetic dysregulation, and loss of tumor suppression. The following section provides an overview of these categories, including example genes and disease-contributing mechanisms [258,261].

Functional Group	Example mutations
Signaling/Kinase pathway	<i>FLT3, KRAS, NRAS, KIT, PTPN11, NF1</i>
Nucleophosmin	<i>NPM1</i>
Epigenetic regulators	<i>DNMT3A, IDH1, IDH2, TET2, ASXL1, EZH2, MLL/KMT2A</i>
Transcription factors	<i>CEBPA, RUNX1, GATA2</i>
Tumor suppressors	<i>TP53</i>
RNA splicing	<i>SRSF2, U2AF1, SF3B1, ZRSR2</i>
Cohesin complex	<i>RAD21, STAG1, STAG2, SMC1A, SMC3</i>

Table 2: Overview of recurrent genetic lesions in AML sorted by functional groups. Adapted from Döhner et al. (2015) and DiNardo and Cortes (2016) [221,259]

1.3.4.1 Signaling and kinase pathways mutations

Found in ~60–70% of patients, this is the most frequently mutated functional group. Frequently mutated genes include *FLT3*, *NRAS/KRAS*, *KIT*, *PTPN11*, and *NF1*. *FLT3* is mutated in nearly one third of patients, often resulting in ligand-independent *FLT3* tyrosine kinase signaling [262]. Similarly, RAS pathway genes are mutated in ~10–15% of cases, driving aberrant activation of MAPK signaling. *KIT* mutations are comparatively rare overall but are enriched in core-binding factor AML [263]. Collectively, this group confers a proliferative advantage to the malignant clone through hyperactivation of cell growth and survival pathways.

1.3.4.2 *Nucleophosmin (NPM1) mutations*

NPM1 mutations are among the most frequent genetic lesions in AML, found in ~25–30% of cases and enriched in patients with normal karyotype. *NPM1* mutations disrupt the nuclear localization of the *NPM1* shuttle protein, leading to aberrant accumulation of *NPM1* and its binding partners in the cytoplasm. Cytoplasmic mislocalization of *NPM1* is a hallmark of this subtype and interferes with normal nucleolar functions, including regulation of p53 and HOX gene expression programs [264].

1.3.4.3 *Epigenetic modifier mutations*

Epigenetic regulators—affecting DNA methylation and chromatin modification—are recurrent mutations in >50% of AML cases and include *DNMT3A*, *TET2*, *IDH1*, *IDH2*, *ASXL1*, and *EZH2*. Mutations in *DNMT3A* are among the most common events in AML (~20% of de novo AML) and are connected to changed DNA methylation patterns, increased self-renewal, and impaired differentiation [265,266]. Conversely, *TET2* mutations (~10–20% of AML) disrupt 5-methylcytosine demethylation, resulting in accumulation of DNA methylation marks and impaired myeloid differentiation. Neomorphic *IDH1*/*IDH2* mutations (~20% of AML) produce 2-hydroxyglutarate, which can inhibit *TET* enzymes and certain histone demethylases, promoting an aberrant hypermethylation state and contributing to a differentiation block [267]. Truncating mutations in *ASXL1* can reduce the stability and function of PRC2, leading to loss of repressive histone methylation marks on lysine 27 (H3K27me3), derepression of normally silenced programs, and aggressive disease biology [268].

1.3.4.4 *Transcription factor mutations*

Somatic mutations in transcription factors (e.g., *RUNX1*, *CEBPA*, *GATA2*) and fusion genes generated by chromosomal rearrangements can disrupt transcriptional programs and impair differentiation.

1.3.4.5 *Tumor suppressor mutations*

TP53 is mutated in ~5–15% of AML cases, is enriched in older patients, and is associated with complex karyotype as well as secondary and therapy-related AML. Mutations in *TP53* disrupt the canonical function of p53 in mediating responses such as cell-cycle arrest and apoptosis, contributing to cell survival and genomic instability [269]. As a consequence, *TP53* mutations represent a particularly high-risk lesion associated with poor prognosis.

1.3.4.6 *Spliceosome complex mutations*

Spliceosome gene mutations are also observed in AML, particularly in secondary AML in older patients; for mechanistic background, see the MDS section.

1.3.4.7 *Cohesin complex mutations*

The cohesin complex mediates sister chromatid cohesion and is important for proper chromosome segregation during mitosis and 3D genome organization [270]. Mutations in cohesin members (e.g., *STAG2*, *RAD21*, *SMC1A*, *SMC3*) may contribute to genome dysregulation and altered expression of differentiation-associated gene programs.

1.3.4.8 *Cytogenetics*

Over half of AML patients present with cytogenetic abnormalities, frequently resulting in chromosomal rearrangements and gene fusions, and ~10–12% have complex karyotype (often defined as ≥ 3 abnormalities) [271–273]. Recurrent AML-defining rearrangements include the core-binding factor events $t(8;21)$ and $inv(16)/t(16;16)$, generating the *RUNX1*:*RUNX1T1* and *CBFB*:*MYH11* fusions, respectively [139,140,274]. Translocation $t(15;17)$ generates the *PML*:*RARA* fusion, encoding the PML–RARA oncprotein that functions as a transcriptional repressor, blocks myeloid differentiation, and promotes aberrant survival signaling [275,276]. Less frequent events include *DEK*:*NUP214* and *MECOM* rearrangements.

1.3.5 *KMT2A*-rearranged AML

Chromosomal rearrangements involving the *KMT2A* gene (*KMT2A*-r; formerly *MLL*), located on chromosome 11q23, constitute a recurring group of cytogenetic abnormalities present in roughly 5–10% of acute leukemias [277]. These rearrangements are particularly frequent in infant leukemias, where 70–80% of cases harbor *KMT2A* fusions [278]. In AML, *KMT2A*-r comprise about 20% of pediatric cases compared to 5–10% of adult cases and are generally a dismal prognostic factor, including higher relapse rates and resistance to intensive chemotherapy [279]. *KMT2A*-r are heterogeneous, and over 100 fusion partners have been identified in acute leukemias. However, specific fusion partners are overrepresented, with a small set accounting for the majority of cases [280]. Fusion partners often influence disease phenotype. For example, $t(4;11)(q21;q23)$, encoding *KMT2A*:*AFF1* (historically *MLL*–*AF4*), is most common in ALL. In contrast, $t(9;11)(p21;q23)$, encoding *KMT2A*:*MLLT3* (historically *MLL*–*AF9*), is the most common fusion in *KMT2A*-rearranged AML [280,281]. Overall, *KMT2A*:*MLLT3* is

among the most prevalent *KMT2A*-r and accounts for a substantial fraction of cases across acute leukemias [282].

1.3.5.1 Canonical roles of wild-type *KMT2A*

KMT2A is a crucial epigenetic regulator of hematopoiesis and development. It encodes a large protein with histone methyltransferase activity that is proteolytically cleaved into two subunits [283–285]. In the healthy setting, the *KMT2A* protein regulates expression of key developmental genes, including *HOX* clusters and the cofactor *MEIS1*. Specifically, *KMT2A* has been shown to sustain expression of *HOXA9* and *MEIS1* in the earliest HSC and MPP populations, supporting expansion and self-renewal [286–289]. Structurally, the *KMT2A* protein contains several functional domains, including N-terminal DNA-binding motifs and a C-terminal SET domain that trimethylates histone H3 lysine 4 (H3K4me3) in association with multiple core cofactors (Figure 7, left) [290–292]. Through this, *KMT2A* deposits active histone marks and supports an open chromatin state at *HOX* loci. *KMT2A* also harbors a transactivation domain that recruits histone acetyltransferases, reinforcing active chromatin and transcription [293,294]. *KMT2A* functions within a multi-protein complex including Menin, LEDGF, and PAFc, which recruit *KMT2A* to target promoters and gene loci [295–297].

1.3.5.2 Consequences of the *KMT2A*::*MLLT3* fusion

KMT2A protein fusions retain the N-terminal domain, maintaining the DNA- and Menin-binding functions, but lose the C-terminal SET domain. In its place, the fusion protein gains interaction motifs contributed by the partner. Many *KMT2A* fusion partners encode components of the super elongation complex (SEC) machinery e.g., *MLLT3* (AF9), *AFF1* (AF4), *MLLT1* (ENL), and *ELL* [298,299]. Through this, the fusion proteins aberrantly recruit SEC to *KMT2A* target genes, driving sustained transcriptional activation (Figure 7, right) [300]. A hallmark molecular consequence is enforced expression of *HOX* genes (especially *HOXA9*) and *MEIS1*, promoting an early arrest of myeloid differentiation while maintaining a self-renewing state that drives uncontrolled proliferation and leukemogenesis [301,302]. AF9 additionally contributes to epigenetic activation through interactions with the DOT1L methyltransferase complex, which mediates activating H3K79 methylation at *HOXA/MEIS1* loci and sustains expression [303]. Activation of *HOX/MEIS1* programs, Menin dependence, and recruitment of DOT1L are shared features across many *KMT2A* fusions, creating convergent therapeutic vulnerabilities.

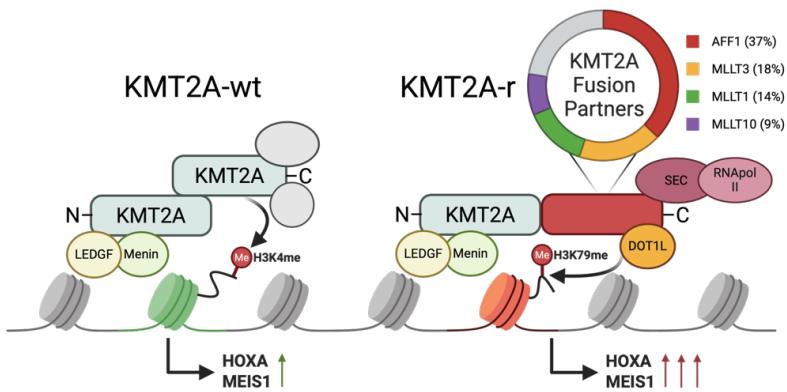


Figure 7: Molecular function of wild-type KMT2A (KMT2A-wt, left) and rearranged KMT2A (KMT2A-r, right) in regulating histone methylation marks and downstream consequences adapted from Mercher and Schwaller (2019) [304]. Recurrence of KMT2A fusion partners is adapted from Meyer et al. (2023) [280]. H3K4me/H3K79me, histone 3 lysine 4/79 methylation; SEC, super elongation complex; DOT1L, H3K79 histone methyltransferase. Created with BioRender.com.

1.3.5.3 Targeted treatments for KMT2A-r leukemias

Menin acts as a scaffolding protein that regulates gene expression by bridging DNA-bound factors and chromatin-associated complexes and is an essential cofactor in recruiting KMT2A fusion proteins to target loci [305–307]. This dependency has been demonstrated in studies where loss or inhibition of Menin abrogated oncogenic activity of KMT2A fusions, causing downregulation of HOX/MEIS1 expression and reversal of the leukemic phenotype [308–311]. Mouse studies using small-molecule Menin inhibitors further reinforced the therapeutic potential of this strategy [312,313]. Several Menin–KMT2A inhibitors, including SNDX-5613 (revumenib) and KO-539 (ziftomenib), have entered clinical testing [314]. Targeting DOT1L using pinometostat (EPZ-5676) reduces H3K79 methylation and has shown modest activity in subsets of advanced KMT2A-r leukemia patients [315]. Combination strategies—especially with venetoclax-based regimens and hypomethylating agents—are being explored to improve depth and durability of response and to overcome resistance to Menin inhibition [316–320].

1.4 Experimental models of myeloid neoplasms

Preclinical models are pivotal for understanding MDS/AML pathogenesis and for testing therapies under controlled conditions. Most commonly, cell lines, primary patient material, patient-derived xenografts, and genetically engineered mouse

models have been employed [195,201,321–324]. This section briefly summarizes how these systems have advanced the field.

Immortalized cell lines have been particularly useful for studying AML biology and for evaluating efficacy and toxicity profiles of candidate drugs. With hundreds of characterized leukemic cell lines (e.g., KG-1, MOLM-13, Kasumi-1, HL-60, U937, and THP-1), these models are generally easy to maintain and modify, inexpensive, and scalable, but they have limited fidelity relative to primary disease [325,326]. A key limitation of cancer cell lines is that they can adapt to *in vitro* conditions through clonal selection and genetic drift. This may lead to the acquisition or enrichment of additional genetic alteration and downstream functional changes that diverge from the original patient background [327]. As a result, the genomic profile of the same cell line and drug responses can vary substantially between labs and findings from cell line-based screens may not reliably predict therapeutic activity in primary patient samples [328]. In contrast to the abundance of immortalized cell line models of AML, MDS cell lines are notoriously scarce, often fail to represent the disease phenotype, and are limited by poor proliferation and overall performance *in vitro* [329].

Genetically engineered mouse models that carry mutations designed to model key oncogenic events in humans have been widely used to dissect AML mechanisms and therapeutic responses [330]. For example, mouse models have been central to understanding the role of the *KMT2A:MLLT3* fusion in leukemogenesis and the regulation of *HOX* gene programs in hematopoiesis [287]. Similar mouse models have been generated for recurrent MDS genetic events, including heterozygous mutations in *SF3B1*, *SRSF2*, and *U2AF1* [331–334]. However, modeling low-risk MDS in mice is challenging, as current models often recapitulate only partial disease phenotypes and may fail to produce overt disease [335]. For example, in *SF3B1^{K700E}* models of MDS-*SF3B1*, mice develop anemia but typically lack defining features such as bone marrow dysplasia and ring sideroblasts and do not establish clear MDS [333]. More broadly, murine models with single-gene perturbations often miss the genetic complexity of primary MDS/AML. Encouragingly, ongoing advances in gene-editing approaches increasingly enable multi-lesion models that better reflect the heterogeneous nature of human disease [336]. Patient-derived xenograft models are widely used for studying leukemic complexity *in vivo* and are generated by transplanting primary patient cells into immunodeficient mice [337]. These systems have been successful in many AML contexts, including enabling identification of leukemic stem cells and

associated gene signatures, as well as supporting preclinical testing of novel treatments [338–340]. For MDS, results have been more mixed due to limited engraftment potential, particularly in lower-risk disease, which continues to hamper drug development [341]. Several strategies have improved engraftment in some settings by “humanizing” the niche, such as mice engineered to express human cytokines, as in MISTRG and NSGS mice, or through co-transplantation of human stromal components [342–345].

Because these systems incompletely recapitulate MDS (especially lower-risk disease), primary patient-derived cells have remained instrumental for advancing mechanistic understanding. For example, gene expression analyses of bone marrow CD34⁺ cells from *SF3B1*-mutant patients identified key mis-splicing events and downstream pathways that shape MDS biology and drive ring sideroblast development [190,200,201,321–323,346,347]. At the same time, work with primary patient material has practical constraints, including limited availability, invasive sampling procedures, ethical considerations, short *in vitro* viability, and restricted experimental tractability. Induced pluripotent stem cells (iPSCs) have increasingly emerged as a tool to help bridge these gaps and are the focus of the following sections.

1.5 Induced pluripotent stem cells

In 2006, Takahashi and Yamanaka first described reprogramming mouse fibroblasts into iPSCs by expressing four transcription factors, OCT4, SOX2, KLF4, and c-MYC (OSKM; the “Yamanaka factors”) [348]. Soon thereafter, iPSCs were generated from human cells using similar transcription factor combinations (Figure 8) [349,350]. In 2012, John B. Gurdon and Shinya Yamanaka were jointly awarded the Nobel Prize in Physiology or Medicine for the discovery that mature cells can be reprogrammed to pluripotency [351]. Like embryonic stem cells, iPSCs are capable of virtually unlimited self-renewal and can generate derivatives of all three germ layers [348,352].

While the original protocols used integrating retroviral vectors to deliver reprogramming factors, methods have evolved toward non-integrating systems (Sendai virus, mRNA, episomal DNA) to avoid genomic integration [353]. Further optimization of reprogramming cocktails has improved efficiency, and the range of somatic cell sources has expanded substantially [354]. The reprogramming process comprises two phases. In an initial stochastic phase, somatic lineage programs are progressively shut down while pluripotency-associated loci

become activated through epigenetic remodeling. In a subsequent hierarchical phase, an autoregulatory network consolidates and stabilizes self-sustaining pluripotency [355]. Once iPSC clones are established, iPSC quality is typically assessed by pluripotency marker expression, tri-lineage differentiation capacity, and genomic integrity [349,352]. Although iPSCs can be cultured for extended periods, it is recommended to routinely screen for acquired chromosomal abnormalities [356].

Figure 8: Generation of induced pluripotent stem cells. iPSC, induced pluripotent stem cell. Created with BioRender.com.

Today, iPSC culture is commonly performed under feeder-free and serum-free conditions (and in some cases xeno-free), enabling improved reproducibility while maintaining pluripotency. Cells are maintained in defined media on extracellular matrix components such as Matrigel, fibronectin, vitronectin, or laminins [357].

1.5.1 Hematopoietic differentiation protocols

iPSCs have been transformative for *in vitro* research and hold strong potential in disease modeling and regenerative medicine [358]. Beyond their expansion capacity and amenability to genetic manipulation, iPSCs can differentiate into a broad range of somatic cell types [353,359,360]. Generating bona fide HSCs from iPSCs has been a longstanding goal in regenerative medicine, with the promise of reducing donor dependence and immune rejection. As a result, multiple strategies to generate hematopoietic cells from iPSCs have been developed over the past decades [361].

Most differentiation protocols attempt to mimic aspects of *in vivo* hematopoietic development, although they differ in media composition, cytokine combinations, and timing [362]. In general, iPSCs are differentiated either as three-dimensional (3D) aggregates (embryoid bodies and related formats) or as a monolayer.

Mesoderm induction is followed by a hematopoietic specification stage that promotes development of hemogenic endothelium and endothelial-to-hematopoietic transition, producing CD34⁺ HSPCs (Figure 9). Established protocols use sequential growth factors and morphogens, such as BMP4, VEGF, SCF, IL-3, and TPO, applied with staged timing to guide each developmental step [362–368].

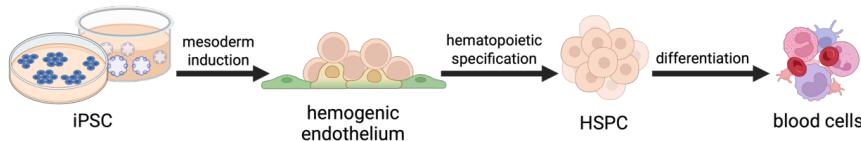


Figure 9: Critical steps and cell populations for the generation of hematopoietic cells from iPSCs, adapted from Rao et al. (2022) [369]. HSPC, hematopoietic stem and progenitor cell. Created with BioRender.com.

Despite advances, generating functional HSCs with robust long-term engraftment from iPSC cultures has proven challenging. iPSC-derived hematopoietic outputs often resembled yolk sac-like programs rather than AGM-like definitive hematopoiesis [370,371]. Multiple studies have shown that *HOXA* expression distinguishes yolk sac from AGM-like progenitors, and that adding the Wnt agonist/GSK3 inhibitor CHIR99021 and/or the ALK inhibitor SB431542 during mesoderm differentiation can promote a HOXA⁺, AGM-like state [371–376]. Transient overexpression of *HOXA5* and/or *HOXA9* during endothelial-to-hematopoietic transition or in myeloid precursors has been reported to enhance repopulating capacity of iPSC-derived progenitors, but these approaches rely on genetic modification [377,378]. More recently, Ng et al. reported the generation of iPSC-derived HSCs capable of long-term multilineage engraftment in approximately half of recipient mice across multiple iPSC lines. This was achieved through precise timing and dosing of Wnt agonists, retinoic acid derivatives, and VEGF in a fully defined culture medium [379]. This development supports progress toward clinical translation and increases the relevance of iPSC-derived hematopoiesis for modeling adult hematopoietic malignancies.

1.5.2 Erythroid differentiation of iPSCs

In parallel to efforts to generate definitive HSCs, the production of functional erythroid cells from iPSCs holds promise for therapeutic applications and disease modeling. In transfusion medicine, iPSC-derived RBCs are attractive because they

could enable scalable production, expand access to rare blood types, and support donor-independent inventories that reduce immunological risks [380,381].

Differentiation of iPSC-derived hematopoietic progenitors toward erythroid cells is well described and typically involves multi-week protocols supplying factors such as EPO, IL-3, IL-6, TPO, and SCF, along with iron sources [382]. However, two major hurdles remain: yield and maturation. Current protocols fall short of producing the number of RBCs required for a single transfusion unit (on the order of 10^{12} cells) at a cost-effective scale [365,383]. To address this, multiple efforts to scale cultures using bioreactors, microcarriers, and agitation have been explored, alongside cost-reduction strategies such as simplified media formulations and reduced cytokine or iron supplementation [362,363,384–389].

The second hurdle is maturation. Key features of definitive RBCs include efficient enucleation and expression of β -globin, a component of the adult hemoglobin HbA. In contrast, iPSC-derived erythroid cells often remain partially nucleated and show incomplete switching from embryonic and fetal globin programs [390]. Strategies that better recapitulate physiological environments, including dynamic culture, 3D systems incorporating niche matrix components, or co-culture with macrophages or stromal elements, can improve maturation. In addition, transplantation studies suggest that iPSC-derived erythroid cells can complete maturation more effectively *in vivo*, supporting the possibility that clinically relevant RBC production may become feasible [391–393].

1.5.3 iPSCs as models of hematopoietic malignancies

Whereas therapeutic applications of iPSC-derived hematopoiesis still face major hurdles, iPSC systems have been used successfully to model a broad range of hematological diseases [394]. iPSCs can provide patient-specific, genetically defined platforms that capture the mutational landscape of the originating clone. They enable clonal expansion in culture and can be differentiated into desired target cell types, helping to overcome the scarcity and fragility of primary patient cells. Importantly, isogenic controls enable direct genotype-phenotype comparisons and can be generated either by reprogramming wild-type cells or by CRISPR-based editing of iPSC lines [353,395]. iPSCs also enable human-specific drug screening and mechanistic studies at scale (Figure 10) [396,397].

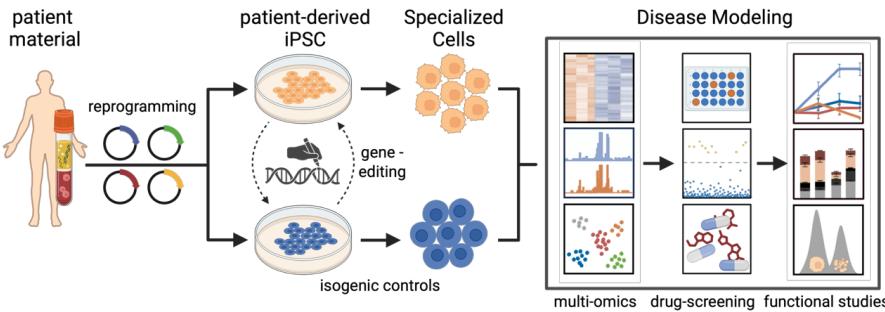


Figure 10: Schematic workflow for the generation and application of patient-derived iPSCs for disease modeling, mechanistic studies, and drug discovery. Created with BioRender.com.

Until recently, iPSCs were primarily applied to monogenic disorders with clear genotype–phenotype relationships, including inherited bone marrow failure syndromes [398,399]. Examples include Fanconi anemia, Diamond–Blackfan anemia, congenital neutropenia, familial platelet disorder, and others [400–404]. These diseases are often rare, patient material is limited, and a monogenic etiology simplifies generation of disease lines and corresponding isogenic controls [399]. More recently, improvements in gene editing and clonal isolation have expanded iPSC modeling to more genetically complex myeloid diseases, including MDS and AML.

In 2015, Kotini et al. generated MDS patient-derived iPSCs with del(7q) and established isogenic controls with normal karyotype [405]. In culture, del(7q) iPSC-derived hematopoietic progenitors showed impaired myeloid differentiation, consistent with features observed in primary patient samples [406]. Mechanistically, engineering heterozygous loss of defined chromosome 7 regions in normal iPSCs helped identify cooperating haploinsufficient genes, including *EZH2* and additional loci, as disease-relevant events [405]. These findings were later reproduced across panels of isogenic iPSC lines, where del(7q) induced a severe differentiation block in hematopoietic progenitor cells, consistent with its association with higher-risk MDS and disease progression. A large-scale drug screen using iPSC-derived hematopoietic progenitor cells from multiple del(7q) lines identified niflumic acid as a compound that selectively inhibited growth of del(7q) cells while sparing isogenic controls. This effect was also validated in primary samples from MDS and secondary AML patients with del(7q) or monosomy 7, illustrating how iPSC models can support discovery of targetable vulnerabilities [407].

Hsu et al. reported the generation of iPSC lines from *SF3B1*-mutant MDS using episomal reprogramming and showed that iPSC-derived hematopoietic progenitors could differentiate into erythroid cells with mitochondrial defects, recapitulating a key feature of *SF3B1*-mutant MDS [204]. Through integration of splicing and gene expression analyses, Asimomitis et al. identified a mis-splicing signature shared between iPSC-derived progenitors carrying *SF3B1^{K70OE}* and primary patient cells. The same study also used chromatin accessibility analyses to implicate TEA domain transcription factor as a transcriptional regulator associated with the mutant state [408]. In a complementary study, Singh et al. reported that *SF3B1*-mutant cells derived from patient iPSCs, cell lines, and patient CD34⁺ cells accumulate R-loops (RNA–DNA hybrids). This was tied to increased DNA damage and activation of the ATR–Chk1 pathway, which could be mitigated by RNase H1-mediated R-loop resolution. Notably, *SF3B1*-mutant cells were selectively sensitive to ATR or Chk1 inhibition, and this vulnerability was enhanced by the splicing modulator sudemycin D6, suggesting a potential therapeutic strategy [409].

As an additional disease-relevant readout, Clough et al. generated ring sideroblasts in *in vitro* differentiated erythroid cells from *SF3B1^{K70OE}* iPSCs. RNA-seq confirmed mis-splicing events and downregulation of genes involved in iron metabolism and heme synthesis (*ABCB7*, *MAP3K7*, *PPOX*, *TMEM14C*), consistent with observations in primary cells. Restoring expression of *ABCB7* (and to some extent *PPOX*) reduced ring sideroblast formation, supporting a functional link between reduced *ABCB7* and this phenotype [410]. Together, these studies reinforce mechanistic connections between spliceosome dysfunction and MDS pathophysiology and suggest downstream vulnerabilities for therapeutic targeting [394].

Modeling disease progression from MDS to AML and dissecting the contributions of individual mutations is challenging, given the complexity of clonal evolution. To address this, Kotini et al. generated iPSC panels from four patients reflecting preleukemia, lower-risk MDS, higher-risk MDS, and secondary AML. Hematopoietic progenitors derived from these lines captured stage-specific phenotypes and transcriptional programs associated with disease progression. Modeling transitions by correcting variants or sequentially introducing mutations through gene editing enabled either reversal of disease severity or stepwise progression from a near-normal phenotype toward transplantable AML [411]. Collectively, this work provided a framework for how stage transitions across myeloid malignancies

can be driven by combinations of cooperating lesions [412]. Using a similar approach, Wang et al. modeled progression from a healthy state through CH and MDS to AML by serially introducing mutations in *ASXL1*, *SRSF2*, and *NRAS*. Stage transitions were associated with transcriptomic and chromatin accessibility signatures that mirrored primary human MDS/AML. Importantly, inflammatory signaling dysregulation emerged as an early and persistent feature of leukemogenesis, suggesting a potential target for early intervention [413].

RAS pathway mutations are often late events, acquired upon progression from MDS or in relapsed/refractory AML [171,258,414–416]. The mechanistic basis for their timing has been unclear. Sango et al. generated CRISPR-edited iPSC models and reported that *NRAS* mutations alone were insufficient to establish leukemia, instead requiring preceding cooperating lesions to transform granulocyte-monocyte progenitors [417]. Acquisition of *RAS* mutations drove aberrant expression of *BCL2* family genes, promoted a monocytic phenotype, coupled with a resistance against *BCL-2* inhibition by venetoclax, offering a mechanistic explanation for poorer therapeutic responses in these settings [418,419]. A recurring theme across these studies is that disease phenotypes often emerge only during hematopoietic differentiation. Moreover, iPSC-derived hematopoietic progenitors corresponding to overt AML states have been most successful at serial engraftment and disease propagation in mice, whereas modeling pre-malignant states and lower-risk disease remains more challenging.

These dynamics were also observed in *KMT2A::MLLT3*-rearranged AML. Chao et al. derived iPSC lines from two individuals with these rearrangements and found that iPSCs originating from malignant and non-malignant clones were highly similar in the pluripotent state, including comparable transcriptional and epigenetic profiles and tri-lineage differentiation potential. In contrast, hematopoietic specification re-established leukemic molecular and cellular features, underscoring the requirement for a specific cellular context for disease manifestation [420]. This model provides a platform to study *KMT2A*-driven leukemogenesis in a human setting and enables testing of targeted therapies for this subtype.

Collectively, iPSC-based studies have uncovered genotype–phenotype relationships for specific lesions and enabled controlled modeling of disease evolution, improving understanding of clonal hierarchies and therapeutic vulnerabilities across myeloid neoplasms. At the same time, these studies

highlight important limitations: some clones, particularly those with complex genetic backgrounds, reprogram inefficiently and may be underrepresented during iPSC generation even when they constitute dominant clones in the patient [395,421]. In addition, limited engraftment of pre-malignant or lower-risk states remains a barrier. Ongoing improvements in gene editing, reprogramming, differentiation, and transplantation protocols are beginning to address these limitations, enabling more faithful modeling of complex clonal architectures and earlier disease states [379,413,417,422–424].

2 Research aims

STUDY I: SF3B1-MUTANT MODELS OF RNA MIS-SPlicing UNCOVER UBA1 AS A THERAPEUTIC TARGET IN MYELODYSPLASTIC NEOPLASMS

- To evaluate previously established patient-derived iPSC lines and isogenic wild-type cells as models of *SF3B1*-mutant MDS biology by confirming key *SF3B1^{K700E}*-associated features, including established splicing abnormalities and erythroid phenotypes.
- To discover novel *SF3B1^{K700E}*-associated mis-splicing events.
- To assess these across iPSC-derived hematopoietic cell types, additional *SF3B1*-mutant model systems, and an MDS patient cohort.
- To define the molecular consequences of novel mis-splicing events by evaluating RNA fate, ribosome association/translation efficiency, and the stability and/or function of the resulting protein products.
- To test whether these splicing-driven molecular consequences create therapeutic vulnerabilities by assessing differential sensitivity of *SF3B1*-mutant versus controls, with the goal of selectively impacting mutant cells

STUDY II: TARGETING DYSREGULATED EPIGENETIC AND TRANSCRIPTION FACTOR NETWORKS IN KMT2A-REARRANGED AML USING iPSC MODELS

- To leverage patient-derived AML iPSCs and isogenic controls to model hematopoietic dysregulation in *KMT2A*-rearranged AML by differentiating iPSCs into hematopoietic progenitor populations suitable for mechanistic and functional analyses.
- To define when and how transcriptional dysregulation emerges during hematopoietic development in *KMT2A:MLLT3* AML via time-course transcriptomic profiling of iPSC differentiation.
- To identify transcription factor programs and epigenetic regulatory mechanisms associated with the AML-like HSPC transcriptional state by integrating promoter activity with motif enrichment and regulatory network inference.
- To test therapeutic actionability of these inferred dependencies by perturbing selected epigenetic regulators and assessing effects on AML-associated gene programs and hematopoietic output.

3 Materials and Methods

This section provides an overview of the relevant methods used in this thesis; detailed descriptions are provided in the Methods sections of the studies.

Ethical considerations and patient material

All studies involving human-derived material were conducted in accordance with ethical principles for medical research, including the Declaration of Helsinki, with written informed consent obtained from all donors or patients prior to sample collection and research use. The original iPSC lines used in **Study I** were generated from bone marrow samples obtained from three patients with MDS-RS. Bone marrow samples for primary CD34⁺ CFU assays were obtained from three patients with MDS-*SF3B1* and two healthy donors at Karolinska University Hospital, Huddinge, Sweden. The study was approved by the Ethics Research Committee at Karolinska Institutet (2017/1090-31/4, 2022-03406-02 and 2024-03119-02). The iPSC lines used in **Study II** were previously generated from AML patient samples obtained under Institutional Review Board-approved protocols at Stanford University (Stanford IRB 18329 and 6453), following informed consent, and reprogramming of AML samples was conducted under Stanford IRB 28197.

iPSC culture

Patient-derived iPSC lines were central to all projects of this thesis, and their detailed properties are summarized in Table 3. In **Study I**, we used iPSC lines from a female MDS patient with ring sideroblasts harboring an isolated *SF3B1*^{K70OE} mutation, which were generated by Asimomitis et al. [408]. iPSC lines used in **Study II** were previously generated by Chao et al. and are derived from two female AML patients harboring *KMT2A* rearrangements [420]. iPSCs were generated by transducing bone marrow mononuclear cells, primary AML cells, and T cells using the CytoTune-iPSC 2.0 Sendai reprogramming kit. Specific details for the reprogramming conditions are provided in the original publications.

All iPSC lines were cultured in feeder-free conditions on Matrigel hESC-Qualified Matrix. Matrigel is a basement membrane extracellular matrix preparation isolated from Engelbreth-Holm-Swarm mouse sarcomas, rich in extracellular matrix proteins that support iPSC attachment and growth. iPSCs were maintained in mTeSR Plus with 1% penicillin-streptomycin (P/S), clump-passaged with EZ-LiFT Stem Cell Passaging Reagent.

Study	Background	Original ID	Study Name	Cytogenetics	Co-Mutations
Study I	Female 65 Years MDS-RS	N-22.45	<i>SF3B1</i> ^{WT} iPSC	46, XX, +mar	
		MDS-22.45	<i>SF3B1</i> ^{K700E} iPSC	46, XX, +mar	<i>SF3B1</i> -K700E
Study II	Female 20 Years Relapsed AML	SU223-T3	Normal iPSC	46, XX	
		SU223-B3	AML iPSC 1.1	46, XX t(9;11)(p22;q23)	<i>FLT3-ITD</i> <i>NRAS-G12D</i> <i>SEMA4A-Y589H</i>
		SU223-B5	AML iPSC 1.2	(9;11)(p22;q23)	<i>FLT3-ITD</i> <i>NRAS-G12D</i> <i>SEMA4A-Y589H</i>
	Female 61 Years De novo AML	SU042-3	AML iPSC 2.1	46, XX t(10;11)(p11.2~12; q23)	<i>ARID1A-P1326</i> <i>ATM-V2193I</i> <i>DNMT3A-</i> <i>S837Stop</i> <i>SMG1-L250V</i> <i>SPEN-T1673S</i>

Table 3: iPSC lines used for this thesis including mutational and cytogenetic features.

Cell culture

Leukemic cell lines were used in both studies to assess whether findings from the iPSCs were consistent across *in vitro* models. **Study I** employed the widely used K562 erythroleukemia cells, including an engineered line harboring an *SF3B1*^{K700E} mutation. To investigate whether PRC2 inhibition selectively acts in *KMT2A*-rearranged cells in **Study II**, we compared responses in HL-60 and OCI-AML-3 (*KMT2A* wild-type) to THP-1 and MONO-MAC-6 (*KMT2A::MLLT3*) cells. K562, HL-60, OCI-AML-3, and THP-1 cells were maintained in RPMI 1640 with glutamine, 10% heat-inactivated fetal bovine serum (FBS), and P/S. MONO-MAC-6 cells were further supplemented with non-essential amino acids, sodium pyruvate, and insulin. Leukemic lines were maintained at densities between $0.1\text{--}1.0 \times 10^6$ cells/mL as suspension cultures. HEK-293T cells were cultured in DMEM supplemented with 10% newborn calf serum and P/S. All cells were cryopreserved in 50% culture medium, 40% heat-inactivated FBS, and 10% DMSO using controlled-rate freezing. Cell cultures were maintained in a humidified 37°C incubator under standard tissue-culture conditions (5% CO₂, normoxia) and regularly confirmed to be mycoplasma-negative.

Hematopoietic differentiation

The generation of hematopoietic cells from iPSCs was central to the studies included in this thesis, as HSPCs enabled experimental modeling of disease-associated phenotypes and responses to treatment. Over the course of the PhD projects, multiple differentiation approaches and protocol modifications were evaluated. Changes were made based on advances in the field as well as practical considerations such as reagent availability, cost, and reproducibility. The following section provides an overview of the hematopoietic differentiation workflows applied in **Study I** and **Study II**, and outlines the current protocol implemented in the group for ongoing projects (Figure 11). As described in the background section, the generation of hematopoietic cells from iPSCs generally follows a stepwise protocol designed to recapitulate key aspects of embryonic hematopoietic development *in vitro*. This involves sequential media changes and timed cytokine additions to guide lineage progression from early mesoderm-like states to hemogenic endothelial cells, from which HSPCs emerge and accumulate in the non-adherent/supernatant fraction.

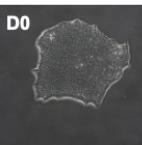
For **Study I**, HSPCs were generated using the commercially available and widely used STEMdiff Hematopoietic Kit. This kit is based on two media stages that promote mesoderm-like induction, followed by hematopoietic specification. In our hands, hematopoietic progenitors emerged from ~day 10, and cells were harvested on day 13 for downstream experiments. This protocol was reproducible, but it is comparatively cost-intensive and based on proprietary formulations, which limits control over individual media components.

For **Study II**, we implemented a protocol adapted from Matsubara et al., based on the Stemline II Hematopoietic Stem Cell Expansion Medium formulation [425]. This 13-day protocol comprises four media stages, supported by the addition of recombinant cytokines and morphogens. Compared with the kit-based protocol, this approach provided greater flexibility and allowed for adjustments; however, varying availability and incomplete disclosure of the base media formulation remained a challenge.

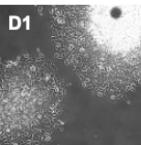
Finally, recent work has marked a major milestone in the field with the development of differentiation protocols capable of generating iPSC-derived hematopoietic cells with multilineage engraftment potential, achieved without introducing leukemic driver mutations or relying on artificial transcription factor overexpression [378,379,411]. While this protocol was not used in the studies

comprising this thesis, we have adapted it in our research group and it currently serves as the standard for ongoing projects. Besides the biological relevance of the generated cells, a practical advantage of this workflow is the use of fully defined, serum-free conditions, which support long-term reproducibility and simplify standardization across experiments.

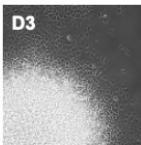
STEMdiff Hematopoietic Kit; Study I, Study II

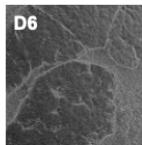

D-1	D0	D3		D13
iPSC	Mesoderm	Hematopoietic		HSPC Harvest
mTeSR+	Medium A			

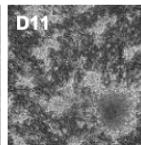
Matsubara et al. 2019 (modified); Study II

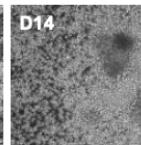

D-1	D0	D2	D4	D13
iPSC	Mesoderm	+ Patterning	Hematopoietic	HSPC Harvest
mTeSR+	E8	E6	SLII	
	CHIR	SB	VEGF	
	BMP4	VEGF	SCF	
	VEGF	SCF	FLT3L	
			IL3	

Ng et al. 2024; current protocol


D-1	D0	D1	D3	D7	D11	D14
iPSC	Mesoderm	+ Patterning	Endothelial	EHT	Hematopoietic	HSPC Harvest
mTeSR+	SPELS →	RETA →	BMP4	BMP4	SCF	
	CHIR	CHIR	VEGF	FGF2	TPO	
	Activin A	SB	FGF2	IGF1	FGF2	
	FGF2	VEGF	IGF1	IGF2	IGF1	
		FGF	IGF2		IGF2	


D0


D1


D3

D6

D11

D14

Figure 11: Overview of the hematopoietic differentiation protocols used in the Study I and Study II as well as the current approach adapted by our research group. Arrows indicate additions that are continued from that timepoint onward. Bottom: Representative images of differentiating cultures from normal iPSC. E8, Essential 8 medium; E6, Essential 6 medium; SPELS, SPELS medium; CHIR, CHIR99021; SB, SB-431542; RETA, retinyl acetate; EHT, endothelial-to-hematopoietic transition.

In **Study I**, iPSC-derived hematopoietic progenitors were further directed toward the erythroid lineage by changing to media conditions that promote erythroid maturation and expansion. This included supplementing cells with erythropoietin and transferrin throughout the protocol, as well as SCF and IL3 during the first week. CD235a⁺ erythroid cells were enriched by magnetic separation for downstream analyses.

Cell transfection experiments

Transfection-based approaches were used in **Study I** to manipulate *UBA1* expression and to validate sensitivity to targeted inhibitors. Plasmid transfection introduces an expression vector into cells to drive ectopic production of a protein of interest, whereas siRNA-mediated knockdown delivers short double-stranded RNAs that promote sequence-specific degradation of the target mRNA, thereby reducing endogenous protein levels. For overexpression experiments, plasmids encoding wild-type *UBA1* and the mis-spliced *UBA1* variant (including the additional 135 bp sequence) were introduced into HEK-293T cells using cationic lipid-mediated transfection. To reduce endogenous *UBA1* expression, *UBA1*-targeting siRNAs were delivered into K562 cells by electroporation. Following transfection, cells were harvested at defined time points for downstream RNA and protein analyses.

PCR-based assays

PCR-based assays were used in **Study I** to quantify individual gene expression levels and to assess specific transcript isoforms, with a particular focus on *UBA1* splice forms. For splice variant quantification, primer design was adapted from a previously published strategy [426] to generate primer pairs spanning the canonical splice junction, priming within the mis-spliced (variant) sequence, or amplifying an external control region upstream of the splice site (Figure 12). Primers were designed using various online tools and selected based on predicted specificity against human transcript databases. Nucleic acids were isolated using spin column-based kits, and input amounts were quantified prior to downstream analysis. For reverse transcription quantitative PCR (RT-qPCR), RNA was extracted, quantified, and reverse-transcribed to cDNA prior to SYBR Green-based qPCR. Expression changes were reported as fold change after normalization to *18S* rRNA and, where applicable, to the upstream control signal. Comparisons between groups were made using the $\Delta\Delta Ct$ method. Conventional PCR was used to detect splice products using exon-spanning primers, with amplicons resolved by gel electrophoresis to visualize product sizes. In addition, droplet digital PCR (ddPCR) was used in **Study I** to determine *SF3B1^{K700E}* status per colony.

ENST00000335972.11 UBA1-201

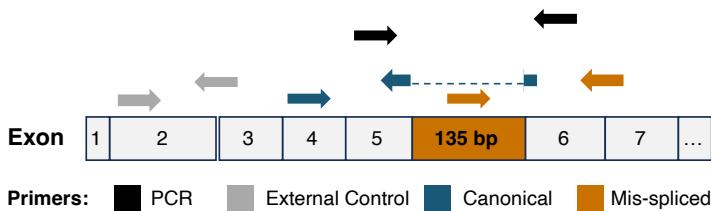


Figure 12: Primer design strategy for the detection *UBA1* splice forms by PCR amplification of the *UBA1*^{ms} region (black) and quantification of *UBA1* splice forms by RT-qPCR (gray, blue, orange).

Immunoblotting

Immunoblotting was used to assess protein abundance and post-translational marks in response to experimental perturbations. In brief, proteins were extracted from cell pellets, separated by SDS-PAGE (where proteins are denatured and resolved according to molecular weight), and then transferred to nitrocellulose membranes. Proteins were detected using specific primary antibodies followed by HRP-conjugated secondary antibodies. Signal was generated by addition of a chemiluminescent HRP substrate, which produces light in an enzyme-catalyzed reaction at sites where the target protein is bound, enabling band detection and quantification. In **Study I**, immunoblotting was performed on whole-cell lysates to confirm *UBA1* isoform expression across different experimental settings and cell models. The method was also used to evaluate protein-level responses to treatment, including global ubiquitination and apoptosis-associated readouts such as PARP1 and caspase-3 cleavage. In **Study II**, immunoblotting was used to quantify changes in H3K27me3 following treatment and to guide dose selection based on target engagement. Across both studies, protein concentrations were determined prior to loading, signals were acquired on an Odyssey FC system, and band intensities were quantified in ImageStudio with normalization to housekeeping or reference proteins.

mRNA and protein stability assays

In **Study I**, mRNA and protein stability assays were used to determine how the mis-spliced *UBA1* transcript and its encoded protein are regulated post-transcriptionally. Transcript stability was assessed in a time-course experiment by blocking de novo transcription with actinomycin D, which intercalates into DNA and prevents RNA polymerase progression [427], followed by RT-qPCR using splice form-specific primers. In parallel, we evaluated sensitivity to NMD, a pathway that promotes the degradation of transcripts containing premature stop

codons, by inhibiting translation with cycloheximide and assessing splice variant presence by RT-PCR [198]. At the protein level, UBA1 isoform stability was measured using cycloheximide chase experiments in cells transfected with expression-tagged UBA1 constructs, with time-dependent changes in protein abundance quantified by immunoblotting to estimate protein half-life. To evaluate proteasome-mediated degradation, transfected cells were co-treated with the proteasome inhibitor MG-132 and protein levels were assessed by immunoblotting. Throughout these experiments, short-lived transcripts and proteins, as well as established NMD target transcripts, were included as controls.

RNA sequencing analysis

RNA-seq was used in **Study I** and **Study II** to profile the transcriptome, analyze splicing patterns, and quantify promoter activity. In both studies, RNA from bulk or sorted cell populations was isolated using column-based kits, quality-controlled prior to library preparation, sequenced, and analyzed using workflows that follow the same overall logic: read pre-processing, alignment/mapping, quantification, and statistical or functional interpretation.

In **Study I**, full-length bulk RNA-seq libraries were prepared from total RNA using SMARTer Stranded Total RNA-Seq Kits v2 with enzymatic ribosomal depletion and sequenced using an Illumina NovaSeq 6000 S4 as paired-end 150 bp reads. Reads were adapter- and quality-trimmed with TrimGalore and Cutadapt prior to two-pass alignment to the human reference genome (GRCh38) using STAR, and gene-level counts were generated from uniquely mapped reads using featureCounts. Differential expression testing was performed with DESeq2, with p-values adjusted using the Benjamini–Hochberg method. Differential splicing analysis between splicing factor–mutant and normal samples was performed using rMATS, with p-values calculated using a likelihood-ratio test and adjusted using the Benjamini–Hochberg correction. Selected splicing events were visualized using sashimi plots generated with ggsashimi.

In **Study II**, RNA-seq and cap analysis of gene expression (CAGE) were used to quantify transcript abundance and promoter activity, respectively. RNA quality was assessed using Agilent TapeStation prior to library construction following Illumina stranded messenger RNA prep ligation sample preparation protocols. Sequencing was performed on an Illumina NextSeq platform. Raw sequencing data were processed using the MOIRAI pipeline to obtain uniquely mapped reads. For CAGE analyses, mapped reads were overlapped with the FANTOM5 robust

promoter set to quantify promoter activity and compare promoter usage between conditions. In addition, motif activity response analysis (MARA) was performed to assess the promoter-proximal region (-300 bp to +100 bp) surrounding representative CAGE peaks and infer transcription factor motif activity. Protein interaction context for selected candidates was explored using STRING network analysis (v12.0) with default parameters.

Flow cytometry

Flow cytometry was used throughout this thesis to benchmark the output of hematopoietic differentiation protocols and to assess the cellular composition of the generated progenitor populations. In **Study I** and **Study II**, iPSC-derived hematopoietic progenitors were characterized using CD34, CD43, and CD45, together with a viability dye to exclude dead cells. In **Study I**, erythroid differentiation was additionally evaluated using CD71 and CD235a. Cells were stained on ice and fixed prior to acquisition and analyzed on a BD LSRFortessa at the MedH Flow Cytometry Core Facility, which receives funding from the Infrastructure Board at Karolinska Institutet. Flow cytometry was further used for viability assays, which are described in a separate section.

CFU assays

The colony-forming unit (CFU) assay is a standard functional readout for hematopoietic progenitors and is used to assess clonogenic capacity and lineage output. Cells are seeded at low density in a semi-solid, methylcellulose-based matrix supplemented with cytokines, where single progenitors proliferate and differentiate into discrete colonies that can be counted and scored. In this thesis, CFU assays served as a functional readout in both studies and were performed using iPSC-derived HSPCs, primary CD34⁺ bone marrow cells, and leukemic cell lines.

In **Study II**, HSPCs derived from control and AML iPSCs were plated in CFU medium containing combinations of the EZH1/2 inhibitor UNC1999, the DNA methyltransferase inhibitor 5-azacitidine, or vehicle, to assess the impact of these compounds on the clonogenic capacity of *KMT2A*-rearranged cells. Colonies were scored after 14 days. To assess self-renewal following treatment, replating assays were performed by collecting colonies from co-treated and untreated AML cultures and re-seeding cells in fresh CFU medium without drugs; secondary colonies were scored after 10 days. To validate the findings obtained in iPSC-derived cells, the same experimental setup was applied to an AML cell line panel

(HL-60, OCI-AML-3, THP-1, and MONO-MAC-6), with adjustments to seeding density and culture duration.

In **Study I**, CFU assays were performed using *SF3B1*^{WT} and *SF3B1*^{K700E} K562 cells to examine the effect of *UBA1* inhibition with TAK-243 (or vehicle) on colony-forming potential. CFU assays were also performed using primary CD34⁺ cells from *SF3B1*-mutated MDS patients and healthy donors. CD34⁺ cells were enriched from bone marrow mononuclear cells by magnetic separation and plated under TAK-243 or vehicle conditions. After 14 days, colonies were scored and individual colonies were picked for DNA isolation followed by droplet digital PCR to determine the contribution of *SF3B1*-mutant versus residual wild-type progenitors. To reduce bias and improve reproducibility, colony scoring and colony picking were performed in a blinded manner.

Viability assays

Viability assays were used in **Study I** to determine how different compounds affected *SF3B1*-mutant versus wild-type cells and to generate dose-response curves across the model systems. Cells were treated for 24–72 hours and, depending on the assay format, viability was assessed by either flow cytometry-based staining or a luminescence-based readout. For flow cytometry, treated cells were stained with ApoTracker Green and the Aqua LIVE/DEAD viability dye, and live cells were defined as Aqua⁻/ApoTracker⁻ singlets. For the luminescence-based approach, CellTiter-Glo was used to quantify intracellular ATP as a proxy for metabolically active cells. Following treatment, CellTiter-Glo reagent was added directly to the cultures and luminescence was recorded on a plate reader. Dose-response curves were fitted to determine IC₅₀ values where applicable.

Data analysis

Flow cytometry data were analyzed using FlowJo v10. Statistical analyses were primarily performed in GraphPad Prism v10 and RStudio, and data are presented as mean \pm standard error of the mean (SEM) unless stated otherwise. Statistical comparisons were performed using unpaired t-tests, one-way ANOVA, or two-way ANOVA, with multiple comparisons controlled using Šidák, Holm–Šidák, Tukey, or Dunnett post hoc tests, as indicated in the figure legends. Nonlinear regression was used to fit dose-response relationships (four-parameter logistic curves for IC₅₀ estimation) and decay kinetics (one-phase decay).

4 Results and Discussion

4.1 Study I

Study rationale

MDS with *SF3B1* mutation (MDS-*SF3B1*) is a clinically and biologically distinct subtype of myelodysplastic neoplasms, characterized by ring sideroblasts and predominantly erythroid cytopenias. *SF3B1* mutations alter splice site recognition, causing widespread cryptic 3' splice site usage, and resulting in mis-splicing of genes implicated in hematopoietic and erythroid differentiation. Progress in identifying disease-relevant therapeutic targets has been slowed by the fact that splicing patterns are cell context-dependent and are not consistently captured across commonly used systems (including *SF3B1* mouse models, limited primary material, and unrepresentative cell line models). To address this in **Study I**, we used genetically matched *SF3B1*^{K700E} and *SF3B1*^{WT} patient-derived iPSCs as a scalable human platform. We applied full-length RNA-seq with unsupervised splicing profiling during hematopoietic differentiation to uncover *SF3B1*-linked mis-splicing events with tractable downstream consequences, ultimately highlighting *UBA1* mis-splicing as a potential therapeutic vulnerability.

Results

Patient-derived, isogenic *SF3B1*^{K700E} iPSCs were differentiated toward hematopoietic and erythroid lineages and analyzed by full-length RNA-seq. This revealed a previously unreported RNA mis-splicing event in *UBA1* (*UBA1*^{ms}), created through the retention of an intronic sequence between *UBA1* exons 5–6 (**Figure 13A; Study I, Figure 1C**). RT-qPCR and RT-PCR detected *UBA1*^{ms} in both *SF3B1*^{K700E} iPSC-derived erythroid cells and CD34⁺ HSPCs, but not in *SF3B1*^{WT} controls and these results were reflected in K562 cells and primary material (**Figure 13B; Study I, Figure 1D–F**). The same event was present in the patient used for iPSC reprogramming and, in cohort CD34⁺ RNA-seq data, appeared exclusively in *SF3B1*-mutated cases, with no detection in other splice factor-mutated or wild-type MDS or in healthy donors (**Figure 13C; Study I, Figure 5C–F**).

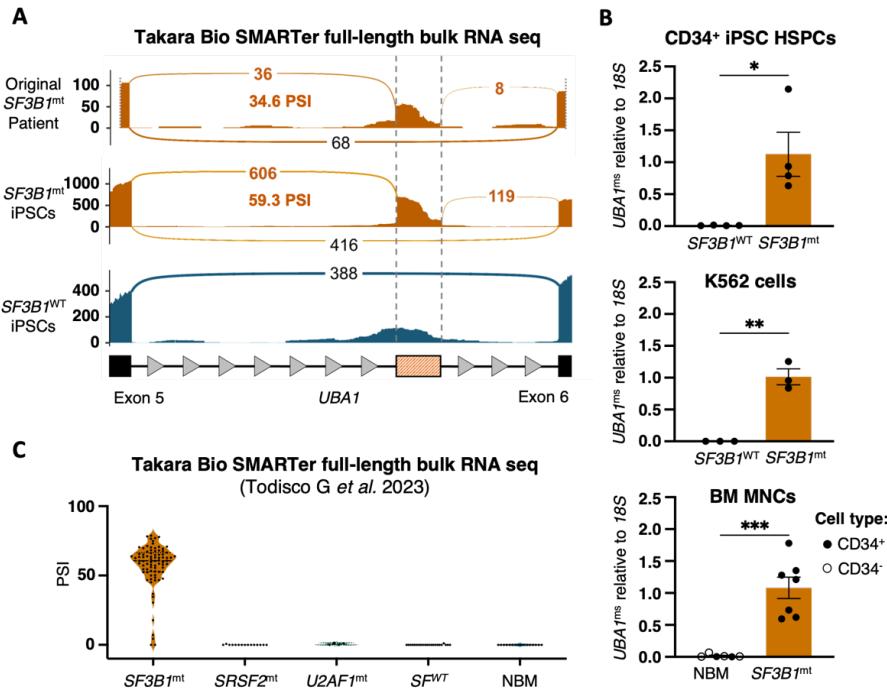


Figure 13: *UBA1* mis-splicing in MDS-*SF3B1*. (A) Sashimi plots of the mis-spliced region of *UBA1* in *SF3B1^{WT}* and *SF3B1^{K700E}* from total RNA sequencing of iPSC-derived CD235a⁺ erythroblasts, and primary CD34⁺ BM MNCs from the original MDS-*SF3B1* patient (n = 1). Black, canonical splice junction counts; orange, mis-spliced junction counts. y-axis, absolute read counts. (B) qPCR analysis of *UBA1^{ms}* relative to 18S in iPSC-derived CD34⁺ HSPCs (n = 4), K562 cells (n = 3), and CD34⁺ (filled circles) or CD34⁻ (empty circles) cells from primary BM MNCs of healthy donors (NBM; n = 6) and *SF3B1*-mutated MDS patients (*SF3B1^{mt}*; n = 7). Mean \pm SEM relative expression. Unpaired t-test. (C) Violin plots of *UBA1* intron 5 mis-splicing PSI from total RNA sequencing of CD34⁺ BM MNCs from our previously published data [208], organized by splicing factor mutation. *SF3B1^{mt}*, *SF3B1*-mutated; PSI, percent spliced-in; BM MNC, bone marrow mononuclear cells; NBM, normal bone marrow from healthy donors. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.

Because *UBA1* encodes an E1 enzyme essential for initiating the ubiquitination cascade, we asked whether *UBA1^{ms}* was accompanied by altered protein abundance. Indeed, *SF3B1^{K700E}* iPSC-derived hematopoietic cells showed lower total UBA1 protein than *SF3B1^{WT}* cells (Figure 14A; Study I, Figure 1G–H). An orthogonal *SF3B1^{K700E}* K562 model recapitulated both *UBA1^{ms}* and reduced UBA1 protein, indicating that this association was not limited to iPSC-derived cells (Figure 14B–C; Study I, Figure 2A–B, 2H–I).

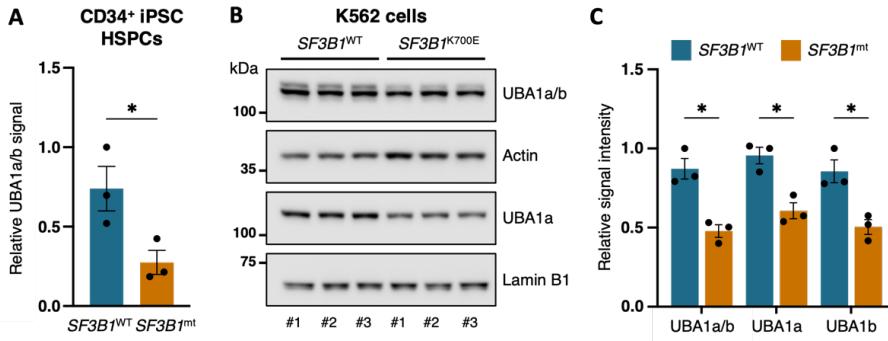


Figure 14: Models of MDS-SF3B1 feature reduced UBA1 protein levels. (A) Quantification of UBA1a/b protein levels in whole-cell lysates of *SF3B1^{WT}* and *SF3B1^{K700E}* iPSC-derived CD34⁺ cells by immunoblotting analysis (n = 4). Actin was used as a loading control, and relative signals were normalized by lane normalization factor. Mean ± SEM relative UBA1 signal intensity. Unpaired t-test with Holm–Šídák's multiple comparisons test. (B) Immunoblot analysis and (C) quantification of UBA1 isoforms in whole cell lysates from *SF3B1^{WT}* and *SF3B1^{K700E}* K562 cells (n = 3). Actin was used as a loading control for total UBA1 and UBA1b; Lamin B1 was used as a loading control for nuclear UBA1a, and relative signals were normalized by lane normalization. Mean ± SEM relative signal intensity. Unpaired t-test with Holm–Šídák's multiple comparisons test. *, P ≤ 0.05.

Because many *SF3B1*-associated mis-splicing events are degraded through NMD, reducing levels of functional transcript, we tested whether altered RNA stability could explain reduced UBA1 protein. *UBA1^{ms}* does not introduce a premature stop codon, and after transcriptional shutoff, *UBA1^{ms}* and canonically spliced *UBA1* transcripts displayed similar stability (Figure 15A; Study I, Figure 2C). In parallel, inhibiting NMD did not increase *UBA1^{ms}* abundance; in contrast, *ABCB7*, a known MDS-SF3B1 mis-spliced NMD target accumulated under the same conditions (Study I, Figure 2D–E). Polysome profiling further showed enrichment of *UBA1* transcripts in polysome fractions irrespective of splice form, suggesting that impaired ribosome engagement is not the primary driver of reduced protein (Study I, Figure 2F–G). This shifted our focus toward post-translational mechanisms. When expressed in HEK-293T cells, FLAG-tagged *UBA1^{MS}* protein accumulated to much lower levels than *UBA1^{WT}* despite comparable transcript levels (Study I, Figure 3A–E). Cycloheximide chase experiments showed rapid decay of *UBA1^{MS}* protein compared with *UBA1^{WT}*, and proteasome inhibition partially rescued *UBA1^{MS}* abundance, consistent with proteasome-dependent clearance of an unstable protein (Figure 15B; Study I, Figure 3F–I).

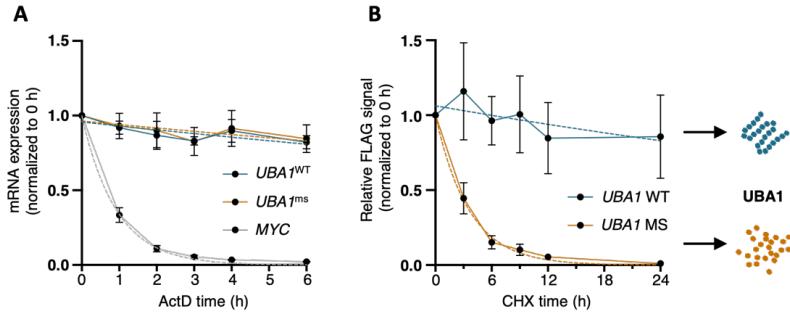


Figure 15: UBA1 stability analysis. (A) qPCR analysis of *UBA1^{WT}* and *UBA1^{ms}* transcript levels in *SF3B1^{K700E}* K562 cells after treatment with actinomycin D (ActD) for the indicated time points ($n = 3$). Results were normalized to 0 hours, and *MYC* was included as a fast-degrading transcript control. Mean \pm SEM relative expression, One-phase decay nonlinear curve fit (dotted line). (B) quantification of FLAG-tagged protein levels in HEK293T cells 72 hours post-transfection with *UBA1* WT, *UBA1* MS or control plasmids and treatment with 50 μ g/ml cycloheximide (CHX) for the indicated time points ($n = 3$). Actin was used as a loading control, and signals were normalized to relative signals at 0 hours for each group. Mean \pm SEM relative signal intensity, interpolation of a one-phase decay non-linear regression curve (dotted line).

On this basis, we tested whether *SF3B1^{K700E}* cells are more sensitive to pharmacologic UBA1 inhibition. A previous study identified TAK-243 as a potent, selective, small-molecule inhibitor that blocks catalytic activity of UBA1, leading to a depletion of cellular ubiquitin conjugates [428]. TAK-243 reduced viability to a greater extent in *SF3B1^{K700E}* than in *SF3B1^{WT}* K562 cells (**Study I, Figure 4A–B**). We observed a similar effect in iPSC-derived CD34⁺ HSPCs, where *SF3B1^{K700E}* cells were more sensitive than isogenic controls (**Study I, Figure 5A–B**). Sensitivity also correlated with UBA1 abundance: siRNA-mediated *UBA1* knockdown increased TAK-243 sensitivity (**Study I, Figure 4C–F**). Functionally, TAK-243 shifted clonal composition in WT:mutant co-cultures and reduced clonogenic output in colony assays, with mutant progenitors markedly reduced while WT clonogenicity was relatively preserved (**Study I, Figure 4G–I**). Finally, in primary CD34⁺-enriched bone marrow mononuclear CFU assays, TAK-243 reduced colony output more in MDS-*SF3B1* samples than in healthy controls, and single-colony genotyping indicated that this reduction was largely driven by loss of *SF3B1*-mutant colonies, with relative preservation of WT colonies from residual healthy clones (**Figure 16; Study I, Figure 5G–I**).

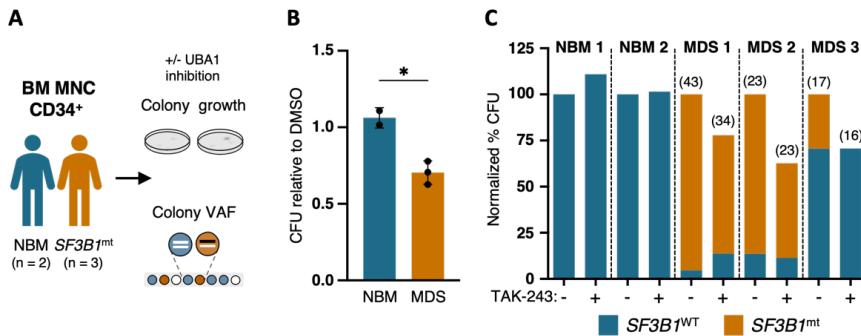
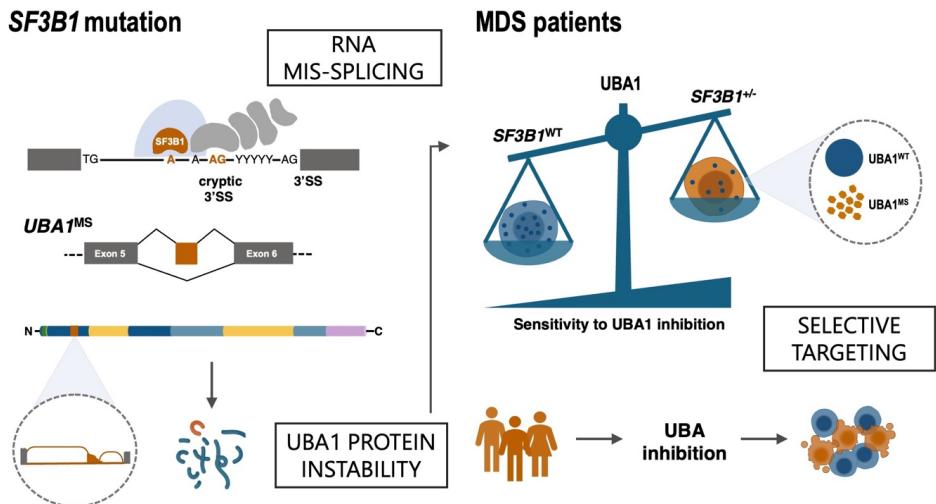


Figure 16: *UBA1*^{ms} in MDS-SF3B1 patients confers sensitivity to UBA1 inhibition. (A) Experimental strategy to assess the effect of UBA1 inhibition on colony growth and composition in CD34⁺-enriched bone marrow MNCs from MDS-SF3B1 patients and healthy controls. (B) Effect of UBA1 inhibition on CFU counts relative to DMSO and (C) frequency of *SF3B1*^{WT} and *SF3B1*^{mt} colonies relative to total CFU counts from MDS patient (n = 3) or healthy control (n = 2) cells treated with 32 nM TAK-243 or DMSO for 14 days. Numbers within brackets indicate colonies assessed by ddPCR. Mean \pm SEM. Unpaired t-test. *, P \leq 0.05; ns, not significant. MDS-RS, MDS with ring sideroblasts.


Discussion

The main finding of **Study I** is the identification of *UBA1* mis-splicing as a mutant *SF3B1*-linked event that lowers the available *UBA1* protein pool and preferentially sensitized mutant cells to pharmacologic *UBA1* inhibition across model systems. Advances in sequencing and integrative analyses continue to refine our view of aberrant splicing events in MDS-SF3B1 and help connect individual splicing events to their molecular consequences, which is important for improving mechanistic understanding and therapeutic approaches [429]. Using 5'-based full-length RNA-seq with unsupervised splicing analysis in iPSC-derived hematopoietic cells, we identified *UBA1*^{ms} as a reproducible, *SF3B1* mutation-specific event detected across progenitor and erythroid stages. Because 5'-based RNA-seq generates reads across the transcript body and captures intron-exon junctions in both nascent pre-mRNA and mature transcripts, it provides better splice junction coverage for identifying novel splice variants than 3' chemistry, which is biased toward the 3' end and can miss upstream splicing events.

We supported these findings with primary material and a patient cohort analysis in which *UBA1*^{ms} was observed in *SF3B1*-mutant cases but not in MDS with mutations in other members of the splicing machinery, or in healthy donors. More broadly, these results illustrate how iPSC-based differentiation can provide a controlled, disease-relevant human system to discover and validate specific molecular events and then test their consequences across complementary models.

Mechanistically, *UBA1^{ms}* differs from many previously described *SF3B1*-linked mis-splicing events that introduce premature termination codons and reduce gene output through NMD [198,199]. Here, *UBA1^{ms}* behaves as a stable transcript that is not subject to NMD and remains engaged with the translation machinery, directing attention to post-translational mechanisms. The mis-spliced product translates to a sequence of 45 amino acids, inserted into the inactive adenylation domain, and protein stability assays demonstrated a markedly reduced half-life with proteasome-dependent degradation of the *UBA1^{MS}* protein. While we could not assess whether the *UBA1^{MS}* protein retains enzymatic function, rapid turnover is consistent with reduced total *UBA1* protein in *SF3B1*-mutant cells and offers a practical reason why detecting an endogenous *UBA1^{MS}*-specific protein species is challenging when degradation is fast. A prior study observed reduced *UBA1* RNA and protein levels in splicing-factor-mutant MDS, but did not attribute this to *UBA1* mis-splicing [430]. In contrast, our data show reduced *UBA1* protein in *MDS-SF3B1* despite unchanged *UBA1* transcript levels, consistent with protein-level loss driven by the unstable mis-spliced variant.

Because *UBA1* catalyzes the initiating step of ubiquitin activation and is essential for cellular viability [431], a reduced *UBA1* protein pool would be expected to impair proteostasis capacity. Notably, partial *UBA1* loss has been described to trigger adaptive stress responses, which is compatible with the idea that *SF3B1*-mutant hematopoietic cells can persist despite a reduced *UBA1* pool [432]. Prior work has also described stage-specific mis-splicing and survival-associated programs in *SF3B1*-mutant cells [202,433], providing more context for how this deficit may be tolerated. Finally, *UBA1^{ms}* also connects conceptually to VEXAS, where somatic *UBA1* mutations cause loss of cytosolic *UBA1b* expression and accumulation of catalytically impaired isoforms [214]. In *MDS-SF3B1*, *SF3B1*-driven mis-splicing is associated with reduced total *UBA1* protein, irrespective of isoform, without complete loss of function. The clinical context differs as well, with a prominent inflammatory phenotype in VEXAS [219] versus a comparatively lower inflammatory profile reported for *MDS-SF3B1* relative to other low-risk subgroups [434].

4.2 Study II

Rationale

Acute myeloid leukemia (AML) with *KMT2A* rearrangements (*KMT2A-r*) is an aggressive subtype that occurs in both adults and children but is particularly enriched in younger patients. *KMT2A* encodes a histone H3K4 methyltransferase that helps maintain transcriptionally active chromatin at promoters and enhancers. Rearrangements convert this epigenetic regulator into oncogenic fusion proteins with many partners, frequently involving elongation machinery components such as AF9, encoded by *MLLT3*. *KMT2A*-rearranged AML is generally associated with poor prognosis, with resistance to chemotherapy and high relapse rates. Disruption of epigenetic and transcriptional regulation often represents early, disease-initiating lesions in HSPCs, making epigenetic dependencies promising therapeutic avenues. **Study II** aims to address a lack of physiologically relevant, human model systems by using HSPCs from patient-derived *KMT2A-r* AML-iPSCs and isogenic wild-type controls to capture disease-associated regulatory mechanisms. The goal was to define the transcription factor and epigenetic networks that underlie the gene expression program in AML development and test whether they can be exploited for treatment.

Results

To generate disease-relevant hematopoietic cells from patient-derived *KMT2A-r* AML-iPSCs and isogenic wild-type controls, we adapted a differentiation protocol that robustly produced hematopoietic progenitors (**Figure 18A; Study II, Figure 1A–B**). Flow cytometry analysis showed that while both cell lines generated viable hematopoietic populations, AML-derived cultures retained an earlier progenitor-like surface phenotype at the sampled time point, consistent with delayed maturation (**Figure 18B; Study II, Figure 1C–D**). RNA-seq analysis separated the two lines by developmental stage: At the iPSC stage, AML and control cells clustered closely but diverged after hematopoietic specification, indicating that the *KMT2A::MLLT3*-associated transcriptional program becomes apparent during differentiation (**Figure 18C; Study II, Figure 1E**). Comparing differentiation-associated gene expression changes, AML-HSPCs included gene sets that failed to activate normally, genes that were inappropriately repressed, and genes that were uniquely induced in AML (**Study II, Figure 1F**). Together, these findings show that *KMT2A::MLLT3* is associated with stage-dependent transcriptional dysregulation that emerges as cells enter the progenitor state.

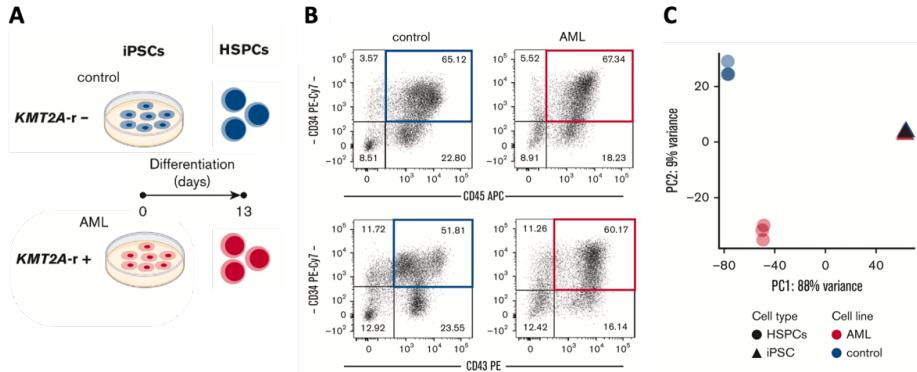


Figure 18: Hematopoietic specification of KMT2A-r iPSCs induces a transcriptionally distinct profile. (A) Schematic depicting the generation of HSPCs from AML and control-iPSC lines. (B) Representative flow cytometry diagrams of hematopoietic cell populations from control- and AML-HSPCs after 13 days of differentiation. (C) Principal Component Analysis plot from RNA-seq of iPSCs (triangles) and day 13 HSPCs (circles) from AML and control lines, showing the first two principal components ($n = 3$).

To connect these changes to upstream regulatory mechanisms, we performed CAGE profiling across differentiation time points and observed time-dependent deregulation of gene expression in AML, including a prominent subset of genes showing aberrant repression during hematopoietic specification (**Figure 19A; Study II, Figure 2A–B**). Motif activity response analysis (MARA) showed broad divergence as differentiation progressed, with AML cultures displaying altered motif activity, including motifs that remained upregulated and others that failed to activate appropriately (**Figure 19B; Study II, Figure 2C–D**). ChIP-signature analyses associated the repressed gene set with Polycomb complex-connected regulators, and DNMT-associated signatures also emerged among variable regulators (**Figure 19C, Study II, Figure 2F**). Network analysis further connected transcription factors with altered motif activity to Polycomb Repressive Complex 1/2 (PRC1/2) components, supporting a coupled transcription factor–Polycomb network that contributes to transcriptional repression in AML-HSPCs (**Study II, Figure 2G**).

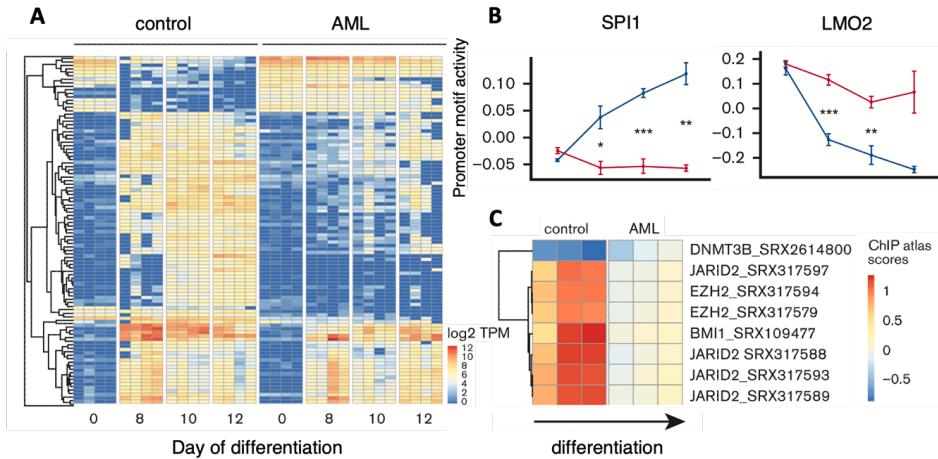


Figure 19: PRC2 members associate with repressed genes in AML-HSPCs. (A) Heatmap showing unsupervised clustering of the 100 most variable genes in control- and AML-iPSC during hematopoietic specification with cells harvested at the indicated time points ($n = 4$). (B) Individual motif activity profiles of *SPI1* and *LMO2* promoters between control and AML differentiation as inferred from CAGE data using MARA. Mean \pm SEM. Unpaired t-test for each time point. (C) Heatmap showing unsupervised clustering of candidate ChIP-seq signatures from ChIP-Atlas, highlighting differential ChIP-seq signatures between control- and AML-iPSC over hematopoietic differentiation. *, $P \leq 0.05$; **, $P \leq 0.01$; ***, $P \leq 0.001$.

This motivated us to functionally test Polycomb dependency in *KMT2A-r* cells. EZH1 and EZH2 are core components of PRC2, catalyzing repressive H3K27me3 marks. Treatment of iPSC-derived HSPCs with the dual EZH1/2 inhibitor UNC1999, alone or combined with 5-azacitidine, reduced global H3K27me3, consistent with on-target PRC2 inhibition, while short-term expansion was not detectably altered (**Study II, Figure 3A–D**). In contrast, colony assays showed that PRC2 inhibition impaired clonogenic output across independent AML-HSPC clones, while control-derived HSPCs were less affected under the same conditions; prior exposure also reduced replating capacity, consistent with diminished progenitor function and self-renewal potential (**Figure 20A; Study II, Figure 3E–F**). The dependence of this effect on *KMT2A-r* was supported in leukemia cell lines, where clonogenic suppression corresponded to *KMT2A::MLLT3* status (**Figure 20B; Study II, Figure 3G**).

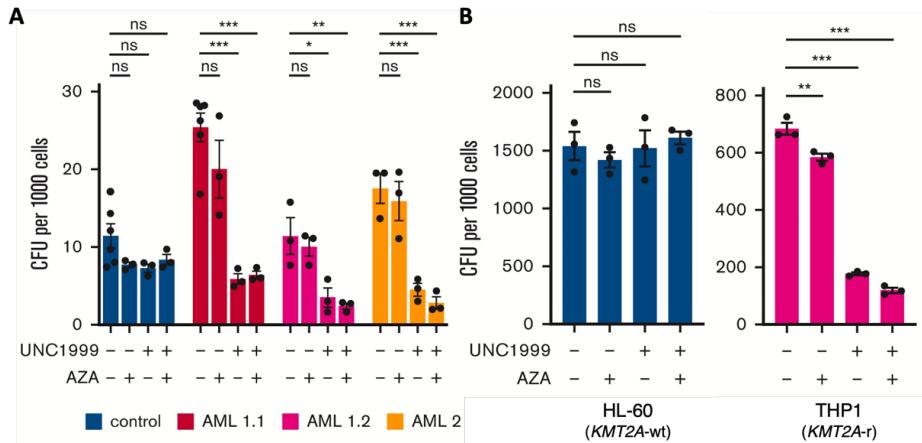


Figure 20: Epigenetic targeting selectively impairs clonogenicity in *KMT2A-r* AML cells. (A) CFU counts per 1000 seeded HSPCs treated with 2 μ M UNC1999, 1 μ M AZA, 2 μ M UNC1999 + 1 μ M AZA, or DMSO for 14 days (n = 6 for DMSO in AML 1.1 and control, n = 3 for others). Mean \pm SEM. Two-way ANOVA with Dunnett's multiple comparisons test. (B) CFU counts per 1000 seeded cells from leukemic cell lines treated with 2 μ M UNC1999, 1 μ M AZA, 2 μ M UNC1999 + 1 μ M AZA, or DMSO for 10 days (n = 3). Mean \pm SEM. One-way ANOVA with Dunnett's multiple comparisons test. *, P \leq 0.05; **, P \leq 0.01; ***, P \leq 0.001; ns, not significant.

To define upstream transcriptional changes, RNA-seq after treatment showed a markedly stronger response in AML-HSPCs than in controls, with enrichment for Polycomb targets and gene sets consistent with derepression of developmentally regulated (bivalent) loci. The combination treatment with 5-azacitidine enhanced gene derepression relative to UNC1999 alone (Figure 21A; Study II, Figure 4A–C). Collectively, these results tie Polycomb-associated repression in *KMT2A-r* AML progenitors to a functional dependency that can be targeted pharmacologically, partially shifting gene expression toward a more typical hematopoietic program and reducing clonogenic capacity (Figure 21B; Study II, Figure 4E).

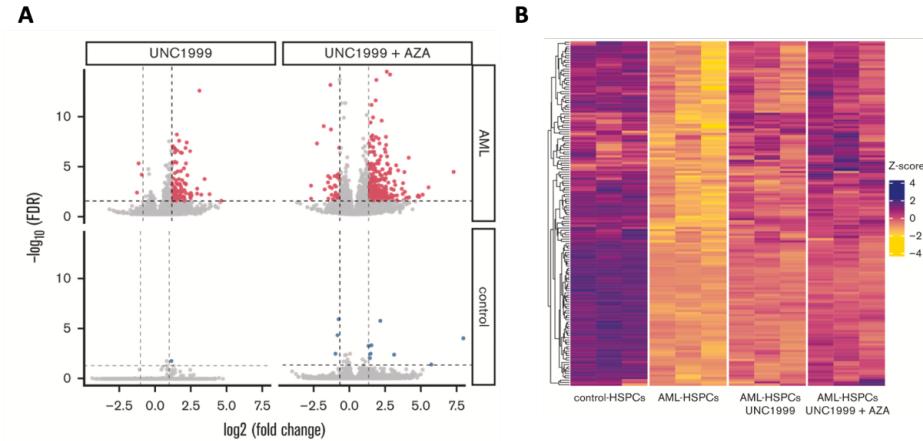


Figure 21: PRC2 inhibition derepresses transcription of Polycomb target genes that are downregulated in AML-HSPCs. (A) Volcano plot displaying differentially expressed genes identified using DESeq2 in AML (rose) and control (blue) HSPCs, following 72 h of treatment with 2 μM UNC1999 (left) or 2 μM UNC1999 and 1 μM AZA (right) compared to DMSO ($n = 3$). Dashed lines denote cutoffs for the significance threshold ($\text{FDR} = 0.05$, horizontal; $|\log_2(\text{fold change})| = 1$, vertical). (B) Heatmap showing row-wise z-scores of $\log_2(\text{CPM})$ expression values of 154 upregulated genes in AML-HSPCs treated with 2 μM UNC1999 or 2 μM UNC1999 + 1 μM AZA that overlap with genes that are downregulated in DMSO-treated control-HSPCs.

Discussion

In **Study II**, we used patient-derived *KMT2A*-rearranged AML-iPSCs to show that hematopoietic specification is accompanied by transcriptional rewiring of HSPCs cells with prominent Polycomb-associated repression. We show that PRC2 inhibition can partially relieve this repressive program and reduce leukemic-associated phenotypes, most clearly reflected by reduced clonogenic capacity. Because iPSCs retain the genetic background of the patient [353], while reprogramming broadly resets epigenetic state [435], this system provides a tractable way to test whether disease-linked regulatory states re-emerge specifically during hematopoietic lineage development [420]. In line with this, AML and control cells showed highly similar transcriptional profiles at the pluripotent stage but diverged as they transitioned into HSPC-like states, supporting the view that the leukemic program becomes evident during specification rather than being present in iPSCs. A plausible cause for this is disruption of transcription factor–epigenetic control mechanisms that shape AML initiation and maintenance [436]. Consistent with this, MARA network analysis identified changes in motif activity for several transcription factors overlapping previously described regulatory networks in *NPM1*-mutated AML [437,438]. Among the transcription factors with reduced motif activity, *SPI1* (PU.1) is a driver of myeloid specification and is active in THP-1 cells [439]. In addition, dysregulated genes

were enriched for PRC2 targets and bivalent genes, supporting a model in which altered transcription factor activity and chromatin regulation together constrain normal hematopoietic programs.

The Polycomb axis provides a mechanistic bridge between these transcriptional patterns and progenitor cell function. Polycomb regulation is central to balancing self-renewal and differentiation in hematopoiesis [440,441], and aberrant Polycomb activity has been implicated across hematologic malignancies [442]. In *KMT2A*-rearranged AML, PRC2 members have been connected to disease maintenance and progression, arguing that PRC2 activity may contribute to disease maintenance rather than reflecting only the leukemic state [442]. In our study, PRC2 inhibition with UNC1999, alone or combined with 5-azacitidine, preferentially reduced clonogenic output and replating potential in *KMT2A*-rearranged models, while the corresponding effect was weaker in control HSPC-like cells and in *KMT2A*-wild-type leukemia cell lines. This supports the interpretation that sensitivity is most consistent with ties to the *KMT2A*-r background rather than co-occurring mutations. Prior mouse studies are consistent with this, showing that *KMT2A*-r AML cells are dependent on PRC2 activity [443]. Finally, bivalent loci provide a connection between Polycomb activity and developmental regulation. Bivalency is frequently perturbed in cancer, and AML is often associated with increased DNA methylation and transcriptional repression [444,445]. Here, we showed reduced expression of bivalent genes in *KMT2A*::AF9 AML-HSPCs, particularly those related to hematopoietic fate. Combined PRC2 and DNMT inhibition preferentially reactivated these genes in AML-HSPCs compared with controls. Collectively, these results suggest that Polycomb-associated repression contributes to a constrained developmental state in *KMT2A*-rearranged hematopoietic progenitors and can be partially reversed by epigenetic inhibition.

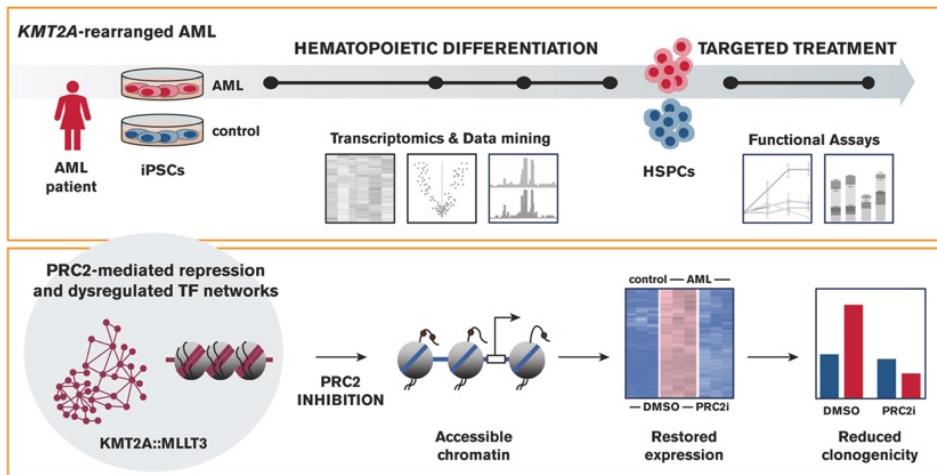


Figure 22: Visual abstract of **Study II**.

5 Conclusions

Both **Study I** and **Study II** used patient-derived iPSCs to model myeloid neoplasms and to connect defined genetic lesions to molecular mechanisms that emerge during hematopoietic specification. In both studies, the iPSC platform supports functional testing of these mechanisms, including whether lesion-associated molecular changes create targetable vulnerabilities. Key observations from the iPSC-derived systems were then validated in complementary cell models and primary material to demonstrate that they are not confined to a single experimental setting. Together, these studies underscore the value of iPSC-derived hematopoietic cells as disease-relevant models and as a practical bridge between unbiased molecular discovery and experimentally testable mechanisms in myeloid malignancies.

Study I: *UBA1* as an *SF3B1*-linked vulnerability in MDS

- *SF3B1* splice factor mutations are associated with a specific *UBA1* mis-splicing event (*UBA1^{ms}*) in MDS, identified in iPSC-derived hematopoietic progenitors and corroborated in cell lines and primary patient material.
- While the *UBA1^{ms}* transcript is stable and translation-engaged, the resulting protein product is rapidly degraded, consistent with reduced *UBA1* levels in *SF3B1*-mutant cells.
- A reduced *UBA1* “buffer/capacity” in *SF3B1*-mutant cells is associated with increased susceptibility to *UBA1* inhibition across model systems, supporting *UBA1* targeting as a potential treatment strategy in MDS-*SF3B1*.

Study II: Targeting Polycomb in *KMT2A*-rearranged AML

- *KMT2A*-rearranged AML iPSCs diverge from isogenic controls during hematopoietic specification, establishing a distinct transcriptional program, characterized in part by aberrant repression of developmental genes.
- Promoter- and network-level analyses indicate disrupted transcription factor-epigenetic regulation enriched for Polycomb targets and bivalent genes, consistent with a constrained developmental program in AML-HSPCs.
- PRC2 inhibition, alone or in combination with DNMT inhibition, partially relieves this repressive program and reduces leukemic features in a *KMT2A*-rearranged context.

6 Points of perspective

Over the past decade, patient-derived iPSCs have enabled mechanistic dissection of how defined genetic events in HSPCs reshape differentiation programs and create targetable therapeutic vulnerabilities [411,413]. Reprogramming captures patient mutational backgrounds in clonal lines, while genome editing enables introduction or correction of mutations in an isogenic setting, helping to delineate the contribution of individual lesions to disease phenotypes [446].

Both **Study I** and **Study II** leverage iPSC lines derived from primary patient material, converting finite clinical specimens into a renewable and expandable experimental resource. This helps overcome practical constraints that often limit work with primary hematopoietic samples, including restricted material availability, variable viability, and differences between sampling time points, and it also reduces the vulnerability of a project to irreversible loss of scarce primary specimens. In **Study I**, access to biobanked, clinically well-annotated MDS patient material at our center enabled the establishment and long-term use of disease-relevant iPSC models, underscoring how well-managed biobanks can transform one-time collections into reusable experimental platforms. In **Study II**, patient-derived AML iPSC lines generated in a different laboratory were shared and expanded for downstream analyses in this thesis. This is particularly valuable in AML, where aggressive and/or relapsed disease can make repeated collection of high-quality primary material difficult, or not feasible.

A central advantage of iPSC-based modeling is the availability of clonal lines that can be expanded and differentiated repeatedly, improving experimental control and strengthening causal connections between genotype and phenotype relative to heterogeneous primary samples. A particular strength is the possibility of generating isogenic control cells that help isolate lesion-associated effects from patient-to-patient variability. In **Study I**, paired $SF3B1^{K700E}$ and $SF3B1^{WT}$ iPSC lines from the same patient enabled a close comparison of mutant and wild-type hematopoiesis. In **Study II**, control iPSCs were generated from patient-derived T cells that did not harbor the *KMT2A* rearrangement present in the leukemic sample, providing a genetically matched non-malignant reference, albeit also lacking the other genetic variants of the mutant clone. iPSC reprogramming largely resets the epigenetic landscape, and it has been shown that many disease-associated regulatory programs are re-established only upon lineage

commitment and maturation [447]. This allows for the study of disease mechanisms and treatment responses in a cell-type–specific manner. **Study II** illustrates how iPSC differentiation can be used to resolve the developmental timing and cellular contexts in which lesion-linked transcriptional and epigenetic programs emerge during hematopoietic specification, rather than relying solely on analyses of differentiated populations. However, this also necessitates robust protocols for the generation of disease–relevant cells.

Despite these strengths, important limitations remain for modeling MDS and AML *in vitro*. It has become evident that some variants are difficult to reprogram and that reprogramming is a selective bottleneck rather than a neutral snapshot of the patient’s clonal architecture. Consistent with this, iPSC derivation in the MDS-*SF3B1* setting can be skewed toward normal clones even when the starting material has a high *SF3B1*^{K700E} variant allele fraction. While the *KMT2A*-r was successfully captured in the cells used for **Study II**, prior reports suggest that certain cytogenetic events and mutations can be selected against during reprogramming [411,448,449]. This may reflect a requirement for intact epigenetic regulators to establish pluripotency and/or activation of stress checkpoints such as p53 in highly aneuploid or mutation-burdened cells [450]. Consequently, not all leukemic genotypes are likely to be directly amenable to derivation of stable pluripotent lines. Encouragingly, refined protocols have improved reprogramming efficiency in AML, and genome editing has enabled introduction of lesions after reprogramming, together supporting the development of more representative iPSC panels [204,423,424].

The study of diseases originating at the HSC level *in vitro* remains challenging due to the rarity of these cells and difficulties in maintaining this multipotent cell state in culture [451]. Differentiation efficiencies of iPSCs into HSPCs can vary by genotype, and often yield progenitors with restricted expansion capacity, limiting scalability and reproducibility [452]. More fundamentally, generating bona fide long-term repopulating HSCs from iPSCs has proven difficult. The hematopoietic differentiation protocols used in **Studies I** and **II** generated a heterogeneous population of hematopoietic progenitor cells that were characterized by flow cytometry using common HSPC markers. However, we did not specifically isolate cell populations resembling phenotypic HSCs nor confirm HSC properties such as self-renewal and multipotency through transplantation. Accordingly, our data do not establish whether the iPSC-derived cells include functionally defined HSCs, and their engraftment capacity remains uncertain, given that iPSC-derived HSPCs

frequently lack definitive hematopoietic potential [453]. Recent fully defined differentiation protocols yielding multilineage-engrafting hematopoietic cells therefore represent a notable advance toward the generation of higher-fidelity models, and it will be interesting to see how these developments shape the robustness and interpretability of *in vitro* disease modeling systems in the coming years [379,394,422]. Another more general limitation of conventional *in vitro* culture systems is the omission of bone marrow niche cues that influence clonal fitness, inflammation, differentiation, and treatment resistance. This has motivated the incorporation of microenvironmental components through co-culture, 3D systems, and engineered niche approaches to enhance physiological relevance while balancing experimental convenience [454–456].

Importantly, these limitations do not preclude translational impact of iPSC platforms, as evidenced by progress in other iPSC-derived lineages. Although iPSC-derived hematopoietic models are most often used for mechanistic studies and hypothesis-driven testing, translational iPSC workflows are currently more mature in several other areas [457]. In neurodegenerative disease, patient iPSC-derived neurons and neural organoid models have supported phenotypic screening and drug-repurposing efforts that have progressed into clinical studies, including iPSC-informed trials in ALS and familial Alzheimer's disease [458]. In parallel, iPSC-derived cell types are increasingly used to capture human-relevant drug liabilities, for example through nephrotoxicity testing in iPSC-derived podocytes and cardiotoxicity testing in iPSC-derived 3D cardiac tissues [457]. Finally, iPSC technology is also contributing directly to therapeutic development via cell-based products, with clinical trials spanning multiple indications, including iPSC-derived dopaminergic progenitors in Parkinson's disease and allogeneic iPSC-derived immune cell products such as NK and CAR-NK cells [459,460].

Another consideration is that many studies using iPSCs include relatively few patient lines, limiting generalization given the heterogeneity of MDS/AML. Similarly, the studies in this thesis are largely based on iPSC lines derived from a single individual per genotype, and while key experiments were complemented with additional iPSC lines/clones, orthogonal *in vitro* models, and interrogation of available datasets, this limited number of patient-derived lines remains an important limitation. The generation, maintenance, and differentiation of iPSCs are time-consuming, costly, and at times inefficient. However, continued advances in reprogramming, gene editing, and differentiation protocols are expected to facilitate the generation of larger, genetically diverse iPSC panels. Such resources,

particularly when paired with matched isogenic controls, should enable more systematic interrogation of lesion-specific mechanisms, co-mutation effects, and therapeutic responses [421].

While MDS-*SF3B1* typically presents as a lower-risk disease dominated by symptomatic anemia, standard therapy remains largely supportive and focused on improving erythropoiesis. Allogeneic HSCT is the only potentially curative option; however, it is often precluded by advanced age and comorbidities. Our identification of *UBA1* mis-splicing as an *SF3B1*-linked vulnerability in **Study I** suggests a potential strategy to preferentially reduce the mutant clone while preserving residual wild-type hematopoiesis. Consistent with this, TAK-243, which blocks *UBA1*-mediated ubiquitin activation, preferentially reduced *SF3B1*-mutant cells while sparing wild-type HSPCs at lower concentrations. Although treatment did not fully eradicate mutant cells and TAK-243 also impacted normal cells at higher concentrations, our data support the possibility of a lower-intensity, disease-modifying approach aimed at reducing mutational burden and potentially delaying the need for transplantation.

To advance this concept toward clinical translation in MDS-*SF3B1*, a next priority is to strengthen the evidence for mutant-selective activity of TAK-243 in primary hematopoiesis. Although we observed increased sensitivity of *SF3B1*-mutant patient cells compared with normal bone marrow controls in CFU assays, the number of primary samples analyzed in **Study I** was limited, and validation in a larger cohort is warranted. While MDS-*SF3B1* represents a relatively molecularly defined lower-risk subtype, expanding the analysis across additional patients would help capture clinical and genetic variability and better define the robustness of the effect. Beyond comparisons to healthy donors, lower-risk MDS samples lacking *UBA1^{ms}* would represent a particularly informative control group, enabling a direct test of whether TAK-243 sensitivity is driven by *SF3B1*-associated *UBA1^{ms}* biology. Because clonal fitness in MDS is shaped by competition and microenvironmental cues, it will also be important to assess whether mutant selectivity is preserved in niche-supported settings. In this regard, a previously developed 3D scaffold culture model for MDS-RS may be useful, as it supports prolonged culture of primary bone marrow-derived populations and maintenance of the mutant clone, providing a tractable system to study clonal dynamics under more physiological conditions [347]. More broadly, incorporation of iPSC-derived stromal support and other microenvironmental components into advanced 3D culture systems should further improve

assessment of drug effects in settings that better approximate the marrow niche [457].

A recent study in a human VEXAS model suggested that impaired UBA1 function can create a compensatory dependency on the alternative ubiquitin E1 enzyme UBA6. Genetic loss of UBA6 or pharmacologic inhibition with the allosteric compound inositol hexaphosphate (IP6) reduced growth and colony formation of *UBA1*-mutant cells [461]. Although IP6 inhibits UBA6 only at high (millimolar) concentrations, highlighting the need for more potent and selective agents, these findings raise the question of whether similar UBA6-dependent compensation occurs in *SF3B1*-mutant cells and could be therapeutically exploited.

Beyond E1 inhibition alone, another angle not addressed in **Study I** is the essential role of UBA1 in DNA damage responses that resolve replication stress and double-strand breaks [462]. Interestingly, increased R-loop formation and DNA damage have been associated with *SF3B1* and other splice factor mutations in MDS, and mutant cells were preferentially sensitive to targeting of the downstream ATR–Chk1 pathway [409,463,464]. Similarly, Bland et al. showed that *SF3B1*-mutant cells were unable to resolve replication stress induced by PARP inhibition, leading to selective killing of mutant cells [465,466]. Future work will be important to assess rational combination strategies that leverage *SF3B1*-associated vulnerabilities to deepen responses and improve selectivity for mutant clones [429].

Finally, while **Study I** demonstrates that UBA1 inhibition can selectively suppress *SF3B1*-mutant progenitors *in vitro*, and TAK-243 has shown activity across multiple preclinical models of hematologic malignancies, clinical efficacy and tolerability remain to be established [467–469]. An ongoing trial evaluating TAK-243 in intermediate-2 or high-risk refractory MDS and leukemias (NCT03816319) may be informative to define the therapeutic window and dosing, and to inform whether UBA1-targeted strategies could be extended to MDS-*SF3B1*.

In **Study II**, we used patient-derived iPSC models of *KMT2A*-rearranged AML to map transcriptional and epigenetic dysregulation during hematopoietic differentiation and to test whether targeted epigenetic therapy could partially counteract these abnormalities. Transcriptional profiling and regulatory network analyses implicated Polycomb-associated repression as a prominent feature of AML iPSC-derived HSPCs, and pharmacologic inhibition of EZH1/2 using UNC1999, in combination with 5-azacitidine, reactivated a subset of repressed genes and reduced leukemic phenotypes in *KMT2A*-r cells. Through this analysis, we

identified NFYA as a candidate target with evidence of fusion occupancy at the NFYA promoter, consistent with elevated *NFYA* expression and increased NFY motif activity in AML-HSPCs. NF-Y is a CCAAT-binding transcription factor complex in which NFYA confers sequence-specific DNA recognition [470]. Across cancer types, NF-Y has been implicated in maintaining pro-growth transcriptional programs, including cell-cycle regulation and metabolism, and it emerges as a proliferation-linked node also in *KMT2A*-r AML [439,471]. Consistently, NFYA or broader NF-Y complex loss-of-function suppresses proliferation and can trigger apoptosis. Transcription factor-focused CRISPR screens have placed all three NF-Y subunits among a small set of transcription factors broadly required for cancer cell proliferation, including in *KMT2A*-r contexts [471,472]. Conversely, multiple studies support oncogenic behavior upon *NFYA* upregulation, suggesting that increased NFYA activity can reinforce malignant growth programs [471]. Collectively, these data support a model in which *KMT2A* fusion-dependent binding at the NFYA promoter is associated with elevated *NFYA* expression and sustains transcriptional programs that favor leukemic growth and self-renewal. While our analysis indicates a potential role for NFYA in the *KMT2A*-r gene expression program, we did not test this mechanistically. Follow-up work should therefore focus on directly perturbing NFYA or the NF-Y complex in *KMT2A*-r AML models to establish its functional requirement for the leukemic state and to evaluate whether NFY-dependent circuitry represents a therapeutic vulnerability.

Targeting epigenetic dependencies in *KMT2A*-r AML is the focus of ongoing therapeutic development. As outlined in the introduction, Menin, together with cofactors such as LEDGF, coordinate chromatin binding and the activation of target genes by *KMT2A* fusion complexes, making disruption of the Menin–*KMT2A* interaction a strategy to inhibit *HOXA9* and *MEIS1* gene expression [297,311]. Clinically, the oral Menin inhibitor revumenib has shown meaningful activity in heavily pretreated *KMT2A*-r/*NPM1*-mutant AML and has received FDA approval in the relapsed/refractory *KMT2A*-r acute leukemia setting [473,474]. Additional Menin inhibitors, including ziftomenib and newer agents such as bleximenib and enzomenib, have also shown encouraging efficacy signals and are now being advanced into combination regimens with intensive chemotherapy or 5-azacitidine/venetoclax in early-phase studies [475]. In parallel, DOT1L is aberrantly recruited by *KMT2A* fusion proteins to deposit H3K79 methylation and maintain *HOXA* gene expression [303]. While the DOT1L inhibitor pinometostat demonstrated only modest single-agent efficacy, this has shifted clinical

emphasis toward combination strategies [315]. Although UNC1999 and 5-azacitidine in **Study II** reactivated PRC2 target genes and reduced leukemic properties, we did not observe downregulation of *HOX/MEIS1* expression, suggesting that this regimen alone may not directly disrupt the core KMT2A-fusion transcriptional program. This supports a rationale to explore combination strategies that pair PRC2-directed therapy with agents that more directly target KMT2A-fusion function, such as Menin or DOT1L inhibitors, to more comprehensively attenuate leukemogenic gene expression and phenotype.

Taken together, **Study I** and **Study II** illustrate how patient-derived iPSC hematopoiesis can bridge mechanistic discovery and therapeutic hypothesis testing in myeloid malignancies. In MDS-*SF3B1*, this approach tied a mutation-specific splicing event (*UBA1^{ms}*) to a defined molecular consequence and a pharmacologically addressable vulnerability, supported across iPSC-derived progenitors, complementary models, and primary cells. In *KMT2A-r* AML, stage-resolved profiling in iPSC-derived hematopoiesis mapped when leukemic regulatory programs emerge during differentiation and identified a PRC2-controlled repressive profile that can be partially reversed pharmacologically, underscoring the value of developmental context for interpreting malignant cell states and drug responses.

Through these studies, I also came to appreciate the current boundaries of iPSC-based hematopoietic modeling. Key challenges include generating cells that faithfully capture bona fide HSC biology, incorporating the instructive complexity of the niche and microenvironment, modeling clonal competition in genetically diverse settings, and translating selective *in vitro* effects into durable clinical benefit. Looking forward, I see integration as the central direction for the field: coupling higher-fidelity stem and progenitor differentiation with engineered microenvironments, expanding genetically diverse patient-derived and isogenic panels, and applying systematic therapeutic testing, including rational combinations, to exploit convergent dependencies in stress responses, proteostasis, and epigenetic regulation while preserving normal hematopoiesis.

7 Acknowledgements

As I close this PhD chapter, I keep coming back to how lucky I have been in the people around me. Over these years, I was supported by individuals who are not only brilliant and hardworking, but also remarkably generous and warm. This thesis is the result of that shared effort, and I am sincerely grateful to each and every one of you. The journey may be ending, but my gratitude certainly is not.

First and foremost, I want to express my sincere gratitude to my main supervisor, **Vanessa Lundin**. It has been almost exactly seven years since I first had the opportunity to join your group as an intern, and I am deeply grateful that you took a chance on me and continued to place such trust in me along the way. You have consistently gone above and beyond, always generous with your time, ideas, and encouragement. Your seemingly endless creativity and enthusiasm have been truly inspiring, and your steady guidance and support throughout my scientific journey have helped me grow into a more confident and independent researcher.

To my co-supervisor, **Eva Hellström-Lindberg**, thank you for welcoming me so warmly into your group meetings and for the wonderful retreats and meetings around Stockholm. I am grateful for the opportunities you gave me to share my progress and results, and for helping me appreciate the clinical perspective. Thank you for grounding my work in real-world relevance and for continually bringing me back to the most important question: what is the research question that truly matters? Your leadership has been a guiding example, and you have helped make HERM such a fun and inspiring place to work.

Andreas Lennartsson, thank you for all your help and thoughtful feedback, both on my own projects and the ones we shared. I have truly appreciated your kindness and generosity, especially in sharing resources, ideas, and your time. I also really valued the joint after-work drinks that made the busy periods feel lighter.

To my co-supervisor, **Julian Walfridsson**, thank you for the fruitful discussions, your supervision, and your contagious sense of humor.

Sophia Hofmann, it was a real pleasure to supervise you, although you are so organized and self-sufficient that it hardly felt like supervision at all. It has been a lot of fun working alongside you on our projects, two of which are now published, and I hope the third will follow soon. I wish you the very best as you begin your PhD studies, with success in your projects and smooth experiments ahead. And may the “elephant soup” never fail you after all that optimization. I also hope you will have many more spontaneous trips through northern Sweden in pursuit of the aurora. **Katharina Kirchhof**, since you joined the lab as a master’s student, it has been such fun working with you. Thank you for all the great chats and for your enthusiasm about hotpot, DnD, and all things cats. I have

been impressed by your resilience and the thoroughness with which you optimize protocols and drive your projects forward. I wish you the best of luck with your studies and everything that comes next. **David Cabrerizo Granados**, thank you for your kindness and consistently happy spirit. You always seemed to have a song ready, and the sing-alongs in tissue culture made many long days feel lighter. I am also very grateful to you for teaching me immunoblotting and other techniques, and for all your help with protocols and troubleshooting. **Eva Vrščaj** and **Rebecca Schuch**, it was wonderful having you in the lab, and your positive spirit brightened many lab meetings and lunch breaks. Wishing you both the very best and continued success in your future endeavors.

To all members of the EHL lab, past and present, I am grateful for how warmly you welcomed me, for sharing invaluable insights, and for always taking the time to listen throughout these years. **Pedro Moura**, thank you for your innumerable help and expertise over the last years. Your curiosity and scientific depth shaped Study I, and I always appreciated your critical feedback. I will also always remember the late-night billiards and beers at retreats, the best lunch-break stories, and the cutest pictures of Bramble. **Teresa Mortera Blanco**, thank you for all your help with patient material and experiments over the years, and for the valuable feedback along the way. I am especially grateful that you taught me how to produce scaffolds and work with patient material. I also really enjoyed the lunch conversations, the latest Saltis updates, and the Netflix recommendations. **Sadaf Fazeli**, it has been so much fun working with you over the years and sharing an office. Thank you for the good times, the stories, and for bringing actual coffee into the office when it was needed most. **Abdul Ghani Alattar**, even though you joined recently, I already want to thank you for the many interesting conversations we have had. I have loved your expertise in all things red blood cell and your genuine excitement about your work. Also, thank you for the tiny chocolates that made late writing sessions a little sweeter. **Indira Barbosa**, thank you for always being so good-spirited and for the energy and spring in your step. I am also very grateful for your help in locating my samples in the depths of the biobank. **Maria Creignou** and **Gabriele Todisco**, thank you for your valuable feedback, which helped shape my studies, and for sharing your clinical expertise over the years. Your perspectives helped me build a stronger understanding of MDS. **Ann-Charlotte Björklund**, thank you for your motivating words, your kindness, and your help with experiments. **Gunilla Walldin**, för att du alltid frågar: "Hur mår du?" **Alexandra Argyriou**, **Anna Tranberg**, **Bianca Tesi**, **Carolin Lindholm**, **Edda Elvarsdottir**, **Felix Falk**, **Isabel Hofman**, **Joel Wiggh**, **Magnus Tobiasson**, **Marios Dimitriou**, and **Mikaela Hillberg Widfeldt**, thank you all for being so welcoming, for sharing your time and insights, and for making the lab such a supportive environment.

To the members of the Lennartsson lab, thank you for the welcoming atmosphere and for all the support along the way. **Aonghus Naughton**, it has been such a blast working together and sharing an office over these last years. Thank you for the laughs and the daily conversations, and for your admirable

commitment to getting people out of the lab on Fridays to share a few pints instead. **Anna Palau**, I am very grateful for your generosity in sharing your knowledge and materials for iPSC culture. Your help and guidance were truly valuable and helped shape my studies. **Reyes Becerra Perez**, I really appreciated your enthusiasm and positive energy. I wish you all the best for your PhD, and I hope you enjoy every step of the journey.

Fredrik Lanner, thank you for mentoring me throughout my PhD and for so many thoughtful conversations about the broader perspectives of my projects and developments in the field. I am also very grateful that you organized such a fantastic course, which gave me the opportunity to visit Toronto and meet so many excellent people there.

I would also like to acknowledge others who helped shape my projects. **Dimitris Kanellis**, thank you for sharing your expertise in protein ubiquitination and for your help with the polysome profiling experiments. **Ingrid Lilienthal**, I am very grateful for your help with drug testing and viability assays, and for your valuable feedback on my manuscripts. **Marc Raaijmaker** and **Seishi Ogawa**, thank you for all your valuable feedback on my projects.

To all the wonderful people and friendships that made life in and out of the lab such a joy, thank you for the laughter, support, and memories that carried me through the everyday challenges of research. **Nicolai Frengen**, thank you for all the outdoor mountain bike adventures in the forests around Stockholm. I also loved the wonderful 17th of May parties with friends and with your lovely family, **Veronica, Matheo**, and **Samuel**. **Elisa Saccon**, thank you for all your help, expertise, and antibodies, but even more for your friendship through the everyday ups and downs of research. I have loved your excitement, your support, and our shared podcast obsessions. I hope you have a blast in New York, and I hope you keep telling me, "what else I need to know today." **Laura Covill**, you are truly one of the most impressive people I know, and I always leave our conversations feeling smarter for it. Thank you for hosting the most fabulous glögg parties, and for being the best storyteller. You really should write a book. **Nicole Wild**, thank you for sharing your joy of climbing, for all the great hangs, and for the friendly Austrian German banter. **Sophia Hald**, it has been a pleasure sharing so many fun moments in the lab and on excursions outside of it, as well as the easy, good company in between. **Petar Mitev**, thank you for never giving up on sharing your enthusiasm for American sports, for hosting Super Bowl nights, and for even throwing the pigskin with me, even though I will probably remain forever clueless about American football. **Franca Su**, it has been such a joy getting to know you. Thank you for the pep talks, for listening, and for sharing an enthusiasm for good food. **Julia Hauenstein**, thank you for your genuine kindness and for always being such a warm presence. **Tessa Campbell**, thank you for all your help when the flow cytometers were acting up during late evenings, for your fantastic gossip, and for the fun after-work drinks. **Giovanna Perinetti Casoni**, thank you for always spreading joy and genuine excitement

around the lab, and for being the kind of person who gets people from bench to barstool. **Angелиque Fokkema**, thank you for your high energy, your engaging personality, and all the fun times during my early years here. **Jingyi Shen**, I always look forward to our next meeting in Vienna.

To all the tissue culture residents who made the small space between hoods 1 to 3 feel like a second home, and who spent so many late hours there together, thank you for the company, the teamwork, and the laughs that made even the longest days lighter. **Elory Leonard**, thank you for all the joy you bring. I am always amazed by your high spirits and your ability to turn the room into a karaoke party, no matter how late the hour. **Lakshmi Sandhow**, thank you for your steady humor while burning the midnight oil. You made late shifts feel much less late. **Ece Somuncular**, I really appreciated your genuine kindness, and the reminders to go home when it was time. **Alma Måansson, Kajsa Ax, Özge Dumral, Huan Cai, Juan Pablo Medina Giménez, Runqing Zhang, Alexander Käll, and Sofia Tosti**, thank you for making long days in tissue culture such a genuinely joyful experience.

To all the amazing people I had the pleasure of sharing the old and new office with, along with many coffees and laughs, thank you for making the everyday moments so enjoyable. **Gloria Wu**, thank you for your kindness and for widening my snack palette. **Alexandra Helleux and Anna Pumpe**, I always enjoyed our chats, especially the weekend-trip planning and the small conversations that made the days feel lighter. **Maaike Jongen**, thank you for your scientific excitement, and for making blood donation feel like a fun break. **Laurent Schmied, Thuy Luu Thanh, Stephan Meinke, and Cecilia Karlström**, thank you for the fantastic skiing trip and for many other fun outings. **Monika Dolinska, Suria Jahan, and Peter Norris**, thank you for the interesting perspectives and the engaging conversations.

To all the HERM PhD students I had the privilege to work with along the way, thank you for the camaraderie, support, and for making HERM such a positive place to grow as a scientist.

Elisabetta Cozzi, thank you for sharing your insights during the home stretch of our PhDs. I wish you the very best for your upcoming defense, and I am looking forward to celebrating with you. **Lars Gerullat and Jonah Anderson**, thank you for never letting a lunch conversation get boring, and for taking discussions down the wildest rabbit holes. **Madeleine Lehandner**, thank you for your inspiring confidence, and for the conference swims at the crack of dawn. **Filip Segerberg**, thank you for being so kind and always up for a fun chat. I also appreciated all the great PhD student get-togethers you organized with **Laura Axel Winroth**, thank you for the great chats over the years. **Hazel Reilly**, thank you for sharing your iPSC expertise and for all the protocol troubleshooting. **Francesca Grassi, Nutsa Burduli, Julian Fischbach, Caroline Eriksson, Caroline Leijonhufvud, Matilda Kjellander, Lucía Peña Pérez, Maria Karvouni, and Katharina Susek**, thank you for helping make HERM such a wonderful and welcoming environment to work in.

Annette Öster Fernström, thank you for always having the answer to my many administrative questions, and for all your help in setting up my PhD defense. **Anne-Sofie Johansson**, thank you for so many joyful moments, and for all the effort you put into making the department festive throughout the year and across the holidays. **Sara von Bahr Grebäck**, thank you for never getting tired of sending me reminder emails, and for your all-out positivity. **Monika Jansson**, thank you for your welcoming nature, and for the many stories you shared along the way. **Sri Sahlin**, you are such a good-hearted person, and it has been a privilege working with you. **Elin Hellsten**, thank you for your help and kindness.

Sigrid Wahlen, thank you for your kindness and the delicious baked goods. **Heinrich Schlums**, thank you for your broad knowledge, and for always being so forthcoming with help and protocol tips. **Sophia Borate**, thank you for all your input on iPSC culture. **Nikolaos Kyriakidis**, thank you for the fun occasions and for sharing a beer. **Jelve Nejati Zendegani**, thank you for your never-fading smile, and for being such a warm and caring person. **Agneta Andersson** and **Laura Sanz-Ortega**, I really appreciated the positive energy and the fun chats. **Charlotte Gustafsson**, **Masafumi Seki**, **Tetsuichi Yoshizato**, **Stefania Mazzi**, **Margs Brennan**, **Karin Belander-Strålin**, **Luana Tomaipitinca**, **Mélanie Lambert**, **Kristina Witt**, **Takuya Sekine**, **Saeed Eshtad**, **Nadir Kadri**, **Demi Brownlie**, **Prajakta Khalkar**, and **Elena Bonaiti**, thank you all for your help, the fun chats, and the insights you shared along the way.

To the group leaders who shape the ongoing research and scientific environment at HERM, **Johanna Ungerstedt**, **Petter Woll**, **Arnika Wagner**, **Hong Qian**, **Martin Jädersten**, **Sidinh Luc**, **Sten Eirik Jacobsen**, **Robert Månsson**, **Petter Höglund**, **Evren Alici**, **Mattias Carlsten**, **Roland Fiskesund**, **Nicole Marquardt**, **Jette Lengefeld**, and **William Nyberg**, thank you for your critical questions and valuable feedback during seminars and meetings.

Thank you to everyone in the R&D team at **Atlas Antibodies** for the warm welcome and great discussions during my internship, and especially to **Elin Enervald** and **Madhuranayaki Thulasingam** for their supervision. A big thank you as well to **Y. Vladimir Pabon-Martinez** and KI Career Service for organizing the program and making this opportunity possible.

I would also like to express my sincere gratitude to the **donors** who generously volunteered samples and clinical material for these studies. Your contributions made this research possible, including the generation of the iPSC lines used throughout this thesis. I am deeply grateful for your willingness to support research that aims to improve our understanding of disease and, ultimately, patient care.

I also want to acknowledge the core facilities and the people who made essential work possible. **Belinda Pannagel**, **Narmadha Subramanian**, **Francesca Grasso**, and **Mahin Nikougoftar Zari**, thank you for your help with sorting, troubleshooting machine issues, and for keeping this important facility running so

smoothly. **Eduardo Araujo**, thank you for the proteomic analysis and for coordinating sample handling. **Sylvie Le Guyader**, thank you for your help with microscopy experiments.

To my opponent, **Ivo Touw**, and the examination board, **Charlotta Böiers**, **Johan Holmberg**, and **Peter Svensson**, thank you for accepting these roles. I am very grateful for your time in reading my thesis and for the thoughtful discussion of my work.

To my dear friends, inside and outside the research community, who I shared so many rewarding moments with, thank you for your friendship, support, and laughter: **Leo**, **Jonathan**, **Caro**, **Florian**, **Joram**, **Michael**, **Aphrodite**, **William**, **Juliane**, **Jonas**, **Anastasiia**, **Yurii**, **Anastasija**, **Naglis**, **August**, **Jack**, **Patrick**, **Rebecca**, **Daniel**, **Emma**, and **Féaron**.

Zuletzt möchte ich mich bei meiner Familie für die nie versiegende Unterstützung bedanken, trotz der vielen Jahre und der großen Distanz. Von Herzen danke ich **Mama** und **Papa** für eure Unterstützung von Beginn an, dafür, dass ihr immer an meiner Seite wart, wenn ich euch gebraucht habe, und stets an mich geglaubt habt. Ebenso danke ich **Oma** und **Opa** für ihre Gutmütigkeit, ihre Großzügigkeit und die Liebe, die sie mir immer geschenkt haben. **Lorenz** und **Sina** danke ich für die vielen schönen gemeinsamen Momente und die lustigen Zeiten in Stockholm, auch wenn wir an unseren Angelerfolgen noch arbeiten müssen.

Zum Schluss danke ich **Corinna** für ihre unerschöpfliche Liebe, ihren Rückhalt und ihre Geduld. Mit dir an meiner Seite die Herausforderungen eines PhDs zu bewältigen, war für mich ein grenzenloses Glück. Ich bin dankbar für unsere gemeinsame Zeit und freue mich auf alles, was vor uns liegt.

8 Declaration about the use of generative AI

I declare that I have used AI-assisted tools in preparing the comprehensive summary (“kappa”) of this thesis. Specifically, ChatGPT 5.2 Thinking (OpenAI) was used for language editing and consistency checks, including proofreading (grammar, spelling, and tone), and assisting with internal consistency (e.g., identifying duplicated references, checking that citations and figure/table callouts were consistently formatted, and flagging possible inconsistencies for my manual review).

The Images function was used for figure preparation purposes, limited to resolution upscaling and removal of non-essential labels/annotations as described in the figure legends, without altering the underlying scientific content of the images.

I confirm that this does not infringe on the originality of this work and that I take full responsibility for the content of the “kappa”/comprehensive summary of the thesis.

9 References

- [1] Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. *Nat Immunol* 2008;9:129–36. <https://doi.org/10.1038/ni1560>.
- [2] Ditadi A, Sturgeon CM, Keller G. A view of human haematopoietic development from the Petri dish. *Nat Rev Mol Cell Biol* 2017;18:56–67.
- [3] Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. *Cell* 2008;132:631–44. <https://doi.org/10.1016/j.cell.2008.01.025>.
- [4] Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. *Development* 2017;144:2323–37.
- [5] Sturgeon CM, Ditadi A, Clarke RL, Keller G. Defining the path to hematopoietic stem cells. *Nat Biotechnol* 2013;31:416–8.
- [6] Ciau-Uitz A, Monteiro R, Kirmizitas A, Patient R. Developmental hematopoiesis: ontogeny, genetic programming and conservation. *Exp Hematol* 2014;42:669–83.
- [7] Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. *Exp Hematol* 2017;49:19–24.
- [8] Stefanska M, Batta K, Patel R, Florkowska M, Kouskoff V, Lacaud G. Primitive erythrocytes are generated from hemogenic endothelial cells. *Sci Rep* 2017;7:1–10.
- [9] Palis J, Yoder MC. Yolk-sac hematopoiesis: The first blood cells of mouse and man. *Exp Hematol* 2001;29:927–36. [https://doi.org/10.1016/S0301-472X\(01\)00669-5](https://doi.org/10.1016/S0301-472X(01)00669-5).
- [10] Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. *Anat Rec* 1971;170:199–223. <https://doi.org/https://doi.org/10.1002/ar.1091700206>.
- [11] Bloom W, Bartelmez GW. Hematopoiesis in young human embryos. *American Journal of Anatomy* 1940;67:21–53. <https://doi.org/10.1002/AJA.1000670103>.
- [12] Silver L, Palis J. Initiation of murine embryonic erythropoiesis: a spatial analysis. *Blood, The Journal of the American Society of Hematology* 1997;89:1154–64.
- [13] Tavian M, Péault B. Embryonic development of the human hematopoietic system. *International Journal of Developmental Biology* 2005;49:243–50. <https://doi.org/10.1387/ijdb.041957mt>.
- [14] Böiers C, Carrelha J, Lutteropp M, Luc S, Green JCA, Azzoni E, et al. Lymphomyeloid contribution of an immune-restricted progenitor

emerging prior to definitive hematopoietic stem cells. *Cell Stem Cell* 2013;13:535–48. <https://doi.org/10.1016/J.STEM.2013.08.012>.

- [15] McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, et al. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. *Cell Rep* 2015;11:1892–904. <https://doi.org/10.1016/J.CELREP.2015.05.036>.
- [16] Jagannathan-Bogdan M, Zon LI. Hematopoiesis. *Development* 2013;140:2463–7.
- [17] Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: “definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. *Blood Cells Mol Dis* 2013;51:220–5.
- [18] Medvinsky A, Dzierzak E. Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region. *Cell* 1996;86:897–906. [https://doi.org/10.1016/S0092-8674\(00\)80165-8](https://doi.org/10.1016/S0092-8674(00)80165-8).
- [19] Zeng Y, He J, Bai Z, Li Z, Gong Y, Liu C, et al. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. *Cell Res* 2019;29:881–94.
- [20] Swiers G, Rode C, Azzoni E, de Bruijn MFTR. A short history of hemogenic endothelium. *Blood Cells Mol Dis* 2013;51:206–12.
- [21] Swiers G, Baumann C, O'Rourke J, Giannoulatou E, Taylor S, Joshi A, et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. *Nat Commun* 2013;4:1–10.
- [22] Slukvin II. Generating human hematopoietic stem cells in vitro—exploring endothelial to hematopoietic transition as a portal for stemness acquisition. *FEBS Lett* 2016;590:4126–43.
- [23] Dzierzak E. Hematopoietic stem cells and their precursors: developmental diversity and lineage relationships. *Immunol Rev* 2002;187:126–38.
- [24] de Bruijn MFTR, Speck NA, Peeters MCE, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. *Embo j* 2000;19:2465–74.
- [25] Baron CS, Kester L, Klaus A, Boisset J-C, Thambyrajah R, Yvernogeau L, et al. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. *Nat Commun* 2018;9:1–15.
- [26] Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. *Development* 2008;135:1853–62. <https://doi.org/10.1242/DEV.015297>.
- [27] Kissa K, Murayama E, Zapata A, Cortés A, Perret E, Machu C, et al. Live imaging of emerging hematopoietic stem cells and early thymus

colonization. *Blood* 2008;111:1147–56. <https://doi.org/10.1182/BLOOD-2007-07-099499>.

[28] Boisset JC, Van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. *Nature* 2010 464:7285 2010;464:116–20. <https://doi.org/10.1038/nature08764>.

[29] Patel SH, Christodoulou C, Weinreb C, Yu Q, da Rocha EL, Pepe-Mooney BJ, et al. Lifelong multilineage contribution by embryonic-born blood progenitors. *Nature* 2022 606:7915 2022;606:747–53. <https://doi.org/10.1038/s41586-022-04804-z>.

[30] Li L, Bowling S, McGeary SE, Yu Q, Lemke B, Alcedo K, et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. *Cell* 2023;186:5183–5199.e22. <https://doi.org/10.1016/J.CELL.2023.09.019>.

[31] Ganuza M, Hall T, Finkelstein D, Chabot A, Kang G, McKinney-Freeman S. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. *Nature Cell Biology* 2017 19:10 2017;19:1153–63. <https://doi.org/10.1038/ncb3607>.

[32] Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. *Nature* 2014;505:327–34.

[33] Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. *J Clin Invest* 2006;116:2808–16.

[34] Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. *Nat Rev Cancer* 2020;1–14.

[35] Ganuza M, Hall T, Myers J, Nevitt C, Sánchez-Lanzas R, Chabot A, et al. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. *Nat Cell Biol* 2022;24:1475–86. <https://doi.org/10.1038/S41556-022-00999-5>.

[36] Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. *Immunity* 1994;1:291–301. [https://doi.org/10.1016/1074-7613\(94\)90081-7](https://doi.org/10.1016/1074-7613(94)90081-7).

[37] Yoder MC. Inducing definitive hematopoiesis in a dish. *Nature Biotechnology* 2014 32:6 2014;32:539–41. <https://doi.org/10.1038/nbt.2929>.

[38] Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, et al. Expression and function of c-kit in hemopoietic progenitor cells. *J Exp Med* 1991;174:63–71.

[39] Weissman IL, Anderson DJ, Gage F. S STEM AND P ROGENITOR C ELLS: Origins , and Transdifferentiations. *Cell and Developmental Biology* 2001;387–403.

[40] Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. *Science* (1979) 1988;241:58–62.

[41] Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. *Immunity* 1994;1:661–73.

[42] Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. *Protein Cell* 2020;11:34–44. <https://doi.org/10.1007/s13238-019-0633-o>.

[43] Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. *Cell* 2008;135:1118–29. <https://doi.org/10.1016/j.cell.2008.10.048>.

[44] Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. *Nature* 2018;553:418–26. <https://doi.org/10.1038/nature25022>.

[45] Yang L, Bryder D, Adolfsson J, Nygren J, Måansson R, Sigvardsson M, et al. Identification of Lin(–)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. *Blood* 2005;105:2717–23. <https://doi.org/10.1182/BLOOD-2004-06-2159>.

[46] Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N, et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. *Cell Stem Cell* 2012;10:273–83. <https://doi.org/10.1016/j.stem.2012.02.007>.

[47] Haas S, Trumpp A, Milsom MD. Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. *Cell Stem Cell* 2018;22:627–38. <https://doi.org/10.1016/j.stem.2018.04.003>.

[48] Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. *Nat Immunol* 2018;19:85–97.

[49] Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. *Cell Rep* 2016;14:966–77.

[50] Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human haematopoietic stem cell lineage commitment is a continuous process. *Nat Cell Biol* 2017;19:271–81.

[51] Zhang Y, Gao S, Xia J, Liu F. Hematopoietic Hierarchy – An Updated Roadmap. *Trends Cell Biol* 2018;28:976–86. <https://doi.org/10.1016/j.tcb.2018.06.001>.

[52] Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. *Blood* 2016;128:e20–31. <https://doi.org/10.1182/BLOOD-2016-05-716480>.

[53] Notta F, Zandi S, Takayama N, Dobson S, Gan Ol, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. *Science (1979)* 2016;351:1–22. <https://doi.org/10.1126/science.aab2116>.

[54] Somuncular E, Hauenstein J, Khalkar P, Johansson AS, Dumral Ö, Frengen NS, et al. CD49b identifies functionally and epigenetically distinct subsets of lineage-biased hematopoietic stem cells. *Stem Cell Reports* 2022;17:1546–60. <https://doi.org/10.1016/j.stemcr.2022.05.014>.

[55] Su TY, Hauenstein J, Somuncular E, Dumral Ö, Leonard E, Gustafsson C, et al. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. *Nat Commun* 2024;15. <https://doi.org/10.1038/S41467-024-52318-1>.

[56] Carrelha J, Mazzi S, Winroth A, Hagemann-Jensen M, Ziegenhain C, Höglstrand K, et al. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. *Nat Immunol* 2024;25:1007–19. <https://doi.org/10.1038/s41590-024-01845-6>.

[57] Belander Strålin K, Carrelha J, Winroth A, Ziegenhain C, Hagemann-Jensen M, Ketty LM, et al. Platelet and myeloid lineage biases of transplanted single perinatal mouse hematopoietic stem cells. *Cell Res* 2023;33:883–6. <https://doi.org/10.1038/s41422-023-00866-4>.

[58] Yoshizato T, Nilsson C, Grasso F, Höglstrand K, Mazzi S, Winroth A, et al. Stable clonal contribution of lineage-restricted stem cells to human hematopoiesis. *Nat Genet* 2025. <https://doi.org/10.1038/s41588-025-02405-w>.

[59] Dzierzak E, Philipsen S. Erythropoiesis: Development and differentiation. *Cold Spring Harb Perspect Med* 2013;3:1–16. <https://doi.org/10.1101/cshperspect.a011601>.

[60] Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: Organelle clearance in mammals. *Front Physiol* 2017;8:1–9. <https://doi.org/10.3389/fphys.2017.01076>.

[61] Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. *Br J Haematol* 2016;173:206–18.

[62] Li J, Hale J, Bhagia P, Xue F, Chen L, Jaffray J, et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. *Blood* 2014;124. <https://doi.org/10.1182/blood-2014-07-588806>.

[63] Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. *Blood, The Journal of the American Society of Hematology* 2011;118:6258–68.

[64] Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, et al. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. *Am J Hematol* 2021;96:1064–76. <https://doi.org/10.1002/ajh.26247>.

[65] Fajtova M, Kovarikova A, Svec P, Kankuri E, Sedlak J. Immunophenotypic profile of nucleated erythroid progenitors during maturation in regenerating bone marrow. *Leuk Lymphoma* 2013;54:2523–30.

[66] Hu J, Liu J, Xue F, Halverson G, Reid M, Guo A, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. *Blood* 2013;121:3246–53. <https://doi.org/10.1182/blood-2013-01-476390>.

[67] Okumura N, Tsuji K, Nakahata T. Changes in Cell Surface Antigen Expressions During Proliferation and Differentiation of Human Erythroid Progenitors. n.d.

[68] Molineux G, Sinclair AM. Biology of erythropoietin. *Erythropoietins, Erythropoietic Factors, and Erythropoiesis*, Springer; 2009, p. 41–60.

[69] Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. *Int J Lab Hematol* 2016;38:20–6.

[70] Ponka P, Sheftel AD. Erythroid iron metabolism. *Iron Physiology and Pathophysiology in Humans*, Springer; 2012, p. 191–209.

[71] Goodman JW, Hall EA, Miller KL, Shinpock SG. Interleukin 3 promotes erythroid burst formation in “serum-free” cultures without detectable erythropoietin. *Proc Natl Acad Sci U S A* 1985;82. <https://doi.org/10.1073/pnas.82.10.3291>.

[72] Kieran MW, Perkins AC, Orkin SH, Zon LI. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. *Proceedings of the National Academy of Sciences* 1996;93:9126–31.

[73] Miyagawa S, Kobayashi M, Konishi N, Sato T, Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. *Br J Haematol* 2000;109:555–62.

[74] Vlahakos D V, Marathias KP, Madias NE. The role of the renin-angiotensin system in the regulation of erythropoiesis. *American Journal of Kidney Diseases* 2010;56:558–65.

[75] Wang CQ, Udupa KB, Lipschitz DA. Evidence suggesting a stimulatory role for interleukin-10 in erythropoiesis in vitro. *J Cell Physiol* 1996;166:305–10.

[76] Véronique Maguer-Satta V, Bartholin L, Jeanpierre S, Ffrench M, Martel S, Magaud J-P, et al. Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGF β family. *Exp Cell Res* 2003;282:110–20.

[77] Hoffman R, Marcellino BK. Bone Marrow Microenvironment in Health and Disease. *Encyclopedia of Bone Biology*, 2020, p. 1–11.

[78] Verma D, Krause DS. Targeting the bone marrow niche in hematological malignancies. *Advances in stem cells and their niches*, vol. 1, Elsevier; 2017, p. 155–75.

[79] Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. *Blood Cells* 1978;4:7–25.

[80] Scadden DT. The stem-cell niche as an entity of action. *Nature* 2006 441:7097 2006;441:1075–9. <https://doi.org/10.1038/nature04957>.

[81] Kokkaliaris KD, Scadden DT. Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. *Blood Adv* 2020;4:3795–803.

[82] Kfouri Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. *Cell Stem Cell* 2015;16:239–53.

[83] Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. *Nat Rev Mol Cell Biol* 2019;20:303–20.

[84] Kokkaliaris KD. Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells. *Curr Opin Oncol* 2020;32:154–61.

[85] Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. *Nature* 2012;481:457–62. <https://doi.org/10.1038/NATURE10783>.

[86] Greenbaum A, Hsu YMS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. *Nature* 2013;495:227–30. <https://doi.org/10.1038/NATURE11926>.

[87] Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: From basic Science to clinical implications. *Physiol Rev* 2012;92:1619–49. <https://doi.org/10.1152/PHYSREV.00046.2011/ASSET/IMAGES/LARGE/Z9J0041226280005.JPG>.

[88] Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Måansson R, et al. Critical role of thrombopoietin in maintaining adult quiescent

hematopoietic stem cells. *Cell Stem Cell* 2007;1:671–84.
<https://doi.org/10.1016/J.STEM.2007.10.008>.

[89] Panoskaltsis N, Mantalaris A, Wu JHD. Engineering a mimicry of bone marrow tissue ex vivo. *J Biosci Bioeng* 2005;100:28–35.

[90] Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. *Nat Rev Mol Cell Biol* 2011;12:643–55.

[91] Klein G. The extracellular matrix of the hematopoietic microenvironment. *Experientia* 1995;51. <https://doi.org/10.1007/BF01921741>.

[92] Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. *Nature* 2011;474.
<https://doi.org/10.1038/nature10137>.

[93] Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. *Science* (1979) 2010;329. <https://doi.org/10.1126/science.1191035>.

[94] Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer D V, et al. Substrate modulus directs neural stem cell behavior. *Biophys J* 2008;95.
<https://doi.org/10.1529/biophysj.108.132217>.

[95] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. *Cell* 2006;126.
<https://doi.org/10.1016/j.cell.2006.06.044>.

[96] Vining KH, Marneth AE, Adu-Berchie K, Tringides CM, Grolman JM, Liu Y, et al. Mechanical Checkpoint Regulates Monocyte Differentiation in Fibrotic Matrix. *Blood* 2021;138. <https://doi.org/10.1182/blood-2021-147297>.

[97] Lundin V, Sugden WW, Theodore LN, Sousa PM, Han A, Chou S, et al. YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. *Dev Cell* 2020;52.
<https://doi.org/10.1016/j.devcel.2020.01.006>.

[98] Mitroulis I, Chen LS, Singh RP, Kourtzelis I, Economopoulou M, Kajikawa T, et al. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. *Journal of Clinical Investigation*, vol. 127, 2017.
<https://doi.org/10.1172/JCI92571>.

[99] Probst K, Stermann J, von Bomhard I, Etich J, Pitzler L, Niehoff A, et al. Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. *Stem Cells* 2018;36. <https://doi.org/10.1002/stem.2892>.

[100] Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünwald E, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. *Journal of Experimental Medicine* 2005;201.
<https://doi.org/10.1084/jem.20041992>.

[101] Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T, et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. *Blood* 2012;119. <https://doi.org/10.1182/blood-2011-11-393645>.

[102] Lee-Thedieck C, Schertl P, Klein G. The extracellular matrix of hematopoietic stem cell niches. *Adv Drug Deliv Rev* 2022;181. <https://doi.org/10.1016/j.addr.2021.114069>.

[103] Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. *Leukemia* 2018;32. <https://doi.org/10.1038/leu.2017.259>.

[104] Curto-Garcia N, Harrison C, McLornan DP. Bone marrow niche dysregulation in myeloproliferative neoplasms. *Haematologica* 2020;105. <https://doi.org/10.3324/HAEMATOL.2019.243121>.

[105] Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, et al. Clonal dynamics of haematopoiesis across the human lifespan. *Nature* 2022;606:343. <https://doi.org/10.1038/S41586-022-04786-Y>.

[106] Greenman C, Stephens P, Smith R, Dalglish GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. *Nature* 2007;446:153–8. <https://doi.org/10.1038/NATURE05610>.

[107] Blokzijl F, De Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, et al. Tissue-specific mutation accumulation in human adult stem cells during life. *Nature* 2016;538:260–4. <https://doi.org/10.1038/NATURE19768>.

[108] Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal Patterns of Selection in Cancer and Somatic Tissues. *Cell* 2017;171:1029–1041.e21. <https://doi.org/10.1016/J.CELL.2017.09.042>.

[109] Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. *Journal of Clinical Investigation* 2024;134. <https://doi.org/10.1172/JCI180065>.

[110] Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. *Blood* 2023;142:2235–46. <https://doi.org/10.1182/BLOOD.2023022222>.

[111] McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis. *Cell Rep* 2015;10:1239–45. <https://doi.org/10.1016/J.CELREP.2015.02.005>.

[112] Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. *Nature Medicine* 2014;20:12 2014;20:1472–8. <https://doi.org/10.1038/nm.3733>.

[113] Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman P V, Mar BG, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. *New England Journal of Medicine* 2014;371:2488–98. https://doi.org/10.1056/NEJMoa1408617/SUPPL_FILE/NEJMoa1408617_DISCLOSURES.PDF.

[114] Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhour SF, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. *New England Journal of Medicine* 2014;371:2477–87. https://doi.org/10.1056/NEJMoa1409405/SUPPL_FILE/NEJMoa1409405_DISCLOSURES.PDF.

[115] Caiado F, Manz MG. Genetic resistance to leukemia. *Science* 2026;391:21–2. <https://doi.org/10.1126/SCIENCE.AED5244>.

[116] Young AL, Challen GA, Birnbaum BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. *Nature Communications* 2016 7:1 2016;7:12484-. <https://doi.org/10.1038/ncomms12484>.

[117] Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. *Blood* 2015;126:9–16. <https://doi.org/10.1182/BLOOD-2015-03-631747>.

[118] Kwok B, Hall JM, Witte JS, Xu Y, Reddy P, Lin K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. *Blood* 2015;126:2355–61. <https://doi.org/10.1182/BLOOD-2015-08-667063>.

[119] Weeks LD, Niroula A, Neuberg D, Wong W, Lindsley RC, Luskin MR, et al. Prediction of Risk for Myeloid Malignancy in Clonal Hematopoiesis. *NEJM Evidence* 2023;2. https://doi.org/10.1056/EVIDOA2200310/SUPPL_FILE/EVIDOA2200310_DA TA-SHARING.PDF.

[120] Young AL, Spencer Tong R, Birnbaum BM, Druley TE. Clonal hematopoiesis and risk of acute myeloid leukemia. *Haematologica* 2019;104:2410–7. <https://doi.org/10.3324/HAEMATOL.2018.215269>.

[121] Malcovati L, Galli A, Travaglino E, Ambaglio I, Rizzo E, Molteni E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. *Blood* 2017;129:3371–8. <https://doi.org/10.1182/BLOOD-2017-01-763425>.

[122] Woll PS, Kjällquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. *Cancer Cell* 2014;25:794–808. <https://doi.org/10.1016/j.ccr.2014.03.036>.

[123] Tefferi A, Vardiman JW. Myelodysplastic Syndromes. *New England Journal of Medicine* 2009;361:1872–85. <https://doi.org/10.1056/NEJMRA0902908>.

[124] Mufti GJ, Bennett JM, Goasguen J, Bain BJ, Baumann I, Brunning R, et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. *Haematologica* 2008;93:1712–7.

[125] Steensma DP. Myelodysplastic syndromes: diagnosis and treatment. *Mayo Clin Proc*, vol. 90, Elsevier; 2015, p. 969–83.

[126] Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. *Blood* 2016;127:2391–405.

[127] Moreno Berggren D, Folkvaljon Y, Engvall M, Sundberg J, Lambe M, Antunovic P, et al. Prognostic scoring systems for myelodysplastic syndromes (MDS) in a population-based setting: a report from the Swedish MDS register. *Br J Haematol* 2018;181:614–27.
<https://doi.org/10.1111/BJH.15243>.

[128] Cogle CR. Incidence and Burden of the Myelodysplastic Syndromes. *Curr Hematol Malig Rep* 2015;10:272–81. <https://doi.org/10.1007/S11899-015-0269-Y>.

[129] Nationellt kvalitetsregister myelodysplastiskt syndrom – Regionala cancercentrum i samverkan n.d.
<https://cancercentrum.se/diagnosbehandling/cancerdiagnoser/hematologiskacancersjukdomar/myelodysplastisktsyndrommds/kvalitetsregister.7209.html> (accessed December 11, 2025).

[130] Chung J, Sallman DA, Padron E. TP53 and therapy-related myeloid neoplasms. *Best Pract Res Clin Haematol* 2019;32:98–103.
<https://doi.org/10.1016/j.beha.2019.02.009>.

[131] Zeidan AM, Al Ali N, Barnard J, Padron E, Lancet JE, Sekeres MA, et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium. *Leukemia* 2017;31:1391–7. <https://doi.org/10.1038/leu.2017.33>.

[132] Smith SM, Le Beau MM, Huo D, Garrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. *Blood* 2003;102:43–52. <https://doi.org/10.1182/blood-2002-11-3343>.

[133] Moreno Berggren D, Garelius H, Willner Hjelm P, Nilsson L, Rasmussen B, Weibull CE, et al. Therapy-related MDS dissected based on primary disease and treatment—a nationwide perspective. *Leukemia* 2023 37:5 2023;37:1103–12. <https://doi.org/10.1038/s41375-023-01864-6>.

[134] Nisse C, Haguenoer JM, Grandbastien B, Preudhomme C, Fontaine B, Brillet JM, et al. Occupational and environmental risk factors of the

myelodysplastic syndromes in the North of France. *Br J Haematol* 2001;112:927–35. <https://doi.org/10.1046/J.1365-2141.2001.02645.X>.

- [135] Oster HS, van de Loosdrecht AA, Mittelman M. Diagnosis of myelodysplastic syndromes: the classic and the novel. *Haematologica* 2025;110:300–11. <https://doi.org/10.3324/HAEMATOL.2023.284937>.
- [136] Sekeres M, Jama JT-, 2022 undefined. Diagnosis and treatment of myelodysplastic syndromes: a review. *JamanetworkCom* 2022. <https://doi.org/10.1001/jama.2022.14578>.
- [137] Mittelman M, Zeidman A. Platelet function in the myelodysplastic syndromes. *Int J Hematol* 2020;71:95–8.
- [138] Malcovati L, Hellström-Lindberg E, Bowen D, Adès L, Cermak J, Del Cañizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. *Blood* 2013;122:2943–64. <https://doi.org/10.1182/BLOOD-2013-03-492884>.
- [139] Khouri JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. *Leukemia* 2022 36:7 2022;36:1703–19. <https://doi.org/10.1038/s41375-022-01613-1>.
- [140] Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. *Blood* 2022;140:1200–28. <https://doi.org/10.1182/BLOOD.2022015850>.
- [141] Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. *Blood* 2012;120. <https://doi.org/10.1182/blood-2012-03-420489>.
- [142] Shi Z, Li B, Huang H, Qin T, Xu Z, Zhang H, et al. Prognostic impact of red blood cell distribution width in myelodysplastic syndromes. *Br J Haematol* 2019;186:352. <https://doi.org/10.1111/BJH.15830>.
- [143] Oster HS, Sklyar E, Golsdshmidt N, Mittelman M. Routine Inflammatory Markers Are Elevated in Myelodysplastic Syndromes at Presentation. *Mediterr J Hematol Infect Dis* 2023;15:e2023044. <https://doi.org/10.4084/MJHID.2023.044>.
- [144] Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. *Br J Haematol* 1982;51:189–99. <https://doi.org/10.1111/j.1365-2141.1982.tb02771.x>.
- [145] Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. *Blood* 1997;89. <https://doi.org/10.1182/blood.v89.6.2079>.

[146] Haase D, Fonatsch C, Freund M, Wörmann B, Bodenstein H, Bartels H, et al. Cytogenetic findings in 179 patients with myelodysplastic syndromes. *Ann Hematol* 1995;70:171–87. [https://doi.org/10.1007/BF01700373/METRICS](https://doi.org/10.1007/BF01700373).

[147] Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an. *AscopubsOrg* Schanz, H Tüchler, F Solé, M Mallo, E Luno, J Cervera, I Granada, B Hildebrandt *Journal of Clinical Oncology*, 2012•*ascopubsOrg* 2012;30:820–9. <https://doi.org/10.1200/JCO.2011.35.6394>.

[148] Hasserjian RP, Germing U, Malcovati L. Diagnosis and classification of myelodysplastic syndromes. *Blood* 2023;142:2247–57. <https://doi.org/10.1182/BLOOD.2023020078>.

[149] Jansko-Gadermeir B, Leisch M, Gassner FJ, Zaborsky N, Dillinger T, Hutter S, et al. Myeloid NGS Analyses of Paired Samples from Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group. *Cancers (Basel)* 2023;15. <https://doi.org/10.3390/CANCERS15082305>.

[150] Rudelius M, Weinberg OK, Niemeyer CM, Shimamura A, Calvo KR. The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. *Virchows Arch* 2023;482:113–30. <https://doi.org/10.1007/S00428-022-03447-9>.

[151] Van De Loosdrecht AA, Westers TM. Cutting Edge: Flow Cytometry in Myelodysplastic Syndromes. *Journal of the National Comprehensive Cancer Network* 2013;11:892–902. <https://doi.org/10.6004/JNCCN.2013.0106>.

[152] Wang W, Khouri JD, Ossa A, de Loosdrecht van. Where diagnosis for myelodysplastic neoplasms (MDS) stands today and where it will go: The role of flow cytometry in evaluation of MDS. *Cytometry B Clin Cytom* 2023;104:12–4. <https://doi.org/10.1002/CYTO.B.22110>.

[153] Porwit A, Béné MC, Duetz C, Matarraz S, Oelschlaegel U, Westers TM, et al. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues. *Cytometry B Clin Cytom* 2023;104:27–50. <https://doi.org/10.1002/CYTO.B.22108>.

[154] van der Velden VHJ, Preijers F, Johansson U, Westers TM, Dunlop A, Porwit A, et al. Flow cytometric analysis of myelodysplasia: Pre-analytical and technical issues—Recommendations from the European LeukemiaNet. *Cytometry B Clin Cytom* 2023;104:15–26. <https://doi.org/10.1002/CYTO.B.22046>.

[155] Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE, Nannya Y, et al. Molecular International Prognostic Scoring System for

Myelodysplastic Syndromes. NEJM Evidence 2022;1:1–14.
<https://doi.org/10.1056/evidoa2200008>.

- [156] Kröger N. Treatment of high-risk myelodysplastic syndromes. *Haematologica* 2025;110:339–49.
<https://doi.org/10.3324/HAEMATOL.2023.284946>.
- [157] Merz AMA, Platzbecker U. Treatment of lower-risk myelodysplastic syndromes. *Haematologica* 2025;110:330–8.
<https://doi.org/10.3324/HAEMATOL.2023.284945>.
- [158] Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Pérez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. *Blood* 2004;104:579–85. <https://doi.org/10.1182/BLOOD-2004-01-0338>.
- [159] Della Porta MG, Jackson CH, Alessandrino EP, Rossi M, Bacigalupo A, van Lint MT, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised International Prognostic Scoring System. *Leukemia* 2017;31:11 2017;31:2449–57. <https://doi.org/10.1038/leu.2017.88>.
- [160] Alessandrino EP, Porta MGD, Malcovati L, Jackson CH, Pascutto C, Bacigalupo A, et al. Optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome. *Am J Hematol* 2013;88:581–8. <https://doi.org/10.1002/AJH.23458>.
- [161] Oliva EN, Riva M, Niscola P, Santini V, Breccia M, Giai V, et al. Eltrombopag for Low-Risk Myelodysplastic Syndromes With Thrombocytopenia: Interim Results of a Phase II, Randomized, Placebo-Controlled Clinical Trial (EQOL-MDS). *Journal of Clinical Oncology* 2023;41:4486–96.
https://doi.org/10.1200/JCO.22.02699/SUPPL_FILE/PROTOCOL_JCO.22.02699.PDF.
- [162] Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes. *New England Journal of Medicine* 2020;382:140–51.
https://doi.org/10.1056/NEJMoa1908892/SUPPL_FILE/NEJMoa1908892_DATA-SHARING.PDF.
- [163] Platzbecker U, Della Porta MG, Santini V, Zeidan AM, Komrokji RS, Shortt J, et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naïve, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. *The Lancet* 2023;402:373–85.
[https://doi.org/10.1016/S0140-6736\(23\)00874-7](https://doi.org/10.1016/S0140-6736(23)00874-7).
- [164] Kubasch AS, Fenaux P, Platzbecker U. Development of luspatercept to treat ineffective erythropoiesis. *Blood Adv* 2021;5.
<https://doi.org/10.1182/BLOODADVANCES.2020002177>.

[165] López Cadenas F, Lumbreras E, González T, Xicoy B, Sánchez-García J, Coll R, et al. Evaluation of Lenalidomide (LEN) Vs Placebo in Non-Transfusion Dependent Low Risk Del(5q) MDS Patients. Final Results of Sintra-REV Phase III International Multicenter Clinical Trial. *Blood* 2022;140:1109–11. <https://doi.org/10.1182/BLOOD-2022-168718>.

[166] Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. *Blood* 2011;118:3765–76. <https://doi.org/10.1182/BLOOD-2011-01-330126>.

[167] Creignou M, Bernard E, Gasparini A, Tranberg A, Todisco G, Moura PL, et al. Early transfusion patterns improve the Molecular International Prognostic Scoring System (IPSS-M) prediction in myelodysplastic syndromes. *J Intern Med* 2024;296:53–67. <https://doi.org/10.1111/JIM.13790>.

[168] Vijenthira A, Starkman R, Lin Y, Stanworth SJ, Bowen D, Harrison L, et al. Multi-national survey of transfusion experiences and preferences of patients with myelodysplastic syndrome. *Transfusion (Paris)* 2022;62:1355–64. <https://doi.org/10.1111/TRF.16946>.

[169] Stanworth SJ, Killick S, McQuilten ZK, Karakantza M, Weinkove R, Smethurst H, et al. Red cell transfusion in outpatients with myelodysplastic syndromes: a feasibility and exploratory randomised trial. *Br J Haematol* 2020;189:279–90. <https://doi.org/10.1111/BJH.16347>.

[170] Ogawa S. Genetics of MDS. *Blood* 2019;133:1049–59. <https://doi.org/10.1182/BLOOD-2018-10-844621>.

[171] Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. *Blood* 2013;122:3616–27.

[172] Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. *Leukemia* 2014;28:241–7.

[173] Cazzola M, Malcovati L. Genome sequencing in the management of myelodysplastic syndromes and related disorders. *Haematologica* 2025;110:312–29. <https://doi.org/10.3324/HAEMATOL.2023.284947>.

[174] Cazzola M. Myelodysplastic Syndromes. *N Engl J Med* 2020;383:1358–74. <https://doi.org/10.1056/NEJMRA1904794>.

[175] West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. *Ann N Y Acad Sci* 2014;1310:111. <https://doi.org/10.1111/NYAS.12346>.

[176] Churpek JE, Pyrtel K, Kanchi KL, Shao J, Koboldt D, Miller CA, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute

myeloid leukemia. *Blood* 2015;126:2484–90. <https://doi.org/10.1182/BLOOD-2015-04-641100>.

- [177] Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, et al. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. *International Journal of Molecular Sciences* 2024, Vol 25, 2024;25. <https://doi.org/10.3390/IJMS25010652>.
- [178] Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. *Nature Communications* 2020 11:1 2020;11:1044-. <https://doi.org/10.1038/s41467-020-14829-5>.
- [179] Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. *Blood* 2019;133:1071. <https://doi.org/10.1182/BLOOD-2018-10-844662>.
- [180] Saygin C, Roloff G, Hahn CN, Chhetri R, Gill S, Elmariah H, et al. Allogeneic hematopoietic stem cell transplant outcomes in adults with inherited myeloid malignancies. *Blood Adv* 2023;7:549–54. <https://doi.org/10.1182/BLOODADVANCES.2022008172>.
- [181] Sarami I, Haley JS, Smelser DT, Cook AM, Vadakara JJ, Ding Y, et al. Genetic Landscape of Myelodysplastic Syndrome and Clonal Hematopoiesis: Insights From Whole Exome Sequencing of 90 000 Individuals. *Am J Hematol* 2025;100:2448–51. <https://doi.org/10.1002/AJH.70113>.
- [182] Malcovati L, Papaemmanuil E, Bowen DT, Boultonwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. *Blood, The Journal of the American Society of Hematology* 2011;118:6239–46.
- [183] BJORKMAN SE. Chronic Refractory Anemia with Sideroblastic Bone Marrow. A Study of Four Cases. *Blood* 1956;11:250–9. <https://doi.org/10.1182/BLOOD.V11.3.250.250>.
- [184] Jaffe ES, Harris NL, Stein H, Jaffe et al, Vardiman JW. *Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues*. IARC Press; 2001.
- [185] Tehranchi R, Invernizzi R, Grandien A, Zhivotovsky B, Fadeel B, Forsblom A-M, et al. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes. *Blood* 2005;106:247–53.
- [186] Lours C, Cottin L, Wiber M, Andrieu V, Baccini V, Baseggio L, et al. Perls' Stain Guidelines from the French-Speaking Cellular Hematology Group (GFHC). *Diagnostics* 2022, Vol 12, 2022;12. <https://doi.org/10.3390/DIAGNOSTICS12071698>.

[187] Wahl MC, Will CL, Lührmann R. The Spliceosome: Design Principles of a Dynamic RNP Machine. *Cell* 2009;136. <https://doi.org/10.1016/j.cell.2009.02.009>.

[188] Ochi T, Fujiwara T, Ono K, Suzuki C, Nikaido M, Inoue D, et al. Exploring the mechanistic link between SF3B1 mutation and ring sideroblast formation in myelodysplastic syndrome. *Sci Rep* 2022;12:1–16. <https://doi.org/10.1038/s41598-022-18921-2>.

[189] Malcovati L, Cazzola M. Recent advances in the understanding of myelodysplastic syndromes with ring sideroblasts. *Br J Haematol* 2016;174:847–58. <https://doi.org/10.1111/BJH.14215>.

[190] Papaemmanuil E, Cazzola M, Boultonwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. *New England Journal of Medicine* 2011;365:1384–95.

[191] Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3' splice site selection through use of a different branch point. *Cell Rep* 2015;13:1033–45.

[192] Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. *Cell Rep* 2018;23:282–296. e4.

[193] Yoshimi A, Abdel-Wahab O. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. *Int J Hematol* 2017;105. <https://doi.org/10.1007/s12185-017-2242-0>.

[194] Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. *Nature* 2011;478:64–9.

[195] Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. *Blood* 2018;132:1225–40.

[196] Boultonwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H, et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. *PLoS One* 2008;3. <https://doi.org/10.1371/JOURNAL.PONE.0001970>.

[197] Conte S, Katayama S, Vesterlund L, Karimi M, Dimitriou M, Jansson M, et al. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF 3B1 mutated refractory anaemia with ring sideroblasts. *Br J Haematol* 2015;171:478–90.

[198] Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. *Leukemia* 2016;30:2322–31. <https://doi.org/10.1038/leu.2016.149>.

[199] Nikpour M, Scharenberg C, Liu A, Conte S, Karimi M, Mortera-Blanco T, et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. *Leukemia* 2013;27:889–96.

[200] Pellagatti A, Boulton J. Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment. *Adv Biol Regul* 2023;87:100920. <https://doi.org/https://doi.org/10.1016/j.jbior.2022.100920>.

[201] Shiozawa Y, Malcovati L, Galli A, Sato-Otsubo A, Kataoka K, Sato Y, et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. *Nat Commun* 2018;9:1–16.

[202] Moura PL, Mortera-Blanco T, Hofman IJ, Todisco G, Kretzschmar WW, Björklund AC, et al. Erythroid Differentiation Enhances RNA Mis-Splicing in SF3B1-Mutant Myelodysplastic Syndromes with Ring Sideroblasts. *Cancer Res* 2024;84:211–25. <https://doi.org/10.1158/0008-5472.CAN-23-3038>.

[203] Zhou Z, Gong Q, Wang Y, Li M, Wang L, Ding H, et al. The biological function and clinical significance of SF3B1 mutations in cancer. *Biomark Res* 2020;8:38–. <https://doi.org/10.1186/S40364-020-00220-5/FIGURES/5>.

[204] Hsu J, Reilly A, Hayes BJ, Clough CA, Konnick EQ, Torok-Storb B, et al. Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes. *Blood* 2019;134:186–98.

[205] Bacher U, Kern W, Alpermann T, Schnittger S, Haferlach C, Haferlach T. Prognoses of MDS subtypes RARS, RCMD and RCMD-RS are comparable but cytogenetics separates a subgroup with inferior clinical course. *Leuk Res* 2012;36:826–31. <https://doi.org/10.1016/j.leukres.2012.04.003>.

[206] Bruzzese A, Vigna E, Martino EA, Mendicino F, Lucia E, Olivito V, et al. Myelodysplastic syndromes with ring sideroblasts. *Hematol Oncol* 2023;1–9. <https://doi.org/10.1002/hon.3125>.

[207] DeZern AE, Greenberg PL. The trajectory of prognostication and risk stratification for patients with myelodysplastic syndromes. *Blood* 2023;142:2258–67. <https://doi.org/10.1182/BLOOD.2023020081>.

[208] Todisco G, Creignou M, Bernard E, Björklund AC, Moura PL, Tesi B, et al. Integrated Genomic and Transcriptomic Analysis Improves Disease Classification and Risk Stratification of MDS with Ring Sideroblasts. *Clinical Cancer Research* 2023;29:4256–67. <https://doi.org/10.1158/1078-0432.CCR-23-0538>.

[209] Sirenko M, Bernard E, Creignou M, Domenico D, Farina A, Arango Ossa JE, et al. Molecular and clinical presentation of UBA1-mutated myelodysplastic syndromes. *Blood* 2024;144:1221–9. <https://doi.org/10.1182/BLOOD.2023023723>.

[210] Mekinian A, Grignano E, Braun T, Decaux O, Liozon E, Costedoat-Chalumeau N, et al. Systemic inflammatory and autoimmune manifestations

associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: A french multicentre retrospective study. *Rheumatology (United Kingdom)* 2015;55:291–300.
<https://doi.org/10.1093/RHEUMATOLOGY/KEV294>.

[211] Zhao LP, Boy M, Azoulay C, Clappier E, Sébert M, Amable L, et al. Genomic landscape of MDS/CMMI associated with systemic inflammatory and autoimmune disease. *Leukemia* 2021;35:2720–4.
<https://doi.org/10.1038/S41375-021-01152-1>.

[212] Montoro J, Gallur L, Merchán B, Molero A, Roldán E, Martínez-Valle F, et al. Autoimmune disorders are common in myelodysplastic syndrome patients and confer an adverse impact on outcomes. *Ann Hematol* 2018;97:1349–56. <https://doi.org/10.1007/S00277-018-3302-0>.

[213] Braun T, Fenaux P. Myelodysplastic Syndromes (MDS) and autoimmune disorders (AD): Cause or consequence? *Best Pract Res Clin Haematol* 2013;26:327–36. <https://doi.org/10.1016/J.BEHA.2013.09.003>.

[214] Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. *New England Journal of Medicine* 2020;383:2628–38.
<https://doi.org/10.1056/NEJMoa2026834>.

[215] Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P, Ospina Cardona D, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. *Blood* 2021;137:3676–81. <https://doi.org/10.1182/BLOOD.2020010286>.

[216] Sakuma M, Blomberg P, Meggendorfer M, Haferlach C, Lindauer M, Martens UM, et al. Novel causative variants of VEXAS in UBA1 detected through whole genome transcriptome sequencing in a large cohort of hematological malignancies. *Leukemia* 2023;37:1080–91.
<https://doi.org/10.1038/S41375-023-01857-5>.

[217] Oganesyan A, Jachiet V, Chasset F, Hirsch P, Hage-Sleiman M, Fabiani B, et al. VEXAS syndrome: Still expanding the clinical phenotype. *Rheumatology (United Kingdom)* 2021;60:E321–3.
<https://doi.org/10.1093/RHEUMATOLOGY/KEAB225>.

[218] Bourbon E, Heibligh M, Gerfaud Valentin M, Barba T, Durel CA, Lega JC, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. *Blood* 2021;137:3682–4. <https://doi.org/10.1182/BLOOD.2020010177>.

[219] Georger-Lavialle S, Terrier B, Guedon AF, Heibligh M, Comont T, Lazaro E, et al. Further Characterization of Clinical and Laboratory Features in VEXAS Syndrome: Large-scale Analysis of a Multicentre Case Series of 116 French Patients. *British Journal of Dermatology* 2022;2022:564–74.
<https://doi.org/10.1111/bjd.20805i>.

[220] Ferrada MA, Savic S, Cardona DO, Collins JC, Alessi H, Gutierrez-Rodrigues F, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. *Blood* 2022;140:1496–506. <https://doi.org/10.1182/BLOOD.2022016985>.

[221] Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. *New England Journal of Medicine* 2015;373:1136–52. <https://doi.org/10.1056/NEJMra1406184>.

[222] U.S. County Population Data 1969–2023 – SEER Population Data n.d. <https://seer.cancer.gov/popdata/> (accessed December 13, 2025).

[223] Juliusson G, Hagberg O, Lazarevic VL, Ölander E, Antunovic P, Cammenga J, et al. Improved survival of men 50 to 75 years old with acute myeloid leukemia over a 20-year period. *Blood* 2019;134:1558–61. <https://doi.org/10.1182/BLOOD.2019001728>.

[224] Röllig C, Kramer M, Schliemann C, Mikesch JH, Steffen B, Krämer A, et al. Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? *Blood* 2020;136:823–30. <https://doi.org/10.1182/BLOOD.2019004583>.

[225] DiNardo CD, Erba HP, Freeman SD, Wei AH. Acute myeloid leukaemia. *The Lancet* 2023;401:2073–86. [https://doi.org/10.1016/S0140-6736\(23\)00108-3](https://doi.org/10.1016/S0140-6736(23)00108-3).

[226] Estey E, Hasserjian RP, Döhner H. Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal. *Blood* 2022;139:323–32. <https://doi.org/10.1182/BLOOD.2021011304>.

[227] DiNardo CD, Garcia-Manero G, Kantarjian HM. Time to blur the blast boundaries. *Cancer* 2022;128:1568–70. <https://doi.org/10.1002/CNCR.34119>.

[228] Deschler B, Ihorst G, Platzbecker U, Germing U, Lübbert M. Development of a Frailty Score for Older Patients with Myelodysplastic Syndromes and Acute Myeloid Leukemia. *Blood* 2009;114:1775–1775. <https://doi.org/10.1182/BLOOD.V114.22.1775.1775>.

[229] Giles FJ, Borthakur G, Ravandi F, Faderl S, Verstovsek S, Thomas D, et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. *Br J Haematol* 2007;136:624–7. <https://doi.org/10.1111/J.1365-2141.2006.06476.X>.

[230] Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, et al. Age and acute myeloid leukemia. *Blood* 2006;107:3481–5. <https://doi.org/10.1182/BLOOD-2005-09-3724>.

[231] Liersch R, Müller-Tidow C, Berdel WE, Krug U. Prognostic factors for acute myeloid leukaemia in adults – biological significance and clinical use. *Br J Haematol* 2014;165:17–38. <https://doi.org/10.1111/BJH.12750>.

[232] Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. *Blood* 2022;140:1345–77. <https://doi.org/10.1182/BLOOD.2022016867>.

[233] Döhner H, DiNardo CD, Appelbaum FR, Craddock C, Dombret H, Ebert BL, et al. Genetic risk classification for adults with AML receiving less-intensive therapies: the 2024 ELN recommendations. *Blood* 2024;144:2169–73. <https://doi.org/10.1182/BLOOD.2024025409/2238249/BLOOD.2024025409.PDF>.

[234] Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. *Lancet* 2013;381:484–95. [https://doi.org/10.1016/S0140-6736\(12\)61727-9](https://doi.org/10.1016/S0140-6736(12)61727-9).

[235] Sasaki K, Kadia T, Begna K, DiNardo CD, Borthakur G, Short NJ, et al. Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy. *Am J Hematol* 2022;97:68–78. <https://doi.org/10.1002/AJH.26395>.

[236] Krug U, Röllig C, Koschmieder A, Heinecke A, Sauerland MC, Schaich M, et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. *Lancet* 2010;376:2000–8. [https://doi.org/10.1016/S0140-6736\(10\)62105-8](https://doi.org/10.1016/S0140-6736(10)62105-8).

[237] Ganzel C, Sun Z, Cripe LD, Fernandez HF, Douer D, Rowe JM, et al. Very poor long-term survival in past and more recent studies for relapsed AML patients: The ECOG-ACRIN experience. *Am J Hematol* 2018;93:1074–81. <https://doi.org/10.1002/AJH.25162>.

[238] Ferrara F, Barosi G, Venditti A, Angelucci E, Gobbi M, Pane F, et al. Consensus-based definition of unfitness to intensive and non-intensive chemotherapy in acute myeloid leukemia: a project of SIE, SIES and GITMO group on a new tool for therapy decision making. *Leukemia* 2013;27:997–9. <https://doi.org/10.1038/LEU.2012.303>.

[239] Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. *Blood* 2016;127:53–61. <https://doi.org/10.1182/BLOOD-2015-08-604520>.

[240] AML-specifik behandling – de viktigaste läkemedlen n.d. <https://kunskapsbanken.cancercentrum.se/diagnoser/aml/vardprogram/AML-specifik-behandling/> (accessed December 16, 2025).

[241] Roman Diaz JL, Vazquez Martinez M, Khimani F. New Approaches for the Treatment of AML beyond the 7+3 Regimen: Current Concepts and New Approaches. *Cancers (Basel)* 2024;16:677. <https://doi.org/10.3390/CANCERS16030677>.

[242] Erba HP, Montesinos P, Kim HJ, Patkowska E, Vrhovac R, Žák P, et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-

internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2023;401:1571–83. [https://doi.org/10.1016/S0140-6736\(23\)00464-6](https://doi.org/10.1016/S0140-6736(23)00464-6).

[243] Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. *N Engl J Med* 2017;377:454. <https://doi.org/10.1056/NEJMoa1614359>.

[244] Lancet JE, Uy GL, Newell LF, Lin TL, Ritchie EK, Stuart RK, et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. *Lancet Haematol* 2021;8:e481–91. [https://doi.org/10.1016/S2352-3026\(21\)00134-4](https://doi.org/10.1016/S2352-3026(21)00134-4).

[245] Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. *J Clin Oncol* 2018;36:2684–92. <https://doi.org/10.1200/JCO.2017.77.6112>.

[246] Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. *Lancet Oncol* 2014;15:986–96. [https://doi.org/10.1016/S1470-2045\(14\)70281-5](https://doi.org/10.1016/S1470-2045(14)70281-5).

[247] Wu Y, Li Y, Gao Y, Zhang P, Jing Q, Zhang Y, et al. Immunotherapies of acute myeloid leukemia: Rationale, clinical evidence and perspective. *Biomedicine & Pharmacotherapy* 2024;171:116132. <https://doi.org/10.1016/J.BIOPHA.2024.116132>.

[248] Shimony S, Stahl M, Stone RM. Acute Myeloid Leukemia: 2025 Update on Diagnosis, Risk-Stratification, and Management. *Am J Hematol* 2025;100:860–91. <https://doi.org/10.1002/AJH.27625>.

[249] DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. *New England Journal of Medicine* 2020;383:617–29. https://doi.org/10.1056/NEJMoa2012971/SUPPL_FILE/NEJMoa2012971_DA_TA-SHARING.PDF.

[250] Wei AH, Panayiotidis P, Montesinos P, Laribi K, Ivanov V, Kim I, et al. 6-month follow-up of VIALE-C demonstrates improved and durable efficacy in patients with untreated AML ineligible for intensive chemotherapy (141/150). *Blood Cancer J* 2021;11. <https://doi.org/10.1038/S41408-021-00555-8>.

[251] de Botton S, Montesinos P, Schuh AC, Papayannidis C, Vyas P, Wei AH, et al. Enasidenib vs conventional care in older patients with late-stage mutant-

IDH2 relapsed/refractory AML: a randomized phase 3 trial. *Blood* 2023;141:156–67. <https://doi.org/10.1182/BLOOD.2021014901>.

[252] Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. *Blood* 2020;135:463–71. <https://doi.org/10.1182/BLOOD.2019002140>.

[253] Montesinos P, Recher C, Vives S, Zarzycka E, Wang J, Bertani G, et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia . *New England Journal of Medicine* 2022;386:1519–31. https://doi.org/10.1056/NEJMOA2117344/SUPPL_FILE/NEJMOA2117344_DATA-SHARING.PDF.

[254] Yanada M, Garcia-Manero G, Borthakur G, Ravandi F, Kantarjian H, Estey E. Potential cure of acute myeloid leukemia. *Cancer* 2007;110:2756–60. <https://doi.org/10.1002/CNCR.23112>.

[255] Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3 -Mutated AML . *New England Journal of Medicine* 2019;381:1728–40. https://doi.org/10.1056/NEJMOA1902688/SUPPL_FILE/NEJMOA1902688_DATA-SHARING.PDF.

[256] Man X, Wang J, Jiang Q, Fei X, Man Q, Chang C, et al. Salvage allogeneic hematopoietic stem cell transplantation conditioning regimens for relapsed/refractory acute leukemia: Efficacy of radiotherapy combined with CLAG vs FLAG. *Blood* 2025;146:2428–2428. <https://doi.org/10.1182/BLOOD-2025-2428>.

[257] Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. *Blood* 2017;130:722–31. <https://doi.org/10.1182/BLOOD-2017-04-779405>.

[258] Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. *New England Journal of Medicine* 2016;374:2209–21. https://doi.org/10.1056/NEJMOA1516192/SUPPL_FILE/NEJMOA1516192_DISCLOSURES.PDF.

[259] Di Nardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. *Hematology* 2016;2016:348–55. <https://doi.org/10.1182/ASHEDUCATION-2016.1.348>.

[260] Kayser S, Levis MJ. The clinical impact of the molecular landscape of acute myeloid leukemia. *Haematologica* 2023;108:308–20. <https://doi.org/10.3324/HAEMATOL.2022.280801>.

[261] Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nature Genetics* 2013 45:10 2013;45:1113–20. <https://doi.org/10.1038/ng.2764>.

[262] Ravandi F, Kantarjian H, Faderl S, Garcia-Manero G, O'Brien S, Koller C, et al. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. *Leuk Res* 2010;34:752–6. <https://doi.org/10.1016/J.LEUKRES.2009.10.001>.

[263] Pollard JA, Alonzo TA, Gerbing RB, Ho PA, Zeng R, Ravindranath Y, et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. *Blood* 2010;115:2372–9. <https://doi.org/10.1182/BLOOD-2009-09-241075>.

[264] Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic Nucleophosmin in Acute Myelogenous Leukemia with a Normal Karyotype. *New England Journal of Medicine* 2005;352:254–66. https://doi.org/10.1056/NEJMoa041974/SUPPL_FILE/254SA1.PDF.

[265] Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry C V, et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. *Blood* 2015;125:629–38. <https://doi.org/10.1182/BLOOD-2014-08-594648>.

[266] Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. *Nat Genet* 2011;44:23–31. <https://doi.org/10.1038/NG.1009>.

[267] Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P, et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. *Cell Stem Cell* 2014;14:329–41. <https://doi.org/10.1016/J.STEM.2013.12.016>.

[268] Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. *Cancer Cell* 2012;22:180–93. <https://doi.org/10.1016/J.CCR.2012.06.032>.

[269] Rotter V, Aloni-Grinstein R, Schwartz D, Elkind NB, Simons A, Wolkowicz R, et al. Does wild-type p53 play a role in normal cell differentiation? *Semin Cancer Biol* 1994;5:229–36.

[270] Horsfield JA, Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. *FEBS J* 2023;290:1670–87. <https://doi.org/10.1111/FEBS.16362>.

[271] Grimwade D, Hills RK, Moorman A V, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. *Blood* 2010;116:354–65. <https://doi.org/10.1182/BLOOD-2009-11-254441>.

[272] Mrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. *Blood Rev* 2004;18:115–36. [https://doi.org/10.1016/S0268-960X\(03\)00040-7](https://doi.org/10.1016/S0268-960X(03)00040-7).

[273] Mrózek K, Eisfeld AK, Kohlschmidt J, Carroll AJ, Walker CJ, Nicolet D, et al. Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. *Leukemia* 2019;33:7 2019;33:1620–34. <https://doi.org/10.1038/s41375-019-0390-3>.

[274] Al-Harbi S, Aljurf M, Mohty M, Almohareb F, Ahmed SOA. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. *Blood Adv* 2020;4:229–38. <https://doi.org/10.1182/BLOODADVANCES.2019000168>.

[275] Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML–RARA Fusion Gene. *Cancers* 2020, Vol 12, 2020;12. <https://doi.org/10.3390/CANCERS12030624>.

[276] Gagnon MF, Berg HE, Meyer RG, Sukov WR, Van Dyke DL, Jenkins RB, et al. Typical, atypical and cryptic t(15;17)(q24;q21) (PML::RARA) observed in acute promyelocytic leukemia: A retrospective review of 831 patients with concurrent chromosome and PML::RARA dual-color dual-fusion FISH studies. *Genes Chromosomes Cancer* 2022;61:629–34. <https://doi.org/10.1002/GCC.23070>.

[277] Marschalek R. Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways. *Ann Lab Med* 2016;36:85–100. <https://doi.org/10.3343/ALM.2016.36.2.85>.

[278] Issa GC, Zarka J, Sasaki K, Qiao W, Pak D, Ning J, et al. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. *Blood Cancer Journal* 2021;11:9 2021;11:162–. <https://doi.org/10.1038/s41408-021-00557-6>.

[279] Richard-Carpentier G, Kantarjian HM, Tang G, Yin CC, Khouri JD, Issa GC, et al. Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience. *Blood Adv* 2021;5:5415–9. <https://doi.org/10.1182/BLOODADVANCES.2021004580>.

[280] Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, et al. The KMT2A recombinome of acute leukemias in 2023. *Leukemia* 2023 37:5 2023;37:988–1005. <https://doi.org/10.1038/s41375-023-01877-1>.

[281] Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, et al. New insights to the MLL recombinome of acute leukemias. *Leukemia* 2009;23:1490–9. <https://doi.org/10.1038/LEU.2009.33>.

[282] Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Renneville A, et al. The MLL recombinome of acute leukemias in 2017. *Leukemia* 2018;32:273–84. <https://doi.org/10.1038/LEU.2017.213>.

[283] Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. *Mol Cell* 2002;10:1119–28. [https://doi.org/10.1016/S1097-2765\(02\)00740-2](https://doi.org/10.1016/S1097-2765(02)00740-2).

[284] Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. *Mol Cell* 2002;10:1107–17. [https://doi.org/10.1016/S1097-2765\(02\)00741-4](https://doi.org/10.1016/S1097-2765(02)00741-4).

[285] Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice. *Nature* 1995;378:505–8. <https://doi.org/10.1038/378505AO>.

[286] Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. *Cell Stem Cell* 2007;1:324–37. <https://doi.org/10.1016/J.STEM.2007.05.019>.

[287] Krivtsov A V., Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. *Nature* 2006;442:818–22. <https://doi.org/10.1038/NATURE04980>.

[288] Somervaille TCP, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM, et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. *Cell Stem Cell* 2009;4:129–40. <https://doi.org/10.1016/J.STEM.2008.11.015>.

[289] Yokoyama A, Ficara F, Murphy MJ, Meisel C, Hatanaka C, Kitabayashi I, et al. MLL Becomes Functional through Intra-Molecular Interaction Not by Proteolytic Processing. *PLoS One* 2013;8:e73649. <https://doi.org/10.1371/JOURNAL.PONE.0073649>.

[290] Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. *Journal of Biological Chemistry* 2009;284:24242–56. <https://doi.org/10.1074/JBC.M109.014498/ATTACHMENT/DAE80671-ABBO-4D13-885A-94B78C3O4CE5/MMC1.PDF>.

[291] Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. *Nat Struct Mol Biol* 2006;13:713–9. <https://doi.org/10.1038/NSMB1128>.

[292] Winters AC, Bernt KM. MLL-rearranged leukemias- An update on science and clinical approaches. *Front Pediatr* 2017;5:240371. <https://doi.org/10.3389/FPED.2017.00004/XML>.

[293] Guarnera L, D'Addona M, Bravo-Perez C, Visconte V. KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic

Perspectives. *Int J Mol Sci* 2024;25:9023.
<https://doi.org/10.3390/IJMS25169023>.

- [294] Slany RK. The molecular mechanics of mixed lineage leukemia. *Oncogene* 2016;35:5215–23. <https://doi.org/10.1038/ONC.2016.30>.
- [295] Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. *Nat Rev Cancer* 2015;15:334–46.
<https://doi.org/10.1038/NRC3929>.
- [296] Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA, et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. *Cancer Cell* 2010;17:609–21.
<https://doi.org/10.1016/J.CCR.2010.04.012>.
- [297] Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. *Cancer Cell* 2008;14:36–46.
<https://doi.org/10.1016/J.CCR.2008.05.003>.
- [298] Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. *Nat Rev Mol Cell Biol* 2012;13:543–7.
<https://doi.org/10.1038/NRM3417>.
- [299] Cucinotta CE, Arndt KM. SnapShot: Transcription Elongation. *Cell* 2016;166:1058–1058.e1. <https://doi.org/10.1016/j.cell.2016.07.039>.
- [300] Collins CT, Hess JL. Deregulation of the HOXA9/MEIS1 axis in acute leukemia. *Curr Opin Hematol* 2016;23:354–61.
<https://doi.org/10.1097/MOH.0000000000000245>.
- [301] Krivtsov A V., Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, et al. A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. *Cancer Cell* 2019;36:660–673.e11. <https://doi.org/10.1016/J.CCCELL.2019.11.001>.
- [302] Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. *Mol Cell Biol* 2001;21:224–34. <https://doi.org/10.1128/MCB.21.1.224-234.2001>.
- [303] Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov A V., et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. *Cancer Cell* 2011;20:66–78.
<https://doi.org/10.1016/J.CCR.2011.06.010>.
- [304] Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. *Front Pediatr* 2019;7. <https://doi.org/10.3389/FPED.2019.00401>.
- [305] La P, Desmond A, Hou Z, Silva AC, Schnepp RW, Hua X. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. *Oncogene* 2006;25:3537–46.
<https://doi.org/10.1038/SJ.ONC.1209400>.

[306] Dreijerink KMA, Timmers HTM, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. *Endocr Relat Cancer* 2017;24:T135–45. <https://doi.org/10.1530/ERC-17-0281>.

[307] Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, Hess JL. Interaction of MLL amino terminal sequences with menin is required for transformation. *Cancer Res* 2007;67:7275–83. <https://doi.org/10.1158/0008-5472.CAN-06-2369>.

[308] Thomas X. Small Molecule Menin Inhibitors: Novel Therapeutic Agents Targeting Acute Myeloid Leukemia with KMT2A Rearrangement or NPM1 Mutation. *Oncol Ther* 2024;12:57–72. <https://doi.org/10.1007/S40487-024-00262-X/TABLES/2>.

[309] Issa GC, Ravandi F, DiNardo CD, Jabbour E, Kantarjian HM, Andreeff M. Therapeutic implications of menin inhibition in acute leukemias. *Leukemia* 2021;35:2482–95. <https://doi.org/10.1038/S41375-021-01309-Y>.

[310] Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. *Blood* 2020;135:41–55. <https://doi.org/10.1182/BLOOD.2019002220>.

[311] Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. *Cell* 2005;123:207–18. <https://doi.org/10.1016/J.CELL.2005.09.025>.

[312] Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim EG, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. *J Clin Invest* 2020;130:981–97. <https://doi.org/10.1172/JCI129126>.

[313] Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. *Science* 2020;367:586–90. <https://doi.org/10.1126/SCIENCE.AAX5863>.

[314] Stein EM, Aldoss I, DiPersio JF, Stone RM, Arellano ML, Rosen G, et al. Safety and Efficacy of Menin Inhibition in Patients (Pts) with MLL-Rearranged and NPM1 Mutant Acute Leukemia: A Phase (Ph) 1, First-in-Human Study of SNDX-5613 (AUGMENT 101). *Blood* 2021;138:699. <https://doi.org/10.1182/BLOOD-2021-146944>.

[315] Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. *Blood* 2018;131:2661–9. <https://doi.org/10.1182/BLOOD-2017-12-818948>.

[316] Pei S, Polley DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in

Patients with Acute Myeloid Leukemia. *Cancer Discov* 2020;10:536–51. <https://doi.org/10.1158/2159-8290.CD-19-0710>.

- [317] Rausch J, Dzama MM, Dolgikh N, Stiller HL, Bohl SR, Lahrmann C, et al. Menin inhibitor ziftomenib (KO-539) synergizes with drugs targeting chromatin regulation or apoptosis and sensitizes acute myeloid leukemia with *MLL* rearrangement or *NPM1* mutation to venetoclax. *Haematologica* 2023;108:2837–43. <https://doi.org/10.3324/HAEMATOL.2022.282160>.
- [318] Zeidan AM, Fathi A, Issa G, Erba H, Mackey JA, Corum D, et al. PB1885: PHASE 1 STUDY OF ZIFTOMENIB IN COMBINATION WITH VENETOCLAX, VENETOCLAX/AZACITIDINE, OR STANDARD INDUCTION (7 + 3) CHEMOTHERAPY IN PATIENTS WITH ACUTE MYELOID LEUKEMIA. *Hemasphere* 2023;7:e56956b1. <https://doi.org/10.1097/01.HS9.0000974364.56956.B1>.
- [319] Issa GC, Cai SF, Bataller A, Kantarjian HM, Stein EM. Combination Strategies with Menin Inhibitors for Acute Leukemia. *Blood Cancer Discov* 2025;6:547–60. <https://doi.org/10.1158/2643-3230.BCD-24-0212/764395/AM/COMBINATION-STRATEGIES-WITH-MENIN-INHIBITORS-FOR>.
- [320] Candoni A, Coppola G. A 2024 Update on Menin Inhibitors. A New Class of Target Agents against KMT2A-Rearranged and NPM1-Mutated Acute Myeloid Leukemia. *Hematol Rep* 2024;16:244. <https://doi.org/10.3390/HEMATOLREP16020024>.
- [321] Pellagatti A, Cazzola M, Giagounidis AAN, Malcovati L, Porta MG Della, Killick S, et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. *Blood* 2006;108:337–45.
- [322] Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. *Leukemia* 2015;29:1092–103.
- [323] Bondu S, Alary A-S, Lefevre C, Houy A, Jung G, Lefebvre T, et al. A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome. *Sci Transl Med* 2019;11.
- [324] Inoue D, Chew G-L, Liu B, Michel BC, Pangallo J, D'Avino AR, et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. *Nature* 2019;574:432–6.
- [325] Koeffler HP, Golde DW. Human Myeloid Leukemia Cell Lines: A Review. *Blood* 1980;56:344–50. <https://doi.org/10.1182/BLOOD.V56.3.344.344>.
- [326] The Leukemia-Lymphoma Cell Line FactsBook. The Leukemia-Lymphoma Cell Line FactsBook 2001. <https://doi.org/10.1016/B978-0-12-221970-2.X5000-1>.

[327] Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, et al. Genetic and transcriptional evolution alters cancer cell line drug response. *Nature* 2018;560:325. <https://doi.org/10.1038/S41586-018-0409-3>.

[328] Safa-Tahar-Henni S, Páez Martinez K, Gress V, Esparza N, Roques É, Bonnet-Magnaval F, et al. Comparative small molecule screening of primary human acute leukemias, engineered human leukemia and leukemia cell lines. *Leukemia* 2024;39:29. <https://doi.org/10.1038/S41375-024-02400-W>.

[329] Drexler HG, Dirks WG, MacLeod RAF. Many are called MDS cell lines: one is chosen. *Leuk Res* 2009;33:1011–6. <https://doi.org/10.1016/J.LEUKRES.2009.03.005>.

[330] Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. *Front Oncol* 2022;12. <https://doi.org/10.3389/FONC.2022.854973>.

[331] Fei DL, Zhen T, Durham B, Ferrarone J, Zhang T, Garrett L, et al. Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. *Proc Natl Acad Sci U S A* 2018;115:E10437–46. <https://doi.org/10.1073/PNAS.1812669115/-/DCSUPPLEMENTAL>.

[332] Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. *Nature Communications* 2017 8:1 2017;8:14060-. <https://doi.org/10.1038/ncomms14060>.

[333] Mupo A, Seiler M, Sathiaseelan V, Pance A, Yang Y, Agrawal AA, et al. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. *Leukemia* 2017 31:3 2016;31:720–7. <https://doi.org/10.1038/leu.2016.251>.

[334] Smeets MF, Tan SY, Xu JJ, Anande G, Unnikrishnan A, Chalk AM, et al. Srsf2P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells. *Blood* 2018;132:608–21. <https://doi.org/10.1182/BLOOD-2018-04-845602>.

[335] Mina A, Pavletic S, Aplan PD. The evolution of preclinical models for myelodysplastic neoplasms. *Leukemia* 2024 38:4 2024;38:683–91. <https://doi.org/10.1038/s41375-024-02181-2>.

[336] Munteanu R, Gulei D, Moldovan CS, Azzoni E, Belver L, Feder R, et al. Humanized mouse models in MDS. *Cell Death & Disease* 2025 16:1 2025;16:531-. <https://doi.org/10.1038/s41419-025-07861-0>.

[337] Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. *Nature* 1994;367:645–8. <https://doi.org/10.1038/367645AO>.

[338] Dozzo A, Galvin A, Shin JW, Scialia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the

modern. *Drug Delivery and Translational Research* 2022;13:8 2022;13:2110–41. <https://doi.org/10.1007/S13346-022-01189-4>.

[339] Boutzen H, Murison A, Orieucua A, Bansal S, Arridge C, Wang JCY, et al. Identification of leukemia stem cell subsets with distinct transcriptional, epigenetic and functional properties. *Leukemia* 2024;38:2090–101. <https://doi.org/10.1038/S41375-024-02358-9>.

[340] Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. *Signal Transduction and Targeted Therapy* 2023;8:1 2023;8:160–. <https://doi.org/10.1038/s41392-023-01419-2>.

[341] Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. *Front Oncol* 2022;12:815037. <https://doi.org/10.3389/FONC.2022.815037/XML>.

[342] Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong WJ, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. *Nat Med* 2016;22:812–21. <https://doi.org/10.1038/NM.4103>.

[343] Altrock E, Sens-Albert C, Jann JC, Flach J, Riabov V, Schmitt N, et al. Humanized three-dimensional scaffold xenotransplantation models for myelodysplastic syndromes. *Exp Hematol* 2022;107:38–50. <https://doi.org/10.1016/J.EXPHEM.2021.12.395>.

[344] Coughlan AM, Harmon C, Whelan S, O'Brien EC, O'Reilly VP, Crotty P, et al. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain. *Stem Cells Dev* 2016;25:530–41. <https://doi.org/10.1089/SCD.2015.0289>.

[345] Krevvata M, Shan X, Zhou C, dos Santos C, Ndikuyuze GH, Secreto A, et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. *Haematologica* 2018;103:959–71. <https://doi.org/10.3324/HAEMATOL.2017.183202>.

[346] Elvarsdóttir EM. Modelling ineffective erythropoiesis in myelodysplastic syndromes with ring sideroblasts 2019.

[347] Elvarsdóttir EM, Mortera-Blanco T, Dimitriou M, Bouderlique T, Jansson M, Hofman IJF, et al. A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes. *Leukemia* 2020;34:271–82. <https://doi.org/10.1038/s41375-019-0532-7>.

[348] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 2006;126:663–76.

[349] Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. *Nat Protoc* 2007;2:3081.

[350] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. *Science* (1979) 2007;318:1917–20.

[351] The Nobel Prize in Physiology or Medicine 2012 – Press release – NobelPrize.org n.d. <https://www.nobelprize.org/prizes/medicine/2012/press-release/> (accessed December 16, 2025).

[352] JA T, J I-E, SS S, MA W, JJ S, VS M, et al. Embryonic stem cell lines derived from human blastocysts. *Science* 1998;282:1145–7. <https://doi.org/10.1126/SCIENCE.282.5391.1145>.

[353] Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. *Nat Rev Genet* 2019;20:377–88.

[354] Dolatshad H, Tatwavedi D, Ahmed D, Tegethoff JF, Boultood J, Pellagatti A. Application of induced pluripotent stem cell technology for the investigation of hematological disorders. *Adv Biol Regul* 2019;71:19–33. <https://doi.org/10.1016/J.JBIOR.2018.10.001>.

[355] Buganim Y, Faddah DA, Jaenisch R. Mechanisms and Models of Somatic Cell Reprogramming. *Nat Rev Genet* 2013;14:427–39. <https://doi.org/10.1038/nrg3473>.

[356] Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. *Nat Biotechnol* 2015;33:1173–81. <https://doi.org/10.1038/NBT.3388>.

[357] Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. *STAR Protoc* 2022;3. <https://doi.org/10.1016/J.XPRO.2022.101560>.

[358] Sarchi M, Doulatov S. Understanding Human Oncogene Function and Cooperativity in Myeloid Malignancy Using iPSCs. *Exp Hematol* 2025;143:104697. <https://doi.org/10.1016/J.EXPHEM.2024.104697>.

[359] Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. *Nat Rev Drug Discov* 2017;16:115–30. <https://doi.org/10.1038/NRD.2016.245>.

[360] Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. *Signal Transduction and Targeted Therapy* 2024 9:1 2024;9:112–. <https://doi.org/10.1038/s41392-024-01809-0>.

[361] Piussi R, Ditadi A. Reaching the Holy Grail: Making Hematopoietic Stem Cells in a Dish. [Https://HomeLiebertpubCom/Cell](https://HomeLiebertpubCom/Cell) 2024;26:153–5. <https://doi.org/10.1089/CELL.2024.0085>.

[362] Tursky ML, Loi TH, Artuz CM, Alateeq S, Wolvetang EJ, Tao H, et al. Direct Comparison of Four Hematopoietic Differentiation Methods from Human Induced Pluripotent Stem Cells. *Stem Cell Reports* 2020;15. <https://doi.org/10.1016/j.stemcr.2020.07.009>.

[363] Hansen M, von Lindern M, van den Akker E, Varga E. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions. *FEBS Lett* 2019;593. <https://doi.org/10.1002/1873-3468.13599>.

[364] Chou ST, Byrska-Bishop M, Tober JM, Yao Y, VanDorn D, Opalinska JB, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. *Proc Natl Acad Sci U S A* 2012;109. <https://doi.org/10.1073/pnas.1211175109>.

[365] Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, et al. Red blood cell generation from human induced pluripotent stem cells: Perspectives for transfusion medicine. *Haematologica* 2010;95. <https://doi.org/10.3324/haematol.2010.023556>.

[366] Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. *PLoS One* 2011;6:e22261.

[367] Smith BW, Rozelle SS, Leung A, Ubellacker J, Parks A, Nah SK, et al. The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. *Blood* 2013;122. <https://doi.org/10.1182/blood-2012-11-466722>.

[368] Ng ES, Davis R, Stanley EG, Elefanty AG. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. *Nat Protoc* 2008;3. <https://doi.org/10.1038/nprot.2008.42>.

[369] Rao I, Crisafulli L, Paulis M, Ficara F, Rao I, Crisafulli L, et al. Hematopoietic Cells from Pluripotent Stem Cells: Hope and Promise for the Treatment of Inherited Blood Disorders. *Cells* 2022, Vol 11, 2022;11. <https://doi.org/10.3390/CELLS11030557>.

[370] Rowe RG, Mandelbaum J, Zon LI, Daley GQ. Engineering Hematopoietic Stem Cells: Lessons from Development. *Cell Stem Cell* 2016;18. <https://doi.org/10.1016/j.stem.2016.05.016>.

[371] Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. *Nat Biotechnol* 2014;32. <https://doi.org/10.1038/nbt.2915>.

[372] Ng ES, Azzola L, Bruveris FF, Calvanese V, Phipson B, Vlahos K, et al. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta–gonad–mesonephros. *Nat Biotechnol* 2016;34:1168–79. <https://doi.org/10.1038/nbt.3702>.

[373] Ditadi A, Sturgeon CM, Tober J, Awong G, Kennedy M, Yzaguirre AD, et al. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. *Nat Cell Biol* 2015;17:580–91. <https://doi.org/10.1038/ncb3161>.

[374] Calvanese V, Capellera-Garcia S, Ma F, Fares I, Liebscher S, Ng ES, et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. *Nature* 2022;604:534–40. <https://doi.org/10.1038/s41586-022-04571-x>.

[375] Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. *Nat Cell Biol* 2016;18:595–606. <https://doi.org/10.1038/ncb3354>.

[376] Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zúñiga-Pflücker JC, et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. *Cell Rep* 2012;2:1722–35. <https://doi.org/10.1016/j.celrep.2012.11.003>.

[377] Sugimura R, Jha DK, Han A, Soria-Valles C, Da Rocha EL, Lu YF, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. *Nature* 2017;545. <https://doi.org/10.1038/nature22370>.

[378] Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. *Cell Stem Cell* 2013;13. <https://doi.org/10.1016/j.stem.2013.09.002>.

[379] Ng ES, Sarila G, Li JY, Edirisinghe HS, Saxena R, Sun S, et al. Long-term engrafting multilineage hematopoietic cells differentiated from human induced pluripotent stem cells. *Nat Biotechnol* 2024. <https://doi.org/10.1038/s41587-024-02360-7>.

[380] Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. *EMBO J* 2014;33:409–17. <https://doi.org/10.1002/EMBJ.201387098>.

[381] Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. *Physiol Rev* 2019;99:79–114. <https://doi.org/10.1152/PHYSREV.00039.2017>.

[382] Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. *Human Cell* 2023 36:3 2023;36:894–907. <https://doi.org/10.1007/S13577-023-00872-Z>.

[383] Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from

hematopoietic stem cells. *Nat Biotechnol* 2005;23:69–74. <https://doi.org/10.1038/nbt1047>.

[384] Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. *Stem Cell Res Ther* 2020;11. <https://doi.org/10.1186/s13287-020-01998-9>.

[385] Sivalingam J, SuE Y, Lim ZR, Lam ATL, Lee AP, Lim HL, et al. A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. *Stem Cell Reports* 2021;16. <https://doi.org/10.1016/j.stemcr.2020.11.008>.

[386] Yu S, Vassilev S, Lim ZR, Sivalingam J, Lam ATL, Ho V, et al. Selection of O-negative induced pluripotent stem cell clones for high-density red blood cell production in a scalable perfusion bioreactor system. *Cell Prolif* 2022;1–10. <https://doi.org/10.1111/cpr.13218>.

[387] Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. *Stem Cells Dev* 2019;28:1540–51.

[388] Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-Efficiency Serum-Free Feeder-Free Erythroid Differentiation of Human Pluripotent Stem Cells Using Small Molecules. *Stem Cells Transl Med* 2016;5. <https://doi.org/10.5966/sctm.2015-0371>.

[389] Olivier EN, Zhang S, Yan Z, Suzuka S, Roberts K, Wang K, et al. PSC-RED and MNC-RED: Albumin-free and low-transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. *Exp Hematol* 2019;75. <https://doi.org/10.1016/j.exphem.2019.05.006>.

[390] Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, et al. Ex vivo generation of transfusible red blood cells from various stem cell sources: A concise revisit of where we are now. *Transfusion and Apheresis Science* 2019;58. <https://doi.org/10.1016/j.transci.2018.12.015>.

[391] Lopez-Yrigoyen M, Yang CT, Fidanza A, Cassetta L, Taylor AH, McCahill A, et al. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. *Nat Commun* 2019;10. <https://doi.org/10.1038/s41467-019-08705-0>.

[392] Shen J, Zhu Y, Lyu C, Feng Z, Lyu S, Zhao Y, et al. Sequential cellular niches control the generation of enucleated erythrocytes from human pluripotent stem cells. *Haematologica* 2020;105. <https://doi.org/10.3324/haematol.2018.211664>.

[393] Kobar L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C, et al. Human induced pluripotent stem cells can reach complete terminal maturation: In

vivo and in vitro evidence in the erythropoietic differentiation model. *Haematologica* 2012;97. <https://doi.org/10.3324/haematol.2011.055566>.

- [394] Boultwood J. Induced pluripotent stem cell-based modelling of disease evolution in myeloid leukemia: MDS to AML. *Adv Biol Regul* 2025;101119. <https://doi.org/10.1016/J.JBIOR.2025.101119>.
- [395] Doulatov S, Papapetrou EP. Studying clonal evolution of myeloid malignancies using induced pluripotent stem cells. *Curr Opin Hematol* 2021;28:50–6. <https://doi.org/10.1097/MOH.0000000000000620>.
- [396] Kleiman RJ, Engle SJ. Human inducible pluripotent stem cells: Realization of initial promise in drug discovery. *Cell Stem Cell* 2021;28:1507–15. <https://doi.org/10.1016/J.STEM.2021.08.002>.
- [397] Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. *Nat Rev Mol Cell Biol* 2016;17:170–82. <https://doi.org/10.1038/NRM.2015.27>.
- [398] Dokal I, Vulliamy T. Inherited bone marrow failure syndromes. *Haematologica* 2010;95:1236–40. <https://doi.org/10.3324/HAEMATOL.2010.025619>.
- [399] Reilly A, Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. *Stem Cell Res* 2021;52:102195. <https://doi.org/10.1016/j.scr.2021.102195>.
- [400] Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S, et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. *Leukemia* 2014;28:2344–54. <https://doi.org/10.1038/LEU.2014.136>.
- [401] Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. *Nat Commun* 2014;5. <https://doi.org/10.1038/NCOMMS5330>.
- [402] Jung M, Cordes S, Zou J, Yu SJ, Guitart X, Hong SG, et al. GATA2 deficiency and human hematopoietic development modeled using induced pluripotent stem cells. *Blood Adv* 2018;2:3553–65. <https://doi.org/10.1182/BLOODADVANCES.2018017137>.
- [403] Garçon L, Ge J, Manjunath SH, Mills JA, Apicella M, Parikh S, et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. *Blood* 2013;122:912–21. <https://doi.org/10.1182/BLOOD-2013-01-478321>.
- [404] Connelly JP, Kwon EM, Gao Y, Trivedi NS, Elkahloun AG, Horwitz MS, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. *Blood* 2014;124:1926–30. <https://doi.org/10.1182/BLOOD-2014-01-550525>.

[405] Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, et al. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. *Nature Biotechnology* 2015;33:62015;33:646–55. <https://doi.org/10.1038/nbt.3178>.

[406] Sato T, Kim S, Selleri C, Young NS, Maciejewski JP. Measurement of secondary colony formation after 5 weeks in long-term cultures in patients with myelodysplastic syndrome. *Leukemia* 1998;12:81998;12:1187–94. <https://doi.org/10.1038/sj.leu.2401084>.

[407] Chang CJ, Kotini AG, Olszewska M, Georgomanoli M, Teruya-Feldstein J, Sperber H, et al. Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. *Stem Cell Reports* 2018;10:1610–24. <https://doi.org/10.1016/J.STEMCR.2018.03.020>.

[408] Asimomitis G, Deslauriers AG, Kotini AG, Bernard E, Esposito D, Olszewska M, et al. Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and chromatin landscape of SF3B1-mutant HSPCs. *Blood Adv* 2022;6:2992–3005. <https://doi.org/10.1182/bloodadvances.2021006325>.

[409] Singh S, Ahmed D, Dolatshad H, Tatwavedi D, Schulze U, Sanchi A, et al. SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications. *Leukemia* 2020;34:92020;34:2525–30. <https://doi.org/10.1038/s41375-020-0753-9>.

[410] Clough CA, Pangallo J, Sarchi M, Ilagan JO, North K, Bergantinos R, et al. Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome. *Blood* 2022;139:2038–49. <https://doi.org/10.1182/blood.2021012652>.

[411] Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, et al. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. *Cell Stem Cell* 2017;20:315–328.e7. <https://doi.org/10.1016/J.STEM.2017.01.009>.

[412] Kotini AG, Carcamo S, Cruz-Rodriguez N, Olszewska M, Wang T, Demircioglu D, et al. Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia. *Blood Cancer Discov* 2023;4:318–35. <https://doi.org/10.1158/2643-3230.BCD-22-0167>.

[413] Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. *Cell Stem Cell* 2021;28:1074–1089.e7. <https://doi.org/10.1016/J.STEM.2021.01.011/ATTACHMENT/265A28FF-BA02-41FO-AAOF-A36FA41CDO15/MMC2.PDF>.

[414] Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid

malignancies. *Nature* 2020;587:477–82. <https://doi.org/10.1038/S41586-020-2864-X>.

[415] Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. *Nat Commun* 2020;11. <https://doi.org/10.1038/S41467-020-19119-8>.

[416] Menssen AJ, Khanna A, Miller CA, Srivatsan SN, Chang GS, Shao J, et al. Convergent Clonal Evolution of Signaling Gene Mutations Is a Hallmark of Myelodysplastic Syndrome Progression. *Blood Cancer Discov* 2022;3:330–45. <https://doi.org/10.1158/2643-3230.BCD-21-0155>.

[417] Sango J, Carcamo S, Sirenko M, Maiti A, Mansour H, Ulukaya G, et al. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. *Nature* 2024 636:8041 2024;636:241–50. <https://doi.org/10.1038/s41586-024-08137-x>.

[418] Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, Thomas R, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. *Nat Cancer* 2020;1:826–39. <https://doi.org/10.1038/S43018-020-0103-X>.

[419] Stahl M, Menghrajani K, Derkach A, Chan A, Xiao W, Glass J, et al. Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. *Blood Adv* 2021;5:1552–64. <https://doi.org/10.1182/BLOODADVANCES.20200003734>.

[420] Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, et al. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. *Cell Stem Cell* 2017;20:329–344.e7. <https://doi.org/10.1016/j.stem.2016.11.018>.

[421] Papapetrou EP. Modeling Leukemia with Human Induced Pluripotent Stem Cells. *Cold Spring Harb Perspect Med* 2019;9:a034868.

[422] Chao C, Martinez IG, Wagenblast E. Models to study myelodysplastic syndrome and acute myeloid leukaemia. *Curr Opin Hematol* 2025;32:87–92. <https://doi.org/10.1097/MOH.0000000000000856>.

[423] Golubeva D, Porras DP, Doyle M, Reid JC, Tanasijevic B, Boyd AL, et al. Reprogramming of Acute Myeloid Leukemia Patients Cells: Harboring Cancer Mutations Requires Targeting of AML Hierarchy. *Stem Cells Transl Med* 2023;12:334–54. <https://doi.org/10.1093/STCLTM/SZADO22>.

[424] Doulatov S. iPSC Models of Leukemia Come of Age. *Blood Cancer Discov* 2023;4:252–3. <https://doi.org/10.1158/2643-3230.BCD-23-0041/725849/AM/IPSC-MODELS-OF-LEUKEMIA-COME-OF-AGEIPSC-MODELS-OF>.

[425] Matsubara H, Niwa A, Nakahata T, Saito MK. Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions. *Biochem Biophys Res Commun* 2019;515:1–8.

[426] Camacho Londoño J, Philipp SE. A reliable method for quantification of splice variants using RT-qPCR. *BMC Mol Biol* 2016;17. <https://doi.org/10.1186/S12867-016-0060-1>.

[427] Sobell HM. Actinomycin and DNA transcription. *Proc Natl Acad Sci U S A* 1985;82:5328. <https://doi.org/10.1073/PNAS.82.16.5328>.

[428] Hyer ML, Milhollen MA, Ciavarri J, Fleming P, Traore T, Sappal D, et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. *Nat Med* 2018;24:186–93. <https://doi.org/10.1038/nm.4474>.

[429] Tseng CC, Obeng EA. RNA splicing as a therapeutic target in myelodysplastic syndromes. *Semin Hematol* 2024;61:431–41. <https://doi.org/10.1053/J.SEMINHEMATOL.2024.10.005>.

[430] Wei Y, Zheng H, Li Z, Lockyer PP, Darbaniyan F, Kanagal-Shamanna R, et al. Downregulation of UBA1 expression in myelodysplastic neoplasm. *Leukemia* 2024 38:10 2024;38:2284–8. <https://doi.org/10.1038/s41375-024-02364-x>.

[431] Groen EJN, Gillingwater TH. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. *Trends Mol Med* 2015;21:622–32. <https://doi.org/10.1016/J.MOLMED.2015.08.003>.

[432] Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, et al. An adaptive stress response that confers cellular resilience to decreased ubiquitination. *Nature Communications* 2023 14:1 2023;14:7348–. <https://doi.org/10.1038/s41467-023-43262-7>.

[433] Cortés-López M, Chamely P, Hawkins AG, Stanley RF, Swett AD, Ganesan S, et al. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. *Cell Stem Cell* 2023;30:1262–1281.e8. <https://doi.org/10.1016/J.STEM.2023.07.012>.

[434] Schneider M, Rolfs C, Trumpp M, Winter S, Fischer L, Richter M, et al. Activation of distinct inflammatory pathways in subgroups of LR-MDS. *Leukemia* 2023;37:1709–18. <https://doi.org/10.1038/S41375-023-01949-2>.

[435] Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, et al. Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution. *Cell Stem Cell* 2007;1:55–70. <https://doi.org/10.1016/J.STEM.2007.05.014>.

[436] Assi SA, Imperato MR, Coleman DJL, Pickin A, Potluri S, Ptasinska A, et al. Subtype-specific regulatory network rewiring in acute myeloid leukemia. *Nature Genetics* 2018 51:1 2018;51:151–62. <https://doi.org/10.1038/s41588-018-0270-1>.

[437] Kühn MWM, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. *Cancer Discov* 2016;6:1166–81. <https://doi.org/10.1158/2159-8290.CD-16-0237>.

[438] Woolthuis CM, Han L, Verkaik-Schakel RN, Van Gosliga D, Kluin PM, Vellenga E, et al. Downregulation of MEIS1 impairs long-term expansion of CD34+ NPM1-mutated acute myeloid leukemia cells. *Leukemia* 2012;26:42011;26:848–53. <https://doi.org/10.1038/leu.2011.277>.

[439] Suzuki H, Forrest ARR, Van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. *Nature Genetics* 2009;41:5 2009;41:553–62. <https://doi.org/10.1038/ng.375>.

[440] Lessard J, Schumacher A, Thorsteinsdottir U, Van Lohuizen M, Magnuson T, Sauvageau G. Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. *Genes Dev* 1999;13:2691–703. <https://doi.org/10.1101/GAD.13.20.2691>.

[441] Palau A, Garz A-K, Diesch J, Zwick A, Malinvern R, Valero V, et al. Polycomb protein RING1A limits hematopoietic differentiation in myelodysplastic syndromes. *Oncotarget* 2017;8:115002–17. <https://doi.org/10.18632/ONCOTARGET.22839>.

[442] Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. *Proc Natl Acad Sci U S A* 2012;109:5028–33. https://doi.org/10.1073/PNAS.1202258109/SUPPL_FILE/SDO2.XLSX.

[443] Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG, et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. *Blood* 2015;125:346–57. <https://doi.org/10.1182/BLOOD-2014-06-581082>.

[444] Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. *Trends in Genetics* 2020;36:118–31. <https://doi.org/10.1016/J.TIG.2019.11.004>.

[445] Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. *Cell* 2006;125:315–26. <https://doi.org/10.1016/J.CELL.2006.02.041>.

[446] Pratumkaew P, Issaragrisil S, Luanpitpong S. Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. *Cells* 2021, Vol 10, 2021;10. <https://doi.org/10.3390/CELLS10113250>.

[447] Papp B, Plath K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. *Cell Research* 2011;21:3 2011;21:486–501. <https://doi.org/10.1038/cr.2011.28>.

[448] Hoffmann D, Göhring G, Heuser M, Ganser A, Schambach A, Morgan MA. Letter to the Editor: Production of mature healthy hematopoietic cells from induced pluripotent stem cells derived from an AML diagnostic sample

containing the t(8;21) translocation. *Stem Cells* 2016;34:797–9. <https://doi.org/10.1002/STEM.2207>.

[449] Yamasaki AE, King NE, Matsui H, Jepsen K, Panopoulos AD. Two iPSC lines generated from the bone marrow of a relapsed/refractory AML patient display normal karyotypes and myeloid differentiation potential. *Stem Cell Res* 2019;41:101587. <https://doi.org/10.1016/J.SCR.2019.101587>.

[450] Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. *Nature* 2009;460:7259 2009;460:1149–53. <https://doi.org/10.1038/nature08287>.

[451] Wilkinson AC, Nakauchi H. Stabilizing hematopoietic stem cells in vitro. *Curr Opin Genet Dev* 2020;64:1. <https://doi.org/10.1016/J.GDE.2020.05.035>.

[452] Vo LT, Daley GQ. De novo generation of HSCs from somatic and pluripotent stem cell sources. *Blood* 2015;125:2641–8. <https://doi.org/10.1182/BLOOD-2014-10-570234>.

[453] Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. *Molecular Therapy* 2013;21:1424–31.

[454] Pal D, Blair H, Parker J, Hockney S, Beckett M, Singh M, et al. hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. *Cell Rep Med* 2022;3:100717. <https://doi.org/10.1016/J.XCRM.2022.100717>.

[455] Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. *SLAS Discovery* 2023;28:119–37. <https://doi.org/10.1016/J.SLASD.2023.03.006>.

[456] Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. *Nature Methods* 2024;21:5 2024;21:868–81. <https://doi.org/10.1038/s41592-024-02172-2>.

[457] Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. *Cell Stem Cell* 2020;26:309–29. <https://doi.org/10.1016/J.STEM.2020.02.011>.

[458] Adachi M, Banno H, Inoue H. Drug discovery research with iPSC models of neurodegenerative diseases. *Neurosci Res* 2026;222:104985. <https://doi.org/10.1016/J.NEURES.2025.104985>.

[459] Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies – Expansion and Targeting. *Front Immunol* 2022;13:841107. <https://doi.org/10.3389/FIMMU.2022.841107/XML>.

[460] Cichocki F, Bjordahl R, Gaidarov S, Mahmood S, Abujarour R, Wang H, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. *Sci Transl Med* 2020;12. https://doi.org/10.1126/SCITRANSLMED.AAZ5618/SUPPL_FILE/AAZ5618_SM.PDF.

[461] Clough CA, Cunningham C, Philbrook SY, Hueneman KM, Sampson AM, Choi K, et al. Characterization of E1 enzyme dependencies in mutant-UBA1 human cells reveals UBA6 as a novel therapeutic target in VEXAS syndrome. *Leukemia* 2025;39:8 2025;39:1997–2009. <https://doi.org/10.1038/s41375-025-02671-x>.

[462] Moudry P, Lukas C, Macurek L, Hanzlikova H, Hodny Z, Lukas J, et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. *Cell Cycle* 2012;11:1573–82. <https://doi.org/10.4161/CC.19978>.

[463] Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. *Mol Cell* 2018;69:412–425.e6. <https://doi.org/10.1016/J.MOLCEL.2017.12.029/ATTACHMENT/A6FAC6AO-C9B2-48A6-95DC-FEAA2093C2B9/MMC8.PDF>.

[464] Nguyen HD, Leong WY, Li W, Reddy PNG, Sullivan JD, Walter MJ, et al. Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. *Cancer Res* 2018;78:5363–74. <https://doi.org/10.1158/0008-5472.CAN-17-3970/653308/AM/SPLICEOSOME-MUTATIONS-INDUCE-R-LOOP-ASSOCIATED>.

[465] Bland P, Saville H, Wai PT, Curnow L, Muirhead G, Nieminuszczy J, et al. SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response. *Nat Genet* 2023;55:1311–23. <https://doi.org/10.1038/s41588-023-01460-5>.

[466] Zhang F, Sun J, Zhang L, Li R, Wang Y, Geng H, et al. PARP inhibition leads to synthetic lethality with key splicing-factor mutations in myelodysplastic syndromes. *Br J Cancer* 2024;131:231. <https://doi.org/10.1038/S41416-024-02729-0>.

[467] Barghout SH, Patel PS, Wang X, Xu GW, Kavanagh S, Halgas O, et al. Preclinical evaluation of the selective small-molecule UBA1 inhibitor, TAK-243, in acute myeloid leukemia. *Leukemia* 2019;33:37–51. <https://doi.org/10.1038/S41375-018-0167-0>.

[468] Zhuang J, Shirazi F, Singh RK, Kuiatse I, Wang H, Lee HC, et al. Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma. *Blood* 2019;133:1572–84. <https://doi.org/10.1182/BLOOD-2018-06-859686>.

[469] Best S, Hashiguchi T, Kittai A, Bruss N, Paiva C, Okada C, et al. Targeting ubiquitin-activating enzyme induces ER stress-mediated apoptosis in B-cell lymphoma cells. *Blood Adv* 2019;3:51–62.
<https://doi.org/10.1182/BLOODADVANCES.2018026880>.

[470] Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S, et al. Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. *Mol Cell* 2014;55:708.
<https://doi.org/10.1016/J.MOLCEL.2014.07.005>.

[471] Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. *Biochimica et Biophysica Acta (BBA) – Reviews on Cancer* 2024;1879:189082. <https://doi.org/10.1016/J.BBCAN.2024.189082>.

[472] Lu B, Klingbeil O, Tarumoto Y, Somerville TDD, Huang YH, Wei Y, et al. A Transcription Factor Addiction in Leukemia Imposed by the MLL Promoter Sequence. *Cancer Cell* 2018;34:970–981.e8.
<https://doi.org/10.1016/J.CCELL.2018.10.015>.

[473] Issa GC, Aldoss I, Thirman MJ, Dipersio J, Arellano M, Blachly JS, et al. Menin Inhibition With Revumenib for KMT2A -Rearranged Relapsed or Refractory Acute Leukemia (AUGMENT-101). *Journal of Clinical Oncology* 2025;43:75–84.
https://doi.org/10.1200/JCO.24.00826/SUPPL_FILE/PROTOCOL_JCO.24.0826.PDF.

[474] Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, Arellano M, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. *Nature* 2023;615:7954 2023;615:920–4.
<https://doi.org/10.1038/s41586-023-05812-3>.

[475] Kühn MWM, Pemmaraju N, Heidel FH. The evolving landscape of epigenetic target molecules and therapies in myeloid cancers: focus on acute myeloid leukemia and myeloproliferative neoplasms. *Leukemia* 2025;39:8 2025;39:1824–37. <https://doi.org/10.1038/s41375-025-02639-x>.

