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“There is no knowing for a fact. The only dependable things are humility and
looking.”
— Richard Powers, The Overstory






Popular science summary of the thesis

Our bone marrow continually makes new blood cells, including oxygen-carrying
red cells, infection-fighting immune cells, and platelets that prevent bleeding. This
process, hematopoiesis, depends on stem and progenitor cells that must tightly
balance self-renewal with differentiation. When these cells acquire disease-
driving genomic changes, blood production can become unbalanced, abnormal
clones can expand, and disorders such as myelodysplastic neoplasms (MDS) and
acute myeloid leukemia (AML) can develop. Studying disease mechanisms
directly in patients can prove difficult because bone marrow samples are limited,
heterogeneous, and hard to maintain in long-term culture. This thesis therefore
uses patient-derived induced pluripotent stem cells (iPSCs), which can be
expanded indefinitely and differentiated into blood progenitors, to recreate
disease-relevant models of hematopoietic development in a controlled system

and to test whether specific genetic lesions create targetable weaknesses.

Study | investigated SF3BI-mutant MDS, where RNA splicing is altered. Using
genetically matched SF3Bl-mutant and control iPSCs, we identified an SF3BI-
specific mis-splicing event in UBAI, detected in iPSC-derived progenitors, cell
lines, and supported by MDS patient cohort data. While the mis-spliced UBATRNA
was stable, the resulting protein product was rapidly degraded, lowering total UBA1
protein levels. UBAI is essential to maintain cellular protein balance and the
reduced UBAT reserve created a vulnerability. SF3BI-mutant cells showed greater
sensitivity to the UBAIT inhibitor TAK-243 across cell models, iPSC-derived CD34*
progenitors, and primary patient colony assays.

Study Il focused on aggressive KMT2A-rearranged AML. Patient-derived AML
iPSCs and isogenic controls were transcriptionally similar at the iPSC stage but
diverged during hematopoietic specification, when AML-like progenitors showed
abnormal repression of developmental and hematopoietic programs. Multiple
analyses connected this state to a Polycomb (PRC2)-mediated epigenetic
repression. Targeting PRC2 by pharmacologic EZH1/2 inhibition with UNCI1999,
especially in combination with 5-azacitidine, derepressed Polycomb-associated
gene sets and preferentially impaired clonogenic output and replating capacity in
KMT2A-rearranged models. Together, these studies show how iPSC-based
disease modeling can connect defined genetic variants to tractable mechanisms
and actionable vulnerabilities, supporting UBA1 targeting in SF3BI-mutant MDS
and Polycomb-linked epigenetic dependency in KMT2A-rearranged AML.



Allgemeinverstandliche Zusammenfassung

Unser Kérper produziert stéandig neue Blutzellen, darunter rote Blutkérperchen,
Immunzellen und Blutplattchen. Dieser Prozess, die Hamatopoese, beruht auf
Stamm- und Vorlauferzellen, die Selbsterneuerung und Differenzierung im Gleich-
gewicht halten mussen. Erwerben diese Zellen krankheitstreibende genetische
Veranderungen, kénnen sich abnorme Zellen ausbreiten und Erkrankungen wie
myelodysplastische Neoplasien (MDS) und akute myeloische Leukdamie (AML)
entstehen. Krankheitsmechanismen lassen sich im Patientenmaterial oft nur
schwer untersuchen, weil Proben begrenzt, heterogen und in Kultur schwer zu
erhalten sind. Diese Arbeit nutzt daher induzierte pluripotente Stammzellen
(iPSCs) von Patienten, um krankheitsrelevante Prozesse in Kultur kontrolliert

nachzubilden und gezielt angreifbare Schwachstellen zu identifizieren.

Studie | untersucht SF3BI-mutiertes MDS, bei dem die RNA-SpleiRung verandert
ist. Mithilfe SF3BI-mutierter und Kontroll-iPSCs identifizierten wir ein SF3BI-
spezifisches Fehl-SpleiRen in UBAT (UBAT™), nachweisbar in iPSC-abgeleiteten
Blutzellen und gestutzt durch Patientenkohortendaten. Obwohl die fehl-
gespleil3te UBAT-RNA stabil bleibt, war das entstehende Proteinprodukt instabil
und wurde rasch abgebaut, wodurch die Gesamtmenge an UBAI-Protein sank.
UBALI ist ein Schlisselenzym des Proteinhaushalts und die verringerte UBAI-
Reserve stellte eine Verwundbarkeit dar. Entsprechend waren SF3Bl-mutierte
Zellen gegenlber dem UBA1-Inhibitor TAK-243 in Zellmodellen, iPSC-abgeleiteten
CD34+-Vorlauferzellen und primaren Patientenzellen empfindlicher.

Studie Il fokussiert auf aggressive KMT2A-rearrangierte AML. AML-iPSCs und
isogene Kontrollen waren im iPSC-Stadium &hnlich, entfalteten jedoch wahrend
der Differenzierung unterschiedliche genetische Programme, in denen AML-
Vorlauferzellen eine abnorme Repression entwicklungs- und h&matopoese-
assoziierter Vorgange zeigten. Mehrere Analysen verknupften diesen Zustand mit
Polycomb (PRC2). Die Hemmung mit UNC1999, insbesondere in Kombination mit
B5-Azacitidin, stellte Polycomb-assoziierte Genprogramme teilweise wieder her

und beeintréchtigte in KMT2A-rearrangierten Modellen die leukédmische Kapazitat.

Zusammen zeigen diese Studien, wie iPSC-basierte Krankheitsmodelle definierte
genetische Verédnderungen mit untersuchbaren Mechanismen und therapeutisch
nutzbaren Verwundbarkeiten verkntpfen kénnen. Sie stitzen UBAT als Zielstruktur
bei SF3Bl-mutiertem MDS und eine Polycomb-assoziierte epigenetische
Abhangigkeit bei KMT2A-rearrangierter AML.



Abstract

Hematopoiesis is a tightly regulated process that sustains the production of blood
cells. Disruption in hematopoietic stem and progenitor cells (HSPCs) can impair
differentiation, promote clonal expansion, and lead to myeloid malignancies such
as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML).
Mechanistic studies and drug discovery are often limited by the availability,
heterogeneity, and limited ex vivo stability of primary patient material. In this
thesis, patient-derived induced pluripotent stem cells (iPSCs), together with
isogenic wild-type controls, were used to model hematopoietic differentiation
and link recurrent disease-defining lesions to downstream mechanisms and

therapeutic vulnerabilities.

In Study |, we investigated SF3BT-mutant MDS, a distinct subgroup characterized
by RNA mis-splicing and erythroid dysplasia. Isogenic SF3BI¥°°t and SF3BT"TiPSCs
from an MDS patient were differentiated into hematopoietic cells and analyzed by
full-length RNA sequencing, uncovering mutated SF3Bi-specific mis-splicing of
UBAI, which encodes the major E1 enzyme at the apex of the ubiquitination
cascade. While the mis-spliced UBAT transcript was stable, its protein product
was rapidly degraded, lowering total UBAT levels and rendering SF3BI-mutant cells
particularly sensitive to the UBAT inhibitor TAK-243. CD34* RNA sequencing from
an MDS patient cohort confirmed UBAT mis-splicing as a prevalent feature of
MDS-SF3BI, absent in other spliceosome-mutant MDS cases and healthy controls.
Functionally, TAK-243 selectively reduced SF3BI-mutant primary CD34" cells and
decreased mutant colony output, sparing wild-type hematopoietic progenitors.

In Study II, we addressed epigenetic and transcriptional deregulation in KMT2A-
rearranged (KMT2A-r) AML using patient-derived iPSCs. Transcriptional analysis
during iPSC-directed hematopoietic development identified key activators and
repressors contributing to the altered regulatory landscape in KMT2A-r AML.
Integration with chromatin immunoprecipitation sequencing analyses indicated
that a substantial fraction of genes downregulated in AML iPSC-derived HSPCs
were direct targets of Polycomb Repressive Complex 2 (PRC2). Pharmacologic
inhibition PRC2 via EZH1/2 using UNC1999, in combination with 5-azacitidine,
reactivated PRC2 target genes specifically in AML-HSPCs, shifting expression
toward a more normal hematopoietic program and reducing leukemic properties
in KMT2A-r cells. Together, these findings support targeting Polycomb-associated
repression as a potential epigenetic strategy in KMT2A-rearranged AML.
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Introduction

The Background section of this thesis sets the conceptual framework for the two
studies that use patient-derived induced pluripotent stem cells (iPSCs) to model
myeloid disease in a human, stage-specific hematopoietic context. It begins with
an overview of normal hematopoiesis, spanning developmental and adult blood
formation, to establish a physiological reference point. Since iPSC-based
hematopoietic differentiation draws heavily on early developmental programs, a
working understanding of developmental hematopoiesis is important for
interpreting differentiation protocols and for recognizing the strengths and
limitations of iPSC-derived models. The next section reviews myelodysplastic
neoplasms (MDS), including diagnosis, mutations and risk stratification, and
current therapeutic strategies, before focusing on SF3BI-mutant MDS/MDS-RS
and the rationale for examining UBAT1 in Study I. The chapter then turns to acute
myeloid leukemia (AML), covering clinical features, classification, treatment, and
the broader genetic landscape, followed by a focused presentation of KMT2A-
rearranged AML, which provides the disease context for Study Il. The final sections
summarize commonly used experimental model systems for myeloid neoplasms
and introduce iPSC approaches, including key principles of hematopoietic and
erythroid differentiation and how iPSC-based platforms enable mechanistic

interrogation and therapeutic testing in genetically defined settings.






1 Background

1.1 Hematopoiesis

Hematopoiesis is the process by which all cellular components of blood are
generated and replenished throughout life. These cells perform essential
functions, including oxygen transport, hemostasis and wound repair, and immune
defense against pathogens and malignant transformation [1,2]. Although blood
cells are highly specialized according to their function, their developmental
programs are remarkably conserved among vertebrates. This has enabled the
study of hematopoietic development and function using animal models, primarily
mouse and zebrafish [3].

111 Developmental hematopoiesis

Given the essential functions of blood cells, the hematopoietic system is
established early in embryogenesis, producing cells adapted to the demands of
the developing conceptus [4]. In mammals, developmental hematopoiesis
proceeds through three successive, spatially and temporally distinct waves
(Figure 1) [5—-8]. The extraembryonic yolk sac, a membranous structure outside the
embryo, is the first site of hematopoietic development [4,9]. Here, mesoderm-
derived blood islands predominantly generate large, nucleated primitive
erythroblasts, along with primitive macrophages and megakaryocytes [10-12].
With the onset of cardiac activity, these primitive erythroblasts enter the
circulation and supply oxygen to meet the demand for growth and organ
development [13]. This wave is short-lived and followed by a second, yolk sac-
derived, wave of erythro-myeloid progenitor cells and the first progenitors with
lymphoid potential [7,14-16].

Definitive hematopoietic cells, capable of long-term multilineage reconstitution,
originate from a third, intraembryonic wave within the aorta—gonad—mesonephros
(AGM) region of the dorsal aorta [17,18]. Here, a specialized subset of CD34*
hemogenic endothelial cells change identity through endothelial-to-
hematopoietic transition, budding from the endothelium and ultimately
generating the first hematopoietic stem cells (HSCs) [2,19-25]. The genesis and
population size of AGM HSCs have been debated. Lineage-tracing experiments
based on vascular endothelial cadherin expression, imaging of AGM explants in
mouse and in vivo imaging of the AGM region in zebrafish embryos collectively
support an endothelial origin of definitive HSCs [26—-28]. Fluorescent reporter and



genetic barcoding approaches indicate that approximately 500 distinct clones
arise from the AGM and go on to sustain adult hematopoiesis [29-31]. Detached
from the aortic wall, this small pool of cells enters the bloodstream and migrates
to the fetal liver to mature and expand further, before homing to the bone marrow
to establish life-long niches and largely enter quiescence [32—-35]. These AGM-
derived HSCs are defined by long-term, multilineage reconstitution and self-

renewal and support lifelong hematopoiesis [18,36].

X\
yolk sac EMPs in yolk
blood islands sac blood island dorsal aorta
E7 E8.25
wave 1 wave 2 wave 3
primitive progenitors EMPs + lymphoid progenitors hematopoietic stem cells

Figure 1: Sites of hematopoiesis during embryonic development adapted from Yoder (2014) [37]. E7, 8.5, and
10.5 correspond to mouse developmental stages. EMP, erythromyeloid progenitor; HSC, hematopoietic stem
cell; AGM, aorta-gonad-mesonephros. Created with BioRender.com.

11.2  Adult hematopoiesis

The classical model for the generation of hematopoietic lineages has been
described as a hierarchical (tree-like) structure with terminally differentiated cells
arising from a small pool of self-renewing HSCs at the apex, generating distinct
sets of progenitors that become progressively specialized and restricted to their
respective lineages (Figure 2, left) [3,38,39]. The HSC compartment can be further
subdivided by characteristics such as reconstitution capacity, quiescence, and
lineage output into long- and short-term HSCs [38,40,41]. Long-term (LT)
reconstituting HSCs persist over the lifetime, remaining largely quiescent but able
to transition in and out of the cell cycle [42—-44]. LT-HSCs give rise to short-term
(ST) HSCs, which can still reconstitute all blood lineages but may exhaust their
self-renewal capacity, as evidenced by failure to engraft secondary recipients in
serial transplantation experiments [45]. ST-HSCs differentiate into multipotent
progenitors (MPPs) that proliferate and give rise to progenitors with lymphoid and

myeloid potential (often described as CLPs and CMPs in classical models).



Although this scheme of organized cell identities and stepwise lineage restriction
is convenient for assigning markers and attributes, the classical model is
increasingly challenged by advancements in the field. Advances in single-cell
isolation and profiling, including single-cell RNA sequencing (RNA-seq), suggest
that hematopoietic specification and cell fate restriction may occur along a
continuum, with a more heterogeneous HSC and progenitor pool exhibiting
plasticity and lineage biases (Figure 2, right) [46-53]. Investigating the properties
of lineage biases within the HSC compartment and identifying new markers that
distinguish specific populations have further demonstrated that cells collectively
referred to as HSCs comprise multiple subsets of cells with distinct clonal
contributions [54-58].

HSC Pool
LT-HSC
b
ST-HSC
13
MPP
1
¥
CMP
A
(& |MEP GMP CLP
@&y \
l
— T
) — O
¢ @ L o0
Megakaryo- Erythro- ~ Granulo- Mono- NKcell Tcell Bcell Erythrocyte  Megakaryocyte Lymphocyte Granulocyte Dendritic cell
cyte cyte cyte cyte

Figure 2: Hematopoiesis models as a “stepwise” process (left), compared to the “continuous” model (right),
adapted from Laurenti and Géttgens (2018) [44]. LT, long-term; ST, short-term; MPP, multipotent progenitor;
CMP, common myeloid progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte
progenitor; CLP, common lymphoid progenitor. Created with BioRender.com.

11.3  Erythropoiesis

The remarkable generative capacity of the hematopoietic systemis illustrated by
the large numbers of red blood cells (RBCs) that must be replenished constantly
to sustain gas exchange throughout the organism [59]. In healthy adults,
erythropoiesis produces on the order of 2 x 10" new RBCs per day [60], which
corresponds to roughly two million erythrocytes every second, about one for
every inhabitant of the Stockholm metropolitan area.

To meet this demand, RBCs are the product of a series of expansion and
differentiation steps, along which hematopoietic progenitors become increasingly
lineage-restricted (Figure 3) [59]. The earliest committed erythroid progenitors,



burst-forming unit—erythroid (BFU-E) and colony-forming unit—erythroid (CFU-
E), arise from megakaryocyte—erythroid progenitors (MEPs) and are defined by
their in vitro colony-forming capacity [61,62]. Along the trajectory from CFU-E to
mature erythrocytes, erythroid precursors progressively decrease in size,
accumulate hemoglobin, clear organelles, and condense their nuclei, culminating
in enucleation [59,60,63]. Proerythroblasts progress through basophilic,
polychromatic, and orthochromatic erythroblast stages, which can be
distinguished morphologically or by surface expression of CD49d, CD71, CD105,
CD233, and CD235a [64-67]. Nuclear extrusion generates reticulocytes, which
complete terminal maturation by clearing residual organelles and entering the
circulation, where they acquire the characteristic biconcave shape [60].

A primary regulator of erythroid expansion, differentiation, and survival is
erythropoietin (EPO), produced by the kidneys in response to hypoxia [68]. Iron
delivery via transferrin is crucial for heme synthesis and hemoglobinization of cells
[69,70]. Additional regulators of erythroid development include insulin and insulin-
like growth factors, interleukin-3 (IL-3) and IL-10, activin and other TGF-B family
ligands, thrombopoietin (TPO), and angiotensin [71-76].
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Figure 3: Key erythroid maturation stages, surface marker dynamics, and supplementation dependencies,
adapted from Elvarsdéttir (2019). BFU-E, burst-forming unit—erythroid; CFU-E, colony-forming unit—erythroid;
Pro, proerythroblasts; Baso, basophilic; Poly, polychromatic; Ortho, orthochromatic; Retic, reticulocyte; RBC,
red blood cell. Created with BioRender.com.

114 The bone marrow niche
To maintain steady-state hematopoiesis while enabling rapid responses to
demand, the hematopoietic system is subject to complex regulation from cell-

intrinsic mechanisms and the external environment. This specialized bone marrow



microenvironment, composed of cellular and acellular components, is commonly
referred to as the HSC niche [77,78].

The niche concept was proposed as early as the 1970s by Schofield [79]. Scadden
later defined it as a specific anatomic location that integrates local and systemic
signals to regulate stem cell self-renewal, differentiation, and protection from both
exhaustion and uncontrolled proliferation [80]. The cellular compartment
comprises a heterogeneous mixture of lineages, including endothelial,
osteolineage, fibroblastic, stromal, neuronal, macrophage, and mesenchymal cells
[32,81-86]. These cells regulate HSC quiescence, survival, proliferation, and
differentiation in part by providing ligands and cytokines. A key cytokine for HSC
maintenance is stem cell factor (SCF), which promotes anti-apoptotic signaling
and can act systemically or proximally through soluble and membrane-bound
forms [87]. Similarly, TPO, more commonly known for its role in thrombopoiesis, is

also a critical factor in HSC maintenance [88].

In addition to cell-cell interactions and signaling through soluble factors, acellular
factors of the niche, such as the extracellular matrix composition, mechanical
properties, and oxygen tension, play important roles in the regulation of
hematopoiesis [89,90]. Major components of the bone marrow extracellular
matrix are collagens, proteoglycans, and glycoproteins, acting as scaffolding for
cells and growth factors [91]. Biophysical properties (e.g, stiffness, topography,
porosity) also influence stem cell behavior. This has been observed in various
stem cell subtypes, such as neural stem cells, mesenchymal stem cells, muscle
stem cells, and hematopoietic cells [92-97]. The role of the extracellular matrix in
hematopoiesis has been reviewed in detail by Lee-Thedieck and colleagues [98-
102].

Overall, the hematopoietic niche integrates signals that regulate HSC fate
decisions and maintains hematopoietic homeostasis. The importance of this role
becomes evident when dysregulation of HSCs or the niche occurs, which can

eventually amount to hematopoietic malignancies [103,104].

115 Clonal hematopoiesis

Somatic variants arise continuously throughout life and are acquired across cell
types, including stem cells. HSCs are therefore not spared; they accumulate
somatic mutations over time (estimates are ~17 variants per year), leading to
substantial accumulation over an individual's lifetime [105-108]. While most
alterations change the nucleotide sequence, many do not affect the amino acid



sequence or measurably alter protein function. These variants remain largely

inconsequential and are commonly referred to as passenger mutations.

By contrast, specific genetic abnormalities can confer a fitness advantage to the
affected HSC, promoting clonal outgrowth of the mutant cell and its descendants
through positive selection; these events are termed driver mutations. The process
of expansion and increasing prevalence of such clones is known as clonal
hematopoiesis (CH) [109,110]. Several studies have identified a recurring pattern of
driver mutations in a small set of genes, often found in myeloid malignancies, in
individuals without a diagnosis of hematological neoplasms [111-114]. These studies
further reported that the prevalence of CH rises with age, reaching approximately
10—-20% among individuals aged 270 years. Notably, germline genetic background
can also shape CH dynamics by modifying the growth advantage of mutant
clones. In a recent genome-wide association study, Agarwal et al. identified a
protective noncoding regulatory variant (rs17834140-T) that downregulates
expression of musashi RNA-binding protein 2 in HSCs and is associated with
slower CH expansion and reduced risk of CHIP and myeloid malignancies[115].
Using next-generation sequencing approaches, Young et al. described CH-
associated variants as ubiquitous in adults, detectable in a large fraction of
individuals aged 50-60 when very low variant allele frequencies (VAFs) were
included [116].

With advancements in our understanding of the underlying molecular
mechanisms and their consequences, CH has been further subdivided. The
presence of a CH clone with a VAF 22% in the absence of cytopenias is commonly
termed clonal hematopoiesis of indeterminate potential (CHIP), whereas clonal
cytopenia of undetermined significance (CCUS) refers to otherwise unexplained
cytopenias with evidence of clonality [109,117,118]. While CH remains subclinical in
most individuals, factors such as higher VAF, mutations in spliceosome
components, and overall mutational burden increase the risk of disease
progression [119-121].

1.2 Myelodysplastic neoplasms

Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous set of
myeloid neoplasms arising from HSPCs and characterized by ineffective,
dysregulated hematopoiesis. [122]. Key features of MDS include hematopoietic cell
dysplasia, cytopenias—especially of the erythroid lineage—bone marrow failure,
and an elevated risk of progression to AML [123-126]. MDS presents in



approximately 3—-5 cases per 100,000 individuals in Sweden and the US. MDS is
largely a disease of older individuals, with a median age at diagnosis >70 years. The
incidence increases markedly with advancing age and is higher in men than in
women, placing MDS among the most frequent hematologic malignancies in older
populations [127-129].

Most MDS cases are de novo, arising without a clear precipitating cause. However,
several risk factors have been identified. Prior exposure to cytotoxic
chemotherapy and/or radiation is a well-established risk factor: therapy-related
MDS (or therapy-related myeloid neoplasms) comprises ~10-20% of cases and is
associated with substantially poorer outcomes than de novo disease [130-133].
Similarly, prolonged exposure to benzene and organic solvents has been
connected to an increased risk of developing MDS [134]. Aside from acquired risk
factors, there is growing recognition of hereditary predispositions to MDS.
Together, these findings underscore that MDS pathogenesis is multifactorial,
involving environmental exposures, genetic predispositions, and acquired somatic

mutations, which will be described in a later section.

121 MDS diagnosis

MDS presents with a broad range of clinical features, reflecting the heterogeneous
nature of the disease. Symptoms that raise suspicion of MDS are associated with
an underlying cytopenia: anemia (fatigue, dyspnea, reduced exercise tolerance),
neutropenia (recurrent infections), or thrombocytopenia (bruising, bleeding) [135—
137]. Some patients are asymptomatic at diagnosis, with MDS first suspected due
to abnormal routine blood counts. The initial clinical findings are not specific to
MDS, and other causes of cytopenias—such as dietary deficiencies, chronic
disease, medications, and other factors from the patient’s history—must be ruled
out. In clinical practice, older patients with persistent, unexplained cytopenias
should be considered for bone marrow examination to evaluate for MDS [138].
Diagnosis and categorization are based on integrated clinicopathologic evaluation
according to the 5th edition of the World Health Organization (WHO) classification
of haematolymphoid tumours and the International Consensus Classification
(ICC), incorporating morphologic, cytogenetic, and molecular genetic features
[139,140].

12.11 Laboratory findings

Laboratory findings are not specific to MDS and are often linked to the underlying
cytopenias. This can include elevated erythrocyte sedimentation rate and C-



reactive protein levels, low hemoglobin levels (<10 g/dL), and macrocytosis
[136,141-143].

1212  Bone marrow examination

The gold standard for the diagnosis of MDS is bone marrow examination via bone
marrow aspirate and/or biopsy [135]. May-Grinwald—Giemsa staining enables
assessment of cell identity and morphology, lineage dysplasia, and hypocellularity
or hypercellularity [138]. Quantification of the percentage of nucleated bone
marrow blasts is important for categorizing disease, predicting prognosis, and
distinguishing higher-risk MDS from AML [139,140,144,145]. The 5% edition WHO
distinguishes MDS from AML at a blast threshold <20%, whereas the 2022 ICC
introduces the subgroup MDS/AML from 10-20% blasts. Additional iron staining
with Prussian blue can detect ring sideroblasts [144]. While bone marrow aspirates
remain essential to diagnosis, sampling error and subjective interpretation can
limit reliability [135].

1213  Cytogenetics

Cytogenetic analyses are performed using G-banding (karyotyping) and
fluorescence in situ hybridization (FISH). Chromosomal abnormalities are present
in around half of MDS cases; thus, their identification is essential to obtain a
complete diagnosis. The most common aberrations in MDS involve partial deletion
of large chromosomal segments [del(5q), del(7q), del(20q)], loss or gain of entire
chromosomes (monosomy 7, trisomy 8), or an accumulation of multiple events
referred to as a complex karyotype [146,147].

12.14  Targeted sequencing

Targeted next-generation sequencing (NGS) is a key component of the MDS
diagnostic workup and is incorporated into the current classification frameworks.
Both the 5" WHO classification of hematolymphoid tumors and the ICC include
MDS subtypes defined by specific genetic variants, such as TP53 alterations or
somatic mutations in SF3B7[139,140]. Because most MDS driver lesions occur in a
core set of ~bO recurrently mutated genes, targeted panels enable sensitive
detection of recurrent mutations that complement morphology, cytopenias, and
cytogenetics by providing molecular evidence of clonality [148]. Diagnostic
interpretation should account for both the mutational profile and clonal burden:
the presence of multiple mutations and higher VAFs supports an underlying

myeloid neoplasm, whereas the absence of detectable driver mutations has a high



negative predictive value but does not fully rule out MDS [148]. Testing can be
done in peripheral blood and bone marrow which have been shown to be
concordant for mutation detection [149]. NGS may also flag possible germline
predisposition variants (often ~40-60% VAF), warranting confirmatory testing in

non-hematopoietic tissues [150].

1215  Clinical flow cytometry

Flow cytometric analysis of bone marrow cells can be a complementary tool to
further refine diagnosis and classification, enabling analysis of antigen expression
patterns across samples [151152]. This is employed for assessment of lineage
distribution, maturation patterns, and abnormal populations [153]. Consensus
recommendations on sample preparation methods and staining panels can
further improve reproducibility and interpretation of results [154].

1.2.2 Classification and prognosis

In summary, a confirmed MDS diagnosis involves correlating clinical, morphologic,
and laboratory findings while excluding other conditions that can mimic MDS.
Based on diagnostic findings, the underlying disease is then further categorized.
Historically, classification systems mostly recognized morphological features and
peripheral blood cytopenias [144]. However, cytogenetic and molecular events
have gained importance in the most recent classification schemes of the WHO
and ICC, both published in 2022. These include MDS subtypes defined by specific
genetic lesions, such as TP53 alterations or somatic mutations in SF3B7 [139,140].
Risk stratification for MDS patients has similarly evolved since implementation of
the International Prognostic Scoring System (IPSS) in 1997, which was revised 15
years later (IPSS-R) [141,145]. In its latest iteration in 2022, referred to as IPSS-M,
Bernard et al. proposed a molecularly informed scoring system based on 22

variables that assigns patients to one of six risk categories [155].

1.2.3 Treatment of MDS

Following diagnosis, therapeutic approaches focus on prolonging survival and, if
possible, curing the patient; otherwise, improving the quality of life is the priority.
The treatment approach for MDS patients depends on the specific risk score and
generally distinguishes lower-risk from higher-risk MDS. This section summarizes
the general treatment strategies, but a more detailed compilation can be found in
a recent review series by Merz and Platzbecker, and Kroger [156,157].



Treating higher-risk MDS focuses on reducing disease burden and preventing
progression to AML. Allogeneic hematopoietic stem cell transplantation (HSCT)
remains the only curative treatment for MDS. Thus, eligibility should be considered
following careful evaluation and, when appropriate, performed promptly to
improve outcomes for higher-risk patients [158—160]. The hypomethylating agents
azacitidine and decitabine are widely used disease-modifying therapies, either as
a bridge to allogeneic HSCT or to delay progression in patients who are not
transplant candidates.

Treatment strategies for lower-risk disease center on supportive care, focused on
improving cytopenias. Erythropoiesis-stimulating agents are the standard-of-
care first-line treatment to boost RBC counts and are administered alone or
combined with granulocyte colony-stimulating factor (G-CSF). Thrombopoietin
receptor agonists can improve platelet counts in some patients [161]. More
recently, treatment of patients with MDS with ring sideroblasts (MDS-RS), which
is described in more details in a later section, using luspatercept, a TGF-8
superfamily ligand trap, has received Food and Drug Administration (FDA)
approval [162-164]. For patients harboring del(5q), treatment with lenalidomide
should be considered [165,166]. RBC transfusions are frequently administered to
combat anemia, and transfusion dependency is common in patients (30-50% at
diagnosis) [129,140]. While more liberal transfusion strategies may improve quality
of life, transfusion dependency at diagnosis and within the first year is associated
with worse outcomes. Thus, starting treatment with erythropoiesis-stimulating
agents early and achieving transfusion independence can improve prognosis
[167-169].

1.2.4 Genomic landscape of MDS

With the advent of reliable and widely available next-generation sequencing
techniques over the past decades, it has become evident that genetic mutations
are major drivers of malignant clonal evolution in many cancers, including MDS
[135170]. In 2013 and 2014, two landmark papers by Papaemmanuil et al. and
Haferlach et al. provided detailed descriptions of the genomic landscape of MDS
in large patient cohorts [171,172]. This was later complemented by an analysis of
nearly 3,000 MDS patients from 24 centers by the International Working Group
for Prognosis in MDS [155,173]. Within the cohort, 90% of patients harbored at least
one oncogenic mutation (out of 9254 identified in total) distributed across 121

genes [155].



This diverse spectrum of recurrently mutated genes can be grouped into several
functional groups, outlined in
Table 1. Somatic mutations in epigenetic regulators involved in DNA methylation
and histone modification include DNMT3A, TET2, ASXLI, and EZH2, which are
implicated in clonal expansion. Heterozygous spliceosome mutations involving
SF3BI1, SRSF2, U2AFI, or ZRSR2 are associated with widespread RNA mis-splicing,
often leading to nonsense-mediated mRNA decay (NMD) and reduced functional
expression of some genes [174]. These effects can confer a fitness advantage,
leading to clonal expansion, and/or impair progenitor maturation. A more detailed
description of the role splicing factor mutations have in MDS is included in an
upcoming section. Other somatic mutations involve transcription regulators, the
DNA repair machinery and cohesion complex, as well as signaling pathways [173].
Mutation frequencies are not uniformly distributed across the mutational
landscape. Instead, a small set of events is clearly overrepresented. This includes
mutations in TET2, ASXLI1, or SF3B1in >20% of patients, and DNMT3A, SRSF2, RUNX],
or TP53 in approximately 10-20%.

Mutated genes

Epigenetic regulators TET2 (>20% of patients)

ASXL1(>20% of patients)

DNMT3A (10-20% of patients)

EZH2, BCOR, IDH2, IDHI1, PHF6, BCORL], ZBTB33, EP300,
KMT2D

RNA splicing SF3B1 (>20% of patients)

SRSF2 (10-20% of pts)

U2AFI1, ZRSR2, PRPFS, U2AF2

Transcription regulation RUNX1 (10-20% of patients)
CUXIT, MLL (KMT2A), ETV6, CEBPA, CTCF, WTI, ZBTB33,
GATA2, NFE2
DNA repair control TP53 (10-20% of patients)
PPMID, BRCC3
Cohesin complex STAG2, SMCIA, RAD21
Signaling CBL, NRAS, KRAS, JAK2, MPL, SH2B3, PTPNII, GNBI, FLT3
Miscellaneous SETBPI1, DDX41, ETNKI, KMT2C, CSNKIAIT, NPM1, GNAS, ARID2
Cytogenetic alterations
Alterations del(59) (10-20% of patients)

complex karyotype +8, -Y, -7, del(7q), del(11g), -13, +21,
del(4q), del(lp)

Table 1: Overview over recurrent (>1% of patients) gene mutations and cytogenetic alterations in patients
with MDS [155]. Events used for IPSS-M prognostic calculations are underscored. Adapted from Cazzola and
Malcovati (2025) [173]



Large-scale genomic studies and investigations of familial histories of hematologic
malignancies have identified a group of germline mutations (e.g, GATA2, RUNX],
DDX41, TP53, SAMD9/SAMDOL) that confer inherited susceptibility to MDS/AML
and collectively account for up to 15% of cases [173,175-181]. These germline
predisposition syndromes can significantly influence therapeutic choices and the

selection of suitable donors for transplantation.

1.2.5 SF3Bl-mutant MDS and MDS-RS

Next-generation sequencing studies of large patient cohorts established that
MDS is frequently driven by mutations in spliceosome components, with SF3BJ,
SRSF2, U2AFI, and ZRSR2 among the most commonly mutated splicing factor
genes [155,171172]. Among these, SF3B1 mutations uniquely stand out as they are
tightly linked to the disease phenotype of MDS-RS [182]. MDS-RS is a distinct
subset of MDS which was originally described in the 1950s and later recognized
as a separate entity in the French—American—British (FAB) and WHO
classifications [144,183,184]. The defining morphological feature is the presence of
ring sideroblasts in the bone marrow of patients (Figure 4). These aberrant
erythroblasts contain iron-laden mitochondria forming a perinuclear ring, which

becomes visible after iron staining [124,185].
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Figure 4: Ring sideroblasts stained with Perls’ Prussian blue stain. (A) RS from MDS-RS patient bone marrow
samples. Image adapted from Lours et al. (2022) [186], licensed under CC BY 4.0. Modifications include removal
of labels and image sharpening. (B) Isolated RS from MDS-SF3BI1 patient-derived iPSCs from Study II.

The SF3B1 protein encodes a core component of the U2 small nuclear
ribonucleoprotein complex that contributes to 3’ splice site recognition during
spliceosome assembly [187-189]. SF3B1 mutations in MDS typically constitute
heterozygous missense substitutions, clustering in the HEAT repeat domain with
K700 as a common hotspot [190-193]. Mechanistically, SF3B1 mutations drive



misrecognition of 3’ splice sites on pre-mRNAs, resulting in widespread cryptic
splicing (Figure 5) [194,195]. Aberrantly spliced transcripts are frequently targeted
for degradation by NMD, reducing functional protein levels. In vitro studies
connected mis-splicing of key erythroid genes, including the mitochondrial iron
transporter ABCB7 and genes involved in heme biosynthesis (ALAS2, TMEMI4C,
PPOX, MAP3K?7), to impaired heme production, mitochondrial iron accumulation,
and RS generation [185196-201]. Further, RNA mis-splicing increases during
erythroid differentiation, causing cells to engage pathways that downregulate
oxidative stress and NMD, which promotes cell survival and may contribute to

clonal expansion [202].
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Figure 5: Mechanism-of-action and downstream consequences of wild-type SF3B1 (SF3B1"T)- and mutant
SF3B1 (SF3B1™)-mediated mRNA splicing, adapted from Zhou et al. [203]. U2 snRNP, U2 small nuclear
ribonucleoprotein; ss, splice site; BPS, branchpoint sequence; NMD, nonsense-mediated mRNA decay.
Created with BioRender.com.

Across patients, SF3BT mutations occur in most MDS-RS cases, have a strong
positive predictive value, and have been incorporated into diagnostic frameworks
as a defining feature of the MDS-RS entity [126,139,140]. From an evolutionary
perspective, SF3B1 mutation is considered an early event in MDS-RS, often
represented in the dominant clone and present at higher VAFs than other genetic
lesions [171,204]. Clinically, MDS-RS is relatively indolent compared to higher-risk
disease and has one of the most favorable outcomes across MDS subtypes
[182,205]. Subsequent studies demonstrated that SF3Bl-mutant MDS-RS
represents a relatively homogeneous subgroup characterized by erythroid
dysplasia and abnormal erythroid maturation. Accordingly, treatment typically
focuses on alleviating anemia through erythropoiesis-stimulating agents and
establishing transfusion independence [206]. However, it is increasingly
understood that favorable prognosis is not uniformly distributed but depends on
co-mutations. Isolated SF3BT mutations or a “simple” co-mutation pattern
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involving epigenetic regulators retains favorable prognosis, whereas del(5q) or
mutations in BCOR, NRAS, RUNX], and others are associated with worse outcome
[155,207,208].

1.2.6 UBAIlmutations

Despite major advances in identifying genetic alterations and integrating them
into modern classification, treatment, and risk-stratification systems, 5-10% of
patients still lack an identifiable disease-defining mutation [139,140,155,172,209]. In
addition, a sizable fraction of patients (approximately 10-30%) develop
inflammatory manifestations without an obvious etiology, which can complicate
both diagnosis and management and has been associated with higher-risk
disease features [209-213]. A major advance in this area came in 2020, when Beck
et al. identified somatic UBAT mutations as the cause of a subset of these
unexplained inflammatory phenotypes and introduced the entity VEXAS
(vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome [214]. UBAT
encodes the principal ubiquitin-activating E1 enzyme, which is essential for
initiating protein ubiquitination and thereby influences protein homeostasis and
diverse downstream cellular processes (Figure 6, left). Pathogenic variants in
VEXAS commonly disrupt expression of the cytosolic UBAIb isoform, frequently
by affecting translation initiation (Figure 6, right) [214—217]. Clinically, the overlap
with myeloid disease is notable: MDS is reported in roughly 25-55% of individuals
with VEXAS, and in a large, representative diagnostic MDS cohort, about 1% of
patients carried likely pathogenic UBAT variants [209,218,219]. Collectively, these
data support considering UBAT mutation testing in the diagnostic work-up of MDS
when inflammatory features are prominent and particularly in male, given the X-
linked nature of UBA1 and the marked male predominance of VEXAS syndrome.
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Figure 6: UBA1 mechanisms of action (left), and role in VEXAS (right), adapted from Ferrada et al. (2022) [220].
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1.3 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a myeloid neoplasm closely related to MDS and
can arise from MDS when additional genetic and/or cytogenetic events drive
leukemic transformation. AML is defined by excessive proliferation of leukemic
blasts (poorly differentiated hematopoietic progenitors) that infiltrate the bone
marrow, blood, and other tissues [221]. The resulting disruption of normal
hematopoiesis causes severe cytopenias, and AML remains a life-threatening
diagnosis. Outcomes have nevertheless improved over recent decades. Whereas
AML was historically associated with very poor long-term survival, 5-year survival
rates now stand at 62% for patients diagnosed before age 50, 37% for those aged
50-64, and 9.4% for patients 65 years and older [222]. A Swedish registry study
reported that survival gains over the past 20 years were most pronounced among
middle-aged men [223]. While AML often presents sporadically, an increased risk
of development has been associated with the same factors as in MDS, including
exposure to certain chemicals, cytotoxic therapies, and germline predispositions
[126].

1.3.1 Presentation and diagnosis

AML is a medical emergency that requires urgent evaluation and management.
Similar to MDS, symptoms are often non-specific but typically reflect suppression
of normal hematopoiesis and may raise suspicion of a hematological malignancy.
This includes severe cytopenias (anemia, thrombocytopenia, and/or neutropenia)
and, in some patients, abnormally high white blood cell counts (leukocytosis).
Patients may present with fatigue, dyspnea, bleeding, infections, or headaches.

Historically, AML diagnosis required a minimum of 30% myeloid blasts in the bone
marrow or peripheral blood according to the FAB system, later revised to 220% in
WHO classifications. In the most recent frameworks, AML may be diagnosed below
the 20% blast threshold for specific genetically defined entities. A comprehensive
diagnostic work-up includes assessment of morphology, immunophenotype,
cytogenetics, and molecular genetics, while the patient is closely monitored and
acute complications are managed [140,224,225].

1.3.2 Classification and prognosis

The classification of AML has evolved from the morphology-based FAB system to
frameworks that increasingly emphasize cytogenetic and molecular features, as
reflected in the 2022 5th edition WHO and ICC systems. Both prioritize genetic
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abnormalities over morphology in defining AML subtypes by recurrent gene
mutations and chromosomal rearrangements [139,140,144]. Despite minor
differences, both systems broadly agree on genetically defined entities, but they
apply blast thresholds differently. WHO 2022 permits diagnosis of many AML
entities with defining genetic abnormalities even when blasts are <20%, while
maintaining a 220% blast requirement for selected entities, including BCR:ABLI
fusion AML and AML with CEBPA mutation [139]. The ICC defines many genetically
recurrent AML categories with a blast threshold of 210%, while maintaining a 220%
blast requirement for patients with the BCR:ABL] fusion to limit overlap with
chronic myeloid leukemia [140]. An additional change in the ICC is the introduction
of “MDS/AML" for cases with 10-19% blasts in settings that do not otherwise meet
criteria for a genetically defined AML entity, reflecting the biologic and clinical
continuum and potentially expanding access to therapies and trials [226,227]. The
ICC also recognizes “AML with mutated TP53" as a distinct, high-risk category with
particularly poor prognosis. In contrast to WHO, the ICC does not retain therapy-
related, secondary, or germline-associated myeloid neoplasms as separate AML
entities; instead, these features are used as diagnostic qualifiers alongside the

genetically defined diagnosis.

Prognosis is informed by biological and clinical factors at diagnosis. Besides age,
performance status, comorbidities, and prior history, prognosis is largely
determined by the genetic background of the leukemia [223,228-231]. The current
European LeukemiaNet (ELN) guidelines stratify AML patients undergoing
intensive chemotherapy into favorable, intermediate, and adverse risk groups
based on cytogenetic events and genetic events [232]. The core-binding factor
leukemias, NPMI mutations without FLT3-ITD, and AML with in-frame CEBPA bZIP
mutations comprise the favorable risk group. These subtypes are generally more
chemotherapy-sensitive and are characterized by higher remission rates and
improved survival. Conversely, the adverse-risk category is linked to poorer
response, with fewer patients achieving complete remission, and a propensity for
relapse. This group includes TP53 mutations, specific adverse cytogenetic
abnormalities (including monosomies such as -5 and -7, inv(3)), complex
karyotype, and myelodysplasia-related gene mutations. The remaining ~40% of
cases fall within the intermediate risk group, including many patients with normal
cytogenetics and, as of the 2022 ELN update, FLT3-ITD—mutated cases in the
absence of favorable or adverse defining features [225]. Recently, the ELN also
proposed risk models tailored to patients receiving less-intensive therapies [233].



1.3.3 AML therapy

Recent years have seen advances in AML treatment options, moving beyond
conventional chemotherapy to incorporate more targeted approaches.
Treatment is generally divided into an induction phase (to achieve complete
remission, defined by <5% bone marrow blasts with peripheral blood count
recovery), followed by consolidation to eliminate residual malignant cells and
prevent relapse [234]. An upfront evaluation of patient fitness guides treatment
decisions, as intensive chemotherapy is not advised for patients of higher age or
with significant comorbidities [235—-237]. While there is no universal tool to assess
fitness, the Ferrara criteria are often used to identify patients unfit for intensive

chemotherapy [238].

The standard intensive approach is the “7+3"” induction regimen, consisting of 7
days of continuous cytarabine plus 3 days of an anthracycline (daunorubicin or
idarubicin) [239]. In Sweden, a modified “5+3” regimen with higher-dose
cytarabine is commonly used; reported remission rates in younger adults are
~60-85% following this intensive induction strategy [239,240]. Several additions
to 7+3 have improved outcomes in selected molecular and clinical subgroups
[241]. Incorporation of FLT3 inhibitors (midostaurin, quizartinib) for FL T3-mutated
AML has been associated with improved remission rates and long-term survival
[242,243]. Secondary AML and therapy-related AML (t-AML) benefit from CPX-
351, a liposomal daunorubicin—cytarabine formulation, compared to conventional
7+3 in selected settings [244,245]. Immunotherapy approaches, including
antibody-based therapies, cancer vaccines, immune-checkpoint inhibitors, and
adoptive T-cell therapies, are under active investigation to address primary and
acquired resistance [246,247]. Following induction, patients in remission receive
consolidation therapy. Allogeneic HSCT is recommended for intermediate- and
adverse-risk AML in first remission, whereas favorable-risk patients frequently

undergo intensive post-remission chemotherapy [234].

In patients who are ineligible for, or elect not to receive, transplant, remission can
be prolonged through maintenance therapy, including oral 5-azacitidine (CC-486)
[248]. Patients evaluated as unfit for intensive chemotherapy are generally treated
with a low-intensity regimen, often combining hypomethylating agents with the
BCL-2 inhibitor venetoclax [249,250]. In addition, targeted inhibitors (e.g,
IDH1/IDH2 or FLT3-directed agents) have shown promising results in molecularly
defined subsets [251-253]. Prognosis remains unfavorable in relapsed or

refractory disease, and only a small proportion of patients attain a second
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remission with salvage therapy. [237,254]. When remission is achieved, salvage

allogeneic HSCT remains the best option for durable cure [255-257].

1.3.4 Genomic landscape of AML

Large sequencing studies report that ~97% of AML patients harbor at least one
recurrent somatic mutation [258]. These variants frequently co-occur, and most
patients harbor multiple mutations at diagnosis. Recurrent AML mutations can be
clustered into functional groups including signaling/kinase pathways, NPM],
epigenetic modifiers, transcription factors, tumor suppressors, spliceosome
genes, and cohesin complex genes (Table 2) [221259,260]. Together, these
alterations illustrate how AML pathogenesis involves combinations of proliferative
signaling lesions, differentiation blockades, epigenetic dysregulation, and loss of
tumor suppression. The following section provides an overview of these
categories, including example genes and disease-contributing mechanisms
[258,261].

Functional Group Example mutations

Signaling/Kinase pathway FLT3, KRAS, NRAS, KIT, PTPNII, NF1

Nucleophosmin NPMI

Epigenetic regulators DNMT3A, IDH1, IDH2, TET2, ASXL1, EZH2, MLL/KMT2A
Transcription factors CEBPA, RUNX1, GATA2

Tumor suppressors TP53

RNA splicing SRSF2, U2AFT1, SF3B1, ZRSR2

Cohesin complex RADZ21, STAGI, STAG2, SMCIA, SMC3

Table 2: Overview of recurrent genetic lesions in AML sorted by functional groups. Adapted from Déhner et
al. (2015) and DiNardo and Cortes (2018) [221,259]

1.34.1  Signaling and kinase pathways mutations

Found in ~60-70% of patients, this is the most frequently mutated functional
group. Frequently mutated genes include FLT3, NRAS/KRAS, KIT, PTPNTI, and NFI.
FLT3 is mutated in nearly one third of patients, often resulting in ligand-
independent FLT3 tyrosine kinase signaling [262]. Similarly, RAS pathway genes are
mutated in ~10-15% of cases, driving aberrant activation of MAPK signaling. KIT
mutations are comparatively rare overall but are enriched in core-binding factor
AML [263]. Collectively, this group confers a proliferative advantage to the
malignant clone through hyperactivation of cell growth and survival pathways.
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13.4.2  Nucleophosmin (NPM1) mutations

NPMI mutations are among the most frequent genetic lesions in AML, found in
~25-30% of cases and enriched in patients with normal karyotype. NPMI
mutations disrupt the nuclear localization of the NPM1 shuttle protein, leading to
aberrant accumulation of NPMI and its binding partners in the cytoplasm.
Cytoplasmic mislocalization of NPM1 is a hallmark of this subtype and interferes
with normal nucleolar functions, including regulation of p53 and HOX gene

expression programs [264].

1.34.3 Epigenetic modifier mutations

Epigenetic regulators—affecting DNA methylation and chromatin modification—
are recurrent mutations in >50% of AML cases and include DNMT3A, TET2, IDH]I,
IDH2, ASXL1, and EZH2. Mutations in DNMT3A are among the most common events
in AML (~20% of de novo AML) and are connected to changed DNA methylation
patterns, increased self-renewal, and impaired differentiation [265,266].
Conversely, TET2 mutations (~10-20% of AML) disrupt 5-methylcytosine
demethylation, resulting in accumulation of DNA methylation marks and impaired
myeloid differentiation. Neomorphic IDHI/IDH2 mutations (~20% of AML) produce
2-hydroxyglutarate, which can inhibit TET enzymes and certain histone
demethylases, promoting an aberrant hypermethylation state and contributing to
a differentiation block [267]. Truncating mutations in ASXL1 can reduce the
stability and function of PRC2, leading to loss of repressive histone methylation
marks on lysine 27 (H3K27me3), derepression of normally silenced programs, and

aggressive disease biology [268].

13.4.4 Transcription factor mutations

Somatic mutations in transcription factors (e.g,, RUNXI1, CEBPA, GATA2) and fusion
genes generated by chromosomal rearrangements can disrupt transcriptional

programs and impair differentiation.

1.3.4.5 Tumor suppressor mutations

TP53 is mutated in ~5-15% of AML cases, is enriched in older patients, and is
associated with complex karyotype as well as secondary and therapy-related
AML. Mutations in TP53 disrupt the canonical function of p53 in mediating
responses such as cell-cycle arrest and apoptosis, contributing to cell survival and
genomic instability [269]. As a consequence, TP53 mutations represent a

particularly high-risk lesion associated with poor prognosis.



1.3.4.6 Spliceosome complex mutations

Spliceosome gene mutations are also observed in AML, particularly in secondary

AML in older patients; for mechanistic background, see the MDS section.

1.3.4.7 Cohesin complex mutations

The cohesin complex mediates sister chromatid cohesion and is important for
proper chromosome segregation during mitosis and 3D genome organization
[270]. Mutations in cohesin members (e.g, STAG2, RAD2I, SMCIA, SMC3) may
contribute to genome dysregulation and altered expression of differentiation-

associated gene programs.

13.4.8 Cytogenetics

Over half of AML patients present with cytogenetic abnormalities, frequently
resulting in chromosomal rearrangements and gene fusions, and ~10-12% have
complex karyotype (often defined as 23 abnormalities) [271-273]. Recurrent AML-
defining rearrangements include the core-binding factor events t(8;21) and
inv(16)/t(16;16), generating the RUNXI:RUNXITI and CBFB:MYHIl fusions,
respectively [139,140,274]. Translocation t(15;17) generates the PML:RARA fusion,
encoding the PML-RARA oncoprotein that functions as a transcriptional
repressor, blocks myeloid differentiation, and promotes aberrant survival signaling
[275,276]. Less frequent events include DEK:NUP214 and MECOM rearrangements.

1.3.5 KMT2A-rearranged AML

Chromosomal rearrangements involving the KMT2A gene (KMT2A-r; formerly
MLL), located on chromosome 11923, constitute a recurring group of cytogenetic
abnormalities present in roughly 5-10% of acute leukemias [277]. These
rearrangements are particularly frequent in infant leukemias, where 70-80% of
cases harbor KMT2A fusions [278]. In AML, KMT2A-r comprise about 20% of
pediatric cases compared to 5-10% of adult cases and are generally a dismal
prognostic factor, including higher relapse rates and resistance to intensive
chemotherapy [279]. KMT2A-r are heterogeneous, and over 100 fusion partners
have been identified in acute leukemias. However, specific fusion partners are
overrepresented, with a small set accounting for the majority of cases [280].
Fusion partners often influence disease phenotype. For example, t(4;11)(g21,923),
encoding KMT2A:AFF1 (historically MLL—AF4), is most common in ALL. In contrast,
t(9;11)(p21,923), encoding KMT2A:MLLT3 (historically MLL—AF9), is the most
common fusion in KMT2A-rearranged AML [280,281]. Overall, KMT2A:MLLT3 is
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among the most prevalent KMT2A-r and accounts for a substantial fraction of

cases across acute leukemias [282].

13.5.1  Canonical roles of wild-type KMT2A

KMT2A is a crucial epigenetic regulator of hematopoiesis and development. It
encodes a large protein with histone methyltransferase activity that is
proteolytically cleaved into two subunits [283-285]. In the healthy setting, the
KMT2A protein regulates expression of key developmental genes, including HOX
clusters and the cofactor MEISI. Specifically, KMT2A has been shown to sustain
expression of HOXA9 and MEIS] in the earliest HSC and MPP populations,
supporting expansion and self-renewal [286—-289]. Structurally, the KMT2A protein
contains several functional domains, including N-terminal DNA-binding motifs and
a C-terminal SET domain that trimethylates histone H3 lysine 4 (H3K4me3) in
association with multiple core cofactors (Figure 7, left) [290-292]. Through this,
KMT2A deposits active histone marks and supports an open chromatin state at
HOX loci. KMT2A also harbors a transactivation domain that recruits histone
acetyltransferases, reinforcing active chromatin and transcription [293,294].
KMT2A functions within a multi-protein complex including Menin, LEDGF, and
PAFc, which recruit KMT2A to target promoters and gene loci [295-297].

13.5.2 Consequences of the KMT2A::MLLT3 fusion

KMT2A protein fusions retain the N-terminal domain, maintaining the DNA- and
Menin-binding functions, but lose the C-terminal SET domain. In its place, the
fusion protein gains interaction motifs contributed by the partner. Many KMT2A
fusion partners encode components of the super elongation complex (SEC)
machinery e.g, MLLT3 (AF9), AFF1 (AF4), MLLT1 (ENL), and ELL [298,299]. Through
this, the fusion proteins aberrantly recruit SEC to KMT2A target genes, driving
sustained transcriptional activation (Figure 7, right) [300]. A hallmark molecular
consequence is enforced expression of HOX genes (especially HOXA9) and MEIS],
promoting an early arrest of myeloid differentiation while maintaining a self-
renewing state that drives uncontrolled proliferation and leukemogenesis
[301302]. AF9 additionally contributes to epigenetic activation through
interactions with the DOTIL methyltransferase complex, which mediates
activating H3K79 methylation at HOXA/MEIST loci and sustains expression [303].
Activation of HOX/MEIST programs, Menin dependence, and recruitment of DOTIL
are shared features across many KMT2A fusions, creating convergent therapeutic

vulnerabilities.
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Figure 7: Molecular function of wild-type KMT2A (KMT2A-wt, left) and rearranged KMT2A (KMT2A-r, right) in
regulating histone methylation marks and downstream consequences adapted from Mercher and Schwaller
(2019) [304]. Recurrence of KMT2A fusion partners is adapted from Meyer et al. (2023) [280]
H3K4me/H3K79me, histone 3 lysine 4/79 methylation; SEC, super elongation complex; DOTIL, H3K79 histone
methyltransferase. Created with BioRender.com.

13.56.3 Targeted treatments for KMT2A-r leukemias

Menin acts as a scaffolding protein that regulates gene expression by bridging
DNA-bound factors and chromatin-associated complexes and is an essential
cofactor in recruiting KMT2A fusion proteins to target loci [305-307]. This
dependency has been demonstrated in studies where loss or inhibition of Menin
abrogated oncogenic activity of KMT2A fusions, causing downregulation of
HOX/MEIST expression and reversal of the leukemic phenotype [308-311]. Mouse
studies using small-molecule Menin inhibitors further reinforced the therapeutic
potential of this strategy [312,313]. Several Menin—KMT2A inhibitors, including
SNDX-5613 (revumenib) and KO-539 (ziftomenib), have entered clinical testing
[314]. Targeting DOTIL using pinometostat (EPZ-5676) reduces H3K79 methylation
and has shown modest activity in subsets of advanced KMT2A-r leukemia
patients [315]. Combination strategies—especially with venetoclax-based
regimens and hypomethylating agents —are being explored to improve depth and
durability of response and to overcome resistance to Menin inhibition [316—-320].

1.4 Experimental models of myeloid neoplasms

Preclinical models are pivotal for understanding MDS/AML pathogenesis and for
testing therapies under controlled conditions. Most commonly, cell lines, primary

patient material, patient-derived xenografts, and genetically engineered mouse
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models have been employed [195,201,321-324]. This section briefly summarizes

how these systems have advanced the field.

Immortalized cell lines have been particularly useful for studying AML biology and
for evaluating efficacy and toxicity profiles of candidate drugs. With hundreds of
characterized leukemic cell lines (e.g., KG-1, MOLM-13, Kasumi-1, HL-60, U937, and
THP-1), these models are generally easy to maintain and modify, inexpensive, and
scalable, but they have limited fidelity relative to primary disease [325,326]. A key
limitation of cancer cell lines is that they can adapt to in vitro conditions through
clonal selection and genetic drift. This may lead to the acquisition or enrichment
of additional genetic alteration and downstream functional changes that diverge
from the original patient background [327]. As a result, the genomic profile of the
same cell line and drug responses can vary substantially between labs and
findings from cell line-based screens may not reliably predict therapeutic activity
in primary patient samples [328]. In contrast to the abundance of immortalized
cell line models of AML, MDS cell lines are notoriously scarce, often fail to
represent the disease phenotype, and are limited by poor proliferation and overall

performance in vitro [329].

Genetically engineered mouse models that carry mutations designed to model
key oncogenic events in humans have been widely used to dissect AML
mechanisms and therapeutic responses [330]. For example, mouse models have
been central to understanding the role of the KMT2A:MLLT3 fusion in
leukemogenesis and the regulation of HOX gene programs in hematopoiesis [287].
Similar mouse models have been generated for recurrent MDS genetic events,
including heterozygous mutations in SF3B1, SRSF2, and U2AF1[331-334]. However,
modeling low-risk MDS in mice is challenging, as current models often recapitulate
only partial disease phenotypes and may fail to produce overt disease [335]. For
example, in SF3BIK°t models of MDS-SF3BI, mice develop anemia but typically
lack defining features such as bone marrow dysplasia and ring sideroblasts and
do not establish clear MDS [333]. More broadly, murine models with single-gene
perturbations often miss the genetic complexity of primary MDS/AML.
Encouragingly, ongoing advances in gene-editing approaches increasingly enable
multi-lesion models that better reflect the heterogeneous nature of human
disease [336]. Patient-derived xenograft models are widely used for studying
leukemic complexity in vivo and are generated by transplanting primary patient
cells into immunodeficient mice [337]. These systems have been successful in

many AML contexts, including enabling identification of leukemic stem cells and
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associated gene signatures, as well as supporting preclinical testing of novel
treatments [338—-340]. For MDS, results have been more mixed due to limited
engraftment potential, particularly in lower-risk disease, which continues to
hamper drug development [341]. Several strategies have improved engraftment in
some settings by “humanizing” the niche, such as mice engineered to express
human cytokines, as in MISTRG and NSGS mice, or through co-transplantation of

human stromal components [342-345].

Because these systems incompletely recapitulate MDS (especially lower-risk
disease), primary patient-derived cells have remained instrumental for advancing
mechanistic understanding. For example, gene expression analyses of bone
marrow CD34* cells from SF3Bl-mutant patients identified key mis-splicing
events and downstream pathways that shape MDS biology and drive ring
sideroblast development [190,200,201,321-323,346,347]. At the same time, work
with primary patient material has practical constraints, including limited
availability, invasive sampling procedures, ethical considerations, short in vitro
viability, and restricted experimental tractability. Induced pluripotent stem cells
(iPSCs) have increasingly emerged as a tool to help bridge these gaps and are the
focus of the following sections.

1.5 Induced pluripotent stem cells

In 2006, Takahashi and Yamanaka first described reprogramming mouse
fibroblasts into iPSCs by expressing four transcription factors, OCT4, SOX2, KLF4,
and c-MYC (OSKM; the “Yamanaka factors”) [348]. Soon thereafter, iPSCs were
generated from human cells using similar transcription factor combinations
(Figure 8) [349,350]. In 2012, John B. Gurdon and Shinya Yamanaka were jointly
awarded the Nobel Prize in Physiology or Medicine for the discovery that mature
cells can be reprogrammed to pluripotency [351]. Like embryonic stem cells, iPSCs
are capable of virtually unlimited self-renewal and can generate derivatives of all

three germ layers [348,352].

While the original protocols used integrating retroviral vectors to deliver
reprogramming factors, methods have evolved toward non-integrating systems
(Sendai virus, mRNA, episomal DNA) to avoid genomic integration [353]. Further
optimization of reprogramming cocktails has improved efficiency, and the range
of somatic cell sources has expanded substantially [354]. The reprogramming
process comprises two phases. In an initial stochastic phase, somatic lineage
programs are progressively shut down while pluripotency-associated loci
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become activated through epigenetic remodeling. In a subsequent hierarchical
phase, an autoregulatory network consolidates and stabilizes self-sustaining
pluripotency [355]. Once iPSC clones are established, iPSC quality is typically
assessed by pluripotency marker expression, tri-lineage differentiation capacity,
and genomic integrity [349,352]. Although iPSCs can be cultured for extended
periods, it is recommended to routinely screen for acquired chromosomal

abnormalities [356].
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Figure 8: Generation of induced pluripotent stem cells. iPSC, induced pluripotent stem cell. Created with
BioRender.com.

Today, iPSC culture is commonly performed under feeder-free and serum-free
conditions (and in some cases xeno-free), enabling improved reproducibility while
maintaining pluripotency. Cells are maintained in defined media on extracellular
matrix components such as Matrigel, fibronectin, vitronectin, or laminins [357].

1.5.1 Hematopoietic differentiation protocols

iPSCs have been transformative for in vitro research and hold strong potential in
disease modeling and regenerative medicine [358]. Beyond their expansion
capacity and amenability to genetic manipulation, iPSCs can differentiate into a
broad range of somatic cell types [353,359,360]. Generating bona fide HSCs from
iPSCs has been a longstanding goal in regenerative medicine, with the promise of
reducing donor dependence and immune rejection. As a result, multiple strategies
to generate hematopoietic cells from iPSCs have been developed over the past
decades [361].

Most differentiation protocols attempt to mimic aspects of in vivo hematopoietic
development, although they differ in media composition, cytokine combinations,
and timing [362]. In general, iPSCs are differentiated either as three-dimensional
(3D) aggregates (embryoid bodies and related formats) or as a monolayer.
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Mesoderm induction is followed by a hematopoietic specification stage that
promotes development of hemogenic endothelium and endothelial-to-
hematopoietic transition, producing CD34* HSPCs (Figure 9). Established
protocols use sequential growth factors and morphogens, such as BMP4, VEGF,
SCF, IL-3, and TPO, applied with staged timing to guide each developmental step
[362-368].

, ¢ mesoderm hematopoietic .
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Figure 9: Critical steps and cell populations for the generation of hematopoietic cells from iPSCs, adapted from
Rao et al. (2022) [369]. HSPC, hematopoietic stem and progenitor cell. Created with BioRender.com.

Despite advances, generating functional HSCs with robust long-term engraftment
from iPSC cultures has proven challenging. iPSC-derived hematopoietic outputs
often resembled yolk sac-like programs rather than AGM-like definitive
hematopoiesis [370,371]. Multiple studies have shown that HOXA expression
distinguishes yolk sac from AGM-like progenitors, and that adding the Wnt
agonist/GSK3 inhibitor CHIR99021 and/or the ALK inhibitor SB431542 during
mesoderm differentiation can promote a HOXA*, AGM-like state [371-376].
Transient overexpression of HOXA5 and/or HOXA9 during endothelial-to-
hematopoietic transition or in myeloid precursors has been reported to enhance
repopulating capacity of iPSC-derived progenitors, but these approaches rely on
genetic modification [377,378]. More recently, Ng et al. reported the generation of
iPSC-derived HSCs capable of long-term multilineage engraftment in
approximately half of recipient mice across multiple iPSC lines. This was achieved
through precise timing and dosing of Wnt agonists, retinoic acid derivatives, and
VEGF in a fully defined culture medium [379]. This development supports progress
toward clinical translation and increases the relevance of iPSC-derived
hematopoiesis for modeling adult hematopoietic malignancies.

1.5.2  Erythroid differentiation of iPSCs

In parallel to efforts to generate definitive HSCs, the production of functional
erythroid cells from iPSCs holds promise for therapeutic applications and disease

modeling. In transfusion medicine, iPSC-derived RBCs are attractive because they
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could enable scalable production, expand access to rare blood types, and support

donor-independent inventories that reduce immunological risks [380,381].

Differentiation of iPSC-derived hematopoietic progenitors toward erythroid cells
is well described and typically involves multi-week protocols supplying factors
such as EPO, IL-3, IL-6, TPO, and SCF, along with iron sources [382]. However, two
major hurdles remain: yield and maturation. Current protocols fall short of
producing the number of RBCs required for a single transfusion unit (on the order
of 10" cells) at a cost-effective scale [365,383]. To address this, multiple efforts to
scale cultures using bioreactors, microcarriers, and agitation have been explored,
alongside cost-reduction strategies such as simplified media formulations and

reduced cytokine or iron supplementation [362,363,384—389].

The second hurdle is maturation. Key features of definitive RBCs include efficient
enucleation and expression of B-globin, a component of the adult hemoglobin
HbA. In contrast, iPSC-derived erythroid cells often remain partially nucleated and
show incomplete switching from embryonic and fetal globin programs [390].
Strategies that better recapitulate physiological environments, including dynamic
culture, 3D systems incorporating niche matrix components, or co-culture with
macrophages or stromal elements, can improve maturation. In addition,
transplantation studies suggest that iPSC-derived erythroid cells can complete
maturation more effectively in vivo, supporting the possibility that clinically
relevant RBC production may become feasible [391-393].

1.6.3 iPSCs as models of hematopoietic malignancies

Whereas therapeutic applications of iPSC-derived hematopoiesis still face major
hurdles, iPSC systems have been used successfully to model a broad range of
hematological diseases [394]. iPSCs can provide patient-specific, genetically
defined platforms that capture the mutational landscape of the originating clone.
They enable clonal expansion in culture and can be differentiated into desired
target cell types, helping to overcome the scarcity and fragility of primary patient
cells. Importantly, isogenic controls enable direct genotype-phenotype
comparisons and can be generated either by reprogramming wild-type cells or by
CRISPR-based editing of iPSC lines [353,395]. iPSCs also enable human-specific
drug screening and mechanistic studies at scale (Figure 10) [396,397].
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Figure 10: Schematic workflow for the generation and application of patient-derived iPSCs for disease
modeling, mechanistic studies, and drug discovery. Created with BioRender.com.

Until recently, iPSCs were primarily applied to monogenic disorders with clear
genotype-phenotype relationships, including inherited bone marrow failure
syndromes [398,399]. Examples include Fanconi anemia, Diamond-Blackfan
anemia, congenital neutropenia, familial platelet disorder, and others [400-404].
These diseases are often rare, patient material is limited, and a monogenic etiology
simplifies generation of disease lines and corresponding isogenic controls [399].
More recently, improvements in gene editing and clonal isolation have expanded
iPSC modeling to more genetically complex myeloid diseases, including MDS and
AML.

In 2015, Kotini et al. generated MDS patient-derived iPSCs with del(7q) and
established isogenic controls with normal karyotype [405]. In culture, del(7q)
iPSC-derived  hematopoietic  progenitors showed impaired myeloid
differentiation, consistent with features observed in primary patient samples
[406]. Mechanistically, engineering heterozygous loss of defined chromosome 7
regions in normal iPSCs helped identify cooperating haploinsufficient genes,
including EZH2 and additional loci, as disease-relevant events [405]. These
findings were later reproduced across panels of isogenic iPSC lines, where del(7q)
induced a severe differentiation block in hematopoietic progenitor cells,
consistent with its association with higher-risk MDS and disease progression. A
large-scale drug screen using iPSC-derived hematopoietic progenitor cells from
multiple del(7q) lines identified niflumic acid as a compound that selectively
inhibited growth of del(7q) cells while sparing isogenic controls. This effect was
also validated in primary samples from MDS and secondary AML patients with
del(7q) or monosomy 7, illustrating how iPSC models can support discovery of

targetable vulnerabilities [407].
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Hsu et al. reported the generation of iPSC lines from SF3BI-mutant MDS using
episomal reprogramming and showed that iPSC-derived hematopoietic
progenitors could differentiate into erythroid cells with mitochondrial defects,
recapitulating a key feature of SF3BI-mutant MDS [204]. Through integration of
splicing and gene expression analyses, Asimomitis et al. identified a mis-splicing
signature shared between iPSC-derived progenitors carrying SF3BI°% and
primary patient cells. The same study also used chromatin accessibility analyses
to implicate TEA domain transcription factor as a transcriptional regulator
associated with the mutant state [408]. In a complementary study, Singh et al.
reported that SF3BI-mutant cells derived from patient iPSCs, cell lines, and patient
CD34* cells accumulate R-loops (RNA—-DNA hybrids). This was tied to increased
DNA damage and activation of the ATR—-Chk1 pathway, which could be mitigated
by RNase Hl-mediated R-loop resolution. Notably, SF3BI-mutant cells were
selectively sensitive to ATR or Chkl inhibition, and this vulnerability was enhanced
by the splicing modulator sudemycin D6, suggesting a potential therapeutic
strategy [409].

As an additional disease-relevant readout, Clough et al. generated ring
sideroblasts in in vitro differentiated erythroid cells from SF3B17°% iPSCs. RNA-
seq confirmed mis-splicing events and downregulation of genes involved in iron
metabolism and heme synthesis (ABCB7, MAP3K7, PPOX, TMEMI4C), consistent
with observations in primary cells. Restoring expression of ABCB7 (and to some
extent PPOX) reduced ring sideroblast formation, supporting a functional link
between reduced ABCB7 and this phenotype [410]. Together, these studies
reinforce mechanistic connections between spliceosome dysfunction and MDS
pathophysiology and suggest downstream vulnerabilities for therapeutic
targeting [394].

Modeling disease progression from MDS to AML and dissecting the contributions
of individual mutations is challenging, given the complexity of clonal evolution. To
address this, Kotini et al. generated iPSC panels from four patients reflecting
preleukemia, lower-risk MDS, higher-risk MDS, and secondary AML. Hematopoietic
progenitors derived from these lines captured stage-specific phenotypes and
transcriptional programs associated with disease progression. Modeling
transitions by correcting variants or sequentially introducing mutations through
gene editing enabled either reversal of disease severity or stepwise progression
from a near-normal phenotype toward transplantable AML [411]. Collectively, this

work provided a framework for how stage transitions across myeloid malignancies
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can be driven by combinations of cooperating lesions [412]. Using a similar
approach, Wang et al. modeled progression from a healthy state through CH and
MDS to AML by serially introducing mutations in ASXL1, SRSF2, and NRAS. Stage
transitions were associated with transcriptomic and chromatin accessibility
signatures that mirrored primary human MDS/AML. Importantly, inflammatory
signaling dysregulation emerged as an early and persistent feature of

leukemogenesis, suggesting a potential target for early intervention [413].

RAS pathway mutations are often late events, acquired upon progression from
MDS or in relapsed/refractory AML [171,258,414-416]. The mechanistic basis for
their timing has been unclear. Sango et al. generated CRISPR-edited iPSC models
and reported that NRAS mutations alone were insufficient to establish leukemia,
instead requiring preceding cooperating lesions to transform granulocyte-
monocyte progenitors [417]. Acquisition of RAS mutations drove aberrant
expression of BCL2 family genes, promoted a monocytic phenotype, coupled with
a resistance against BCL-2 inhibition by venetoclax, offering a mechanistic
explanation for poorer therapeutic responses in these settings [418,419]. A
recurring theme across these studies is that disease phenotypes often emerge
only during hematopoietic differentiation. Moreover, iPSC-derived hematopoietic
progenitors corresponding to overt AML states have been most successful at
serial engraftment and disease propagation in mice, whereas modeling pre-

malignant states and lower-risk disease remains more challenging.

These dynamics were also observed in KMT2A:MLLT3-rearranged AML. Chao et
al. derived iPSC lines from two individuals with these rearrangements and found
that iPSCs originating from malignant and non-malignant clones were highly
similar in the pluripotent state, including comparable transcriptional and
epigenetic profiles and tri-lineage differentiation potential. In contrast,
hematopoietic specification re-established leukemic molecular and cellular
features, underscoring the requirement for a specific cellular context for disease
manifestation [420]. This model provides a platform to study KMT2A-driven
leukemogenesis in a human setting and enables testing of targeted therapies for

this subtype.

Collectively, iPSC-based studies have uncovered genotype—phenotype
relationships for specific lesions and enabled controlled modeling of disease
evolution, improving understanding of clonal hierarchies and therapeutic

vulnerabilities across myeloid neoplasms. At the same time, these studies
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highlight important limitations: some clones, particularly those with complex
genetic backgrounds, reprogram inefficiently and may be underrepresented
during iPSC generation even when they constitute dominant clones in the patient
[395,421]. In addition, limited engraftment of pre-malignant or lower-risk states
remains a barrier. Ongoing improvements in gene editing, reprogramming,
differentiation, and transplantation protocols are beginning to address these
limitations, enabling more faithful modeling of complex clonal architectures and
earlier disease states [379,413,417,422-424].
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2 Research aims

STUDY [: SF3BI-MUTANT MODELS OF RNA MIS-SPLICING UNCOVER UBAT AS A
THERAPEUTIC TARGET IN MYELODYSPLASTIC NEOPLASMS

To evaluate previously established patient-derived iPSC lines and isogenic
wild-type cells as models of SF3B1-mutant MDS biology by confirming key
SF3BIK°%t_gssociated features, including established splicing abnormalities
and erythroid phenotypes.

To discover novel SF3BIK°%-associated mis-splicing events.

To assess these across iPSC-derived hematopoietic cell types, additional
SF3Bl-mutant model systems, and an MDS patient cohort.

To define the molecular consequences of novel mis-splicing events by
evaluating RNA fate, ribosome association/translation efficiency, and the
stability and/or function of the resulting protein products.

To test whether these splicing-driven molecular consequences create
therapeutic vulnerabilities by assessing differential sensitivity of SF3BI-
mutant versus controls, with the goal of selectively impacting mutant cells

STUDY II: TARGETING DYSREGULATED EPIGENETIC AND TRANSCRIPTION FACTOR
NETWORKS IN KMT2A-REARRANGED AML USING IPSC MODELS

To leverage patient-derived AML iPSCs and isogenic controls to model
hematopoietic dysregulation in KMT2A-rearranged AML by differentiating
iPSCs into hematopoietic progenitor populations suitable for mechanistic
and functional analyses.

To define when and how transcriptional dysregulation emerges during
hematopoietic development in KMT2A:MLLT3 AML via time-course
transcriptomic profiling of iPSC differentiation.

To identify transcription factor programs and epigenetic regulatory
mechanisms associated with the AML-like HSPC transcriptional state by
integrating promoter activity with motif enrichment and regulatory
network inference.

To test therapeutic actionability of these inferred dependencies by
perturbing selected epigenetic regulators and assessing effects on AML-
associated gene programs and hematopoietic output.
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3 Materials and Methods

This section provides an overview of the relevant methods used in this thesis;
detailed descriptions are provided in the Methods sections of the studies.

Ethical considerations and patient material

All studies involving human-derived material were conducted in accordance with
ethical principles for medical research, including the Declaration of Helsinki, with
written informed consent obtained from all donors or patients prior to sample
collection and research use. The original iPSC lines used in Study | were generated
from bone marrow samples obtained from three patients with MDS-RS. Bone
marrow samples for primary CD34* CFU assays were obtained from three patients
with MDS-SF3B1 and two healthy donors at Karolinska University Hospital,
Huddinge, Sweden. The study was approved by the Ethics Research Committee
at Karolinska Institutet (2017/1090-31/4, 2022-03406-02 and 2024-03119-02).
The iPSC lines used in Study Il were previously generated from AML patient
samples obtained under Institutional Review Board-approved protocols at
Stanford University (Stanford IRB 18329 and 6453), following informed consent,

and reprogramming of AML samples was conducted under Stanford IRB 28197.

iPSC culture

Patient-derived iPSC lines were central to all projects of this thesis, and their
detailed properties are summarized in Table 3. In Study |, we used iPSC lines from
a female MDS patient with ring sideroblasts harboring an isolated SF3BIK70%F
mutation, which were generated by Asimomitis et al. [408]. iPSC lines used in
Study Il were previously generated by Chao et al. and are derived from two female
AML patients harboring KMT2A rearrangements [420]. iPSCs were generated by
transducing bone marrow mononuclear cells, primary AML cells, and T cells using
the CytoTune-iPSC 2.0 Sendai reprogramming kit. Specific details for the

reprogramming conditions are provided in the original publications.

All iPSC lines were cultured in feeder-free conditions on Matrigel hESC-Qualified
Matrix. Matrigel is a basement membrane extracellular matrix preparation isolated
from Engelbreth-Holm-Swarm mouse sarcomas, rich in extracellular matrix
proteins that support iPSC attachment and growth. iPSCs were maintained in
mTeSR Plus with 1% penicillin—streptomycin (P/S), clump-passaged with EZ-LiFT
Stem Cell Passaging Reagent.
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Study | Background Original ID | Study Name Cytogenetics | Co-Mutations
Study | | Female N-22.45 SF3BMTiPSC 46, XX, +mar
65 Years
MDS-RS MDS-22.45 | SF3BIF°EiPSC | 46, XX, +mar SF3B1-K700E
Study Il | Female SU223-T3 Normal iPSC 46, XX
20 Years
Relapsed AML SU223-B3 | AMLIPSC 11 46, XX FLT3-ITD
t(9;11)(p22;923) | NRAS-G12D
SEMA4A-Y589H
SU223-B5 | AMLIPSC12 (9M)(p22;023) | FLT3-ITD
NRAS-G12D
SEMA4A-Y589H
Female SUO42-3 AMLPSC 21 46, XX ARIDIA-P1326
61 Years t(10,M)(p11.2~12; | ATM-V2193|
De novo AML q23) DNMT3A-
S837Stop
SMGI-L250V
SPEN-T1673S

Table 3:iPSC lines used for this thesis including mutational and cytogenetic features.

Cell culture

Leukemic cell lines were used in both studies to assess whether findings from the
iPSCs were consistent across in vitro models. Study | employed the widely used
K562 erythroleukemia cells, including an engineered line harboring an SF3BIK70%F
mutation. To investigate whether PRC2 inhibition selectively acts in KMT2A-
rearranged cells in Study I, we compared responses in HL-60 and OCI-AML-3
(KMT2A wild-type) to THP-1 and MONO-MAC-6 (KMT2A:MLLT3) cells. K562, HL-
60, OCI-AML-3, and THP-1 cells were maintained in RPMI 1640 with glutamine, 10%
heat-inactivated fetal bovine serum (FBS), and P/S. MONO-MAC-6 cells were
further supplemented with non-essential amino acids, sodium pyruvate, and
insulin. Leukemic lines were maintained at densities between 0.1-1.0 x 10° cells/mL
as suspension cultures. HEK-293T cells were cultured in DMEM supplemented
with 10% newborn calf serum and P/S. All cells were cryopreserved in 50% culture
medium, 40% heat-inactivated FBS, and 10% DMSO using controlled-rate freezing.
Cell cultures were maintained in a humidified 37°C incubator under standard
tissue-culture conditions (5% CO,, normoxia) and regularly confirmed to be
mycoplasma-negative.
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Hematopoietic differentiation

The generation of hematopoietic cells from iPSCs was central to the studies
included in this thesis, as HSPCs enabled experimental modeling of disease-
associated phenotypes and responses to treatment. Over the course of the PhD
projects, multiple differentiation approaches and protocol modifications were
evaluated. Changes were made based on advances in the field as well as practical
considerations such as reagent availability, cost, and reproducibility. The following
section provides an overview of the hematopoietic differentiation workflows
applied in Study | and Study I, and outlines the current protocol implemented in
the group for ongoing projects (Figure 11). As described in the background section,
the generation of hematopoietic cells from iPSCs generally follows a stepwise
protocol designed to recapitulate key aspects of embryonic hematopoietic
development in vitro. This involves sequential media changes and timed cytokine
additions to guide lineage progression from early mesoderm-like states to
hemogenic endothelial cells, from which HSPCs emerge and accumulate in the
non-adherent/supernatant fraction.

For Study I, HSPCs were generated using the commercially available and widely
used STEMdiff Hematopoietic Kit. This kit is based on two media stages that
promote mesoderm-like induction, followed by hematopoietic specification. In
our hands, hematopoietic progenitors emerged from ~day 10, and cells were
harvested on day 13 for downstream experiments. This protocol was reproducible,
but it is comparatively cost-intensive and based on proprietary formulations,

which limits control over individual media components.

For Study II, we implemented a protocol adapted from Matsubara et al., based on
the Stemline Il Hematopoietic Stem Cell Expansion Medium formulation [425]. This
13-day protocol comprises four media stages, supported by the addition of
recombinant cytokines and morphogens. Compared with the kit-based protocol,
this approach provided greater flexibility and allowed for adjustments; however,
varying availability and incomplete disclosure of the base media formulation
remained a challenge.

Finally, recent work has marked a major milestone in the field with the
development of differentiation protocols capable of generating iPSC-derived
hematopoietic cells with multilineage engraftment potential, achieved without
introducing leukemic driver mutations or relying on artificial transcription factor
overexpression [378,379,411]. While this protocol was not used in the studies
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comprising this thesis, we have adapted it in our research group and it currently
serves as the standard for ongoing projects. Besides the biological relevance of
the generated cells, a practical advantage of this workflow is the use of fully
defined, serum-free conditions, which support long-term reproducibility and

simplify standardization across experiments.

STEMdiff Hematopoietic Kit; Study I, Study I
D-1 DO D3 D13

Mesoderm “ Hematopoietic " HSPC Harvest

mTeSR+ Medium A
Matsubara et al. 2019 (modified); Study Il

D-1 DO D2 D4 D13
Mesoderm ” + Patterning “ Hematopoietic " HSPC Harvest
mTeSR+ E8 E6 SLII
CHIR SB VEGF
BMP4 VEGF SCF
VEGF SCF FLT3L
IL3

Ng et al. 2024; current protocol

D-1 DO D1 D3 D7 D11 D14
Mesoderm || + Patterning |m| EHT " Hematopoietic ” HSPC Harvest
mTeSR+ SPELS > RETA > BMP4 BMP4 SCF
CHIR CHIR VEGF FGF2 TPO
Activin A SB FGF2 IGF1 FGF2
FGF2 VEGF IGF1 IGF2 IGF1

FGF IGF2 IGF2

Figure 11: Overview of the hematopoietic differentiation protocols used in the Study | and Study Il as well as
the current approach adapted by our research group. Arrows indicate additions that are continued from that
timepoint onward. Bottom: Representative images of differentiating cultures from normal iPSC. E8, Essential 8
medium; E6, Essential 6 medium; SPELS, SPELS medium; CHIR, CHIR99021; SB, SB-431542; RETA, retinyl acetate;
EHT, endothelial-to-hematopoietic transition.

In Study |, iPSC-derived hematopoietic progenitors were further directed toward
the erythroid lineage by changing to media conditions that promote erythroid
maturation and expansion. This included supplementing cells with erythropoietin
and transferrin throughout the protocol, as well as SCF and IL3 during the first
week. CD235a* erythroid cells were enriched by magnetic separation for

downstream analyses.
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Cell transfection experiments

Transfection-based approaches were used in Study | to manipulate UBAT
expression and to validate sensitivity to targeted inhibitors. Plasmid transfection
introduces an expression vector into cells to drive ectopic production of a protein
of interest, whereas siRNA-mediated knockdown delivers short double-stranded
RNAs that promote sequence-specific degradation of the target mRNA, thereby
reducing endogenous protein levels. For overexpression experiments, plasmids
encoding wild-type UBAT and the mis-spliced UBAIT variant (including the
additional 135 bp sequence) were introduced into HEK-293T cells using cationic
lipid-mediated transfection. To reduce endogenous UBAT expression, UBAI-
targeting siRNAs were delivered into K562 cells by electroporation. Following
transfection, cells were harvested at defined time points for downstream RNA and

protein analyses.

PCR-based assays

PCR-based assays were used in Study | to quantify individual gene expression
levels and to assess specific transcript isoforms, with a particular focus on UBAT
splice forms. For splice variant quantification, primer design was adapted from a
previously published strategy [426] to generate primer pairs spanning the
canonical splice junction, priming within the mis-spliced (variant) sequence, or
amplifying an external control region upstream of the splice site (Figure 12).
Primers were designed using various online tools and selected based on predicted
specificity against human transcript databases. Nucleic acids were isolated using
spin column—-based kits, and input amounts were quantified prior to downstream
analysis. For reverse transcription quantitative PCR (RT-gPCR), RNA was
extracted, quantified, and reverse-transcribed to cDNA prior to SYBR Green—
based gPCR. Expression changes were reported as fold change after normalization
to 18S rRNA and, where applicable, to the upstream control signal. Comparisons
between groups were made using the AACt method. Conventional PCR was used
to detect splice products using exon-spanning primers, with amplicons resolved
by gel electrophoresis to visualize product sizes. In addition, droplet digital PCR
(ddPCR) was used in Study | to determine SF3BI<'°¢ status per colony.
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Figure 12: Primer design strategy for the detection UBAT splice forms by PCR amplification of the UBAI™ region
(black) and quantification of UBAT splice forms by RT-gPCR (gray, blue, orange).

Immunoblotting

Immunoblotting was used to assess protein abundance and post-translational
marks in response to experimental perturbations. In brief, proteins were extracted
from cell pellets, separated by SDS—PAGE (where proteins are denatured and
resolved according to molecular weight), and then transferred to nitrocellulose
membranes. Proteins were detected using specific primary antibodies followed
by HRP-conjugated secondary antibodies. Signal was generated by addition of a
chemiluminescent HRP substrate, which produces light in an enzyme-catalyzed
reaction at sites where the target protein is bound, enabling band detection and
quantification. In Study |, immunoblotting was performed on whole-cell lysates to
confirm UBAI1 isoform expression across different experimental settings and cell
models. The method was also used to evaluate protein-level responses to
treatment, including global ubiquitination and apoptosis-associated readouts
such as PARP1 and caspase-3 cleavage. In Study II, immunoblotting was used to
quantify changes in H3K27me3 following treatment and to guide dose selection
based on target engagement. Across both studies, protein concentrations were
determined prior to loading, signals were acquired on an Odyssey FC system, and
band intensities were quantified in ImageStudio with normalization to

housekeeping or reference proteins.

mMRNA and protein stability assays

In Study I, mRNA and protein stability assays were used to determine how the
mis-spliced UBAI transcript and its encoded protein are regulated post-
transcriptionally. Transcript stability was assessed in a time-course experiment
by blocking de novo transcription with actinomycin D, which intercalates into DNA
and prevents RNA polymerase progression [427], followed by RT-gPCR using
splice form—specific primers. In parallel, we evaluated sensitivity to NMD, a
pathway that promotes the degradation of transcripts containing premature stop
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codons, by inhibiting translation with cycloheximide and assessing splice variant
presence by RT-PCR [198]. At the protein level, UBA1 isoform stability was
measured using cycloheximide chase experiments in cells transfected with
expression-tagged UBA1 constructs, with time-dependent changes in protein
abundance quantified by immunoblotting to estimate protein half-life. To evaluate
proteasome-mediated degradation, transfected cells were co-treated with the
proteasome inhibitor MG-132 and protein levels were assessed by
immunoblotting. Throughout these experiments, short-lived transcripts and

proteins, as well as established NMD target transcripts, were included as controls.

RNA sequencing analysis

RNA-seq was used in Study | and Study Il to profile the transcriptome, analyze
splicing patterns, and quantify promoter activity. In both studies, RNA from bulk
or sorted cell populations was isolated using column-based kits, quality-
controlled prior to library preparation, sequenced, and analyzed using workflows
that follow the same overall logic: read pre-processing, alignment/mapping,

quantification, and statistical or functional interpretation.

In Study |, full-length bulk RNA-seq libraries were prepared from total RNA using
SMARTer Stranded Total RNA-Seq Kits v2 with enzymatic ribosomal depletion and
sequenced using an lllumina NovaSeq 6000 S4 as paired-end 150 bp reads. Reads
were adapter- and quality-trimmed with TrimGalore and Cutadapt prior to two-
pass alignment to the human reference genome (GRCh38) using STAR, and gene-
level counts were generated from uniquely mapped reads using featureCounts.
Differential expression testing was performed with DESeq2, with p-values
adjusted using the Benjamini-Hochberg method. Differential splicing analysis
between splicing factor—-mutant and normal samples was performed using rMATS,
with p-values calculated using a likelihood-ratio test and adjusted using the
Benjamini—Hochberg correction. Selected splicing events were visualized using

sashimi plots generated with ggsashimi.

In Study II, RNA-seq and cap analysis of gene expression (CAGE) were used to
quantify transcript abundance and promoter activity, respectively. RNA quality
was assessed using Agilent TapeStation prior to library construction following
lllumina stranded messenger RNA prep ligation sample preparation protocols.
Sequencing was performed on an lllumina NextSeq platform. Raw sequencing data
were processed using the MOIRAI pipeline to obtain uniquely mapped reads. For
CAGE analyses, mapped reads were overlapped with the FANTOM5 robust
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promoter set to quantify promoter activity and compare promoter usage
between conditions. In addition, motif activity response analysis (MARA) was
performed to assess the promoter-proximal region (-300 bp to +100 bp)
surrounding representative CAGE peaks and infer transcription factor motif
activity. Protein interaction context for selected candidates was explored using
STRING network analysis (v12.0) with default parameters.

Flow cytometry

Flow cytometry was used throughout this thesis to benchmark the output of
hematopoietic differentiation protocols and to assess the cellular composition of
the generated progenitor populations. In Study | and Study II, iPSC-derived
hematopoietic progenitors were characterized using CD34, CD43, and CD45,
together with a viability dye to exclude dead cells. In Study |, erythroid
differentiation was additionally evaluated using CD71 and CD235a. Cells were
stained on ice and fixed prior to acquisition and analyzed on a BD LSRFortessa at
the MedH Flow Cytometry Core Facility, which receives funding from the
Infrastructure Board at Karolinska Institutet. Flow cytometry was further used for

viability assays, which are described in a separate section.

CFU assays

The colony-forming unit (CFU) assay is a standard functional readout for
hematopoietic progenitors and is used to assess clonogenic capacity and lineage
output. Cells are seeded at low density in a semi-solid, methylcellulose-based
matrix supplemented with cytokines, where single progenitors proliferate and
differentiate into discrete colonies that can be counted and scored. In this thesis,
CFU assays served as a functional readout in both studies and were performed
using iPSC-derived HSPCs, primary CD34* bone marrow cells, and leukemic cell

lines.

In Study I, HSPCs derived from control and AML iPSCs were plated in CFU medium
containing combinations of the EZH1/2 inhibitor UNC1999, the DNA
methyltransferase inhibitor 5-azacitidine, or vehicle, to assess the impact of these
compounds on the clonogenic capacity of KMT2A-rearranged cells. Colonies were
scored after 14 days. To assess self-renewal following treatment, replating assays
were performed by collecting colonies from co-treated and untreated AML
cultures and re-seeding cells in fresh CFU medium without drugs; secondary
colonies were scored after 10 days. To validate the findings obtained in iPSC-
derived cells, the same experimental setup was applied to an AML cell line panel
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(HL-60, OCI-AML-3, THP-1, and MONO-MAC-6), with adjustments to seeding

density and culture duration.

In Study I, CFU assays were performed using SF3BMT and SF3BI°%F K562 cells to
examine the effect of UBAT inhibition with TAK-243 (or vehicle) on colony-forming
potential. CFU assays were also performed using primary CD34* cells from SF3BI-
mutated MDS patients and healthy donors. CD34" cells were enriched from bone
marrow mononuclear cells by magnetic separation and plated under TAK-243 or
vehicle conditions. After 14 days, colonies were scored and individual colonies
were picked for DNA isolation followed by droplet digital PCR to determine the
contribution of SF3BI-mutant versus residual wild-type progenitors. To reduce
bias and improve reproducibility, colony scoring and colony picking were

performed in a blinded manner.

Viability assays

Viability assays were used in Study | to determine how different compounds
affected SF3BI-mutant versus wild-type cells and to generate dose-response
curves across the model systems. Cells were treated for 24-72 hours and,
depending on the assay format, viability was assessed by either flow cytometry—
based staining or a luminescence-based readout. For flow cytometry, treated
cells were stained with ApoTracker Green and the Aqua LIVE/DEAD viability dye,
and live cells were defined as Aqua-/ApoTracker- singlets. For the luminescence-
based approach, CellTiter-Glo was used to quantify intracellular ATP as a proxy
for metabolically active cells. Following treatment, CellTiter-Glo reagent was
added directly to the cultures and luminescence was recorded on a plate reader.

Dose-response curves were fitted to determine ICs, values where applicable.

Data analysis

Flow cytometry data were analyzed using FlowJo v10. Statistical analyses were
primarily performed in GraphPad Prism v10 and RStudio, and data are presented
as mean = standard error of the mean (SEM) unless stated otherwise. Statistical
comparisons were performed using unpaired t-tests, one-way ANOVA, or two-
way ANOVA, with multiple comparisons controlled using Sidak, Holm-Sidak, Tukey,
or Dunnett post hoc tests, as indicated in the figure legends. Nonlinear regression
was used to fit dose-response relationships (four-parameter logistic curves for

IC5, estimation) and decay kinetics (one-phase decay).
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4 Results and Discussion

4.1 Studyl

Study rationale

MDS with SF3B1 mutation (MDS-SF3BJ) is a clinically and biologically distinct
subtype of myelodysplastic neoplasms, characterized by ring sideroblasts and
predominantly erythroid cytopenias. SF3BT mutations alter splice site recognition,
causing widespread cryptic 3' splice site usage, and resulting in mis-splicing of
genes implicated in hematopoietic and erythroid differentiation. Progress in
identifying disease-relevant therapeutic targets has been slowed by the fact that
splicing patterns are cell context-dependent and are not consistently captured
across commonly used systems (including SF3B1 mouse models, limited primary
material, and unrepresentative cell line models). To address this in Study |, we
used genetically matched SF3BI°% and SF3BMT patient-derived iPSCs as a
scalable human platform. We applied full-length RNA-seq with unsupervised
splicing profiling during hematopoietic differentiation to uncover SF3BI-linked
mis-splicing events with tractable downstream consequences, ultimately
highlighting UBAT mis-splicing as a potential therapeutic vulnerability.

Results

Patient-derived, isogenic SF3BIK0%t iPSCs were differentiated toward
hematopoietic and erythroid lineages and analyzed by full-length RNA-seq. This
revealed a previously unreported RNA mis-splicing event in UBAT(UBAT™), created
through the retention of an intronic sequence between UBAT exons 5—6 (Figure
13A; Study |, Figure 1C). RT-gPCR and RT-PCR detected UBAI™ in both SF3BI<700t
iPSC-derived erythroid cells and CD34* HSPCs, but not in SF3BM™T controls and
these results were reflected in K562 cells and primary material (Figure 13B; Study
I, Figure 1D-F). The same event was present in the patient used for iPSC
reprogramming and, in cohort CD34* RNA-seq data, appeared exclusively in
SF3Bl-mutated cases, with no detection in other splice factor-mutated or wild-
type MDS or in healthy donors (Figure 13C; Study |, Figure 5C—F).
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Figure 13: UBAT mis-splicing in MDS-SF3BI. (A) Sashimi plots of the mis-spliced region of UBATin SF3BMT and
SF3BIK79%t from total RNA sequencing of iPSC-derived CD235a* erythroblasts, and primary CD34* BM MNCs
from the original MDS-SF3BI1 patient (n = 1). Black, canonical splice junction counts; orange, mis-spliced
junction counts. y-axis, absolute read counts. (B) gPCR analysis of UBAI™ relative to 18S in iPSC-derived CD34*
HSPCs (n = 4), K562 cells (n = 3), and CD34" (filled circles) or CD34~ (empty circles) cells from primary BM
MNCs of healthy donors (NBM; n = 6) and SF3BI-mutated MDS patients (SF3BI™; n = 7). Mean = SEM relative
expression. Unpaired t-test. (C) Violin plots of UBAT intron 5 mis-splicing PSI from total RNA sequencing of
CD34* BM MNCs from our previously published data [208], organized by splicing factor mutation. SF3BI™,
SF3BI-mutated; PSI, percent spliced-in; BM MNC, bone marrow mononuclear cells; NBM, normal bone marrow
from healthy donors. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Because UBAT encodes an E1 enzyme essential for initiating the ubiquitination
cascade, we asked whether UBAI™ was accompanied by altered protein
abundance. Indeed, SF3BI9% iPSC-derived hematopoietic cells showed lower
total UBA1 protein than SF3BTT cells (Figure 14A; Study |, Figure 1G—H). An
orthogonal SF3BIK0% K562 model recapitulated both UBAI™ and reduced UBAI
protein, indicating that this association was not limited to iPSC-derived cells
(Figure 14B-C; Study |, Figure 2A-B, 2H-I).
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Figure 14: Models of MDS-SF3BI feature reduced UBAI protein levels. (A) Quantification of UBAla/b protein
levels in whole-cell lysates of SF3BMT and SF3BIK°°t iPSC-derived CD34* cells by immunoblotting analysis (n
= 4). Actin was used as a loading control, and relative signals were normalized by lane normalization factor.
Mean = SEM relative UBAI signal intensity. Unpaired t-test with Holm-Sidak’s multiple comparisons test. (B)
Immunoblot analysis and (C) quantification of UBA1 isoforms in whole cell lysates from SF3BT™ and SF3BIK70%
K562 cells (n = 3). Actin was used as a loading control for total UBA1and UBAI1b; Lamin Bl was used as a loading
control for nuclear UBAla, and relative signals were normalized by lane normalization. Mean + SEM relative
signal intensity. Unpaired t-test with Holm-Sidak’s multiple comparisons test. *, P < 0.05.

Because many SF3Bi1-associated mis-splicing events are degraded through NMD,
reducing levels of functional transcript, we tested whether altered RNA stability
could explain reduced UBAI protein. UBAI™ does not introduce a premature stop
codon, and after transcriptional shutoff, UBAI™ and canonically spliced UBAT
transcripts displayed similar stability (Figure 15A; Study |, Figure 2C). In parallel,
inhibiting NMD did not increase UBAI™ abundance; in contrast, ABCB7, a known
MDS-SF3B1 mis-spliced NMD target accumulated under the same conditions
(Study |, Figure 2D-E). Polysome profiling further showed enrichment of UBAIT
transcripts in polysome fractions irrespective of splice form, suggesting that
impaired ribosome engagement is not the primary driver of reduced protein
(Study |, Figure 2F-G). This shifted our focus toward post-translational
mechanisms. When expressed in HEK-293T cells, FLAG-tagged UBAI™ protein
accumulated to much lower levels than UBATYT despite comparable transcript
levels (Study |, Figure 3A—E). Cycloheximide chase experiments showed rapid
decay of UBAI™ protein compared with UBAI"T, and proteasome inhibition
partially rescued UBAI™ abundance, consistent with proteasome-dependent
clearance of an unstable protein (Figure 15B; Study |, Figure 3F-I).
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Figure 15: UBAT1 stability analysis. (A) gPCR analysis of UBAT™T and UBAT™ transcript levels in SF3BTK°%F K562
cells after treatment with actinomycin D (ActD) for the indicated time points (n = 3). Results were normalized
to O hours, and MYC was included as a fast-degrading transcript control. Mean + SEM relative expression,
One-phase decay nonlinear curve fit (dotted line). (B) quantification of FLAG-tagged protein levels in HEK293T
cells 72 hours post-transfection with UBAT WT, UBAT MS or control plasmids and treatment with 50 pg/ml
cycloheximide (CHX) for the indicated time points (n = 3). Actin was used as a loading control, and signals
were normalized to relative signals at O hours for each group. Mean + SEM relative signal intensity, interpolation
of a one-phase decay non-linear regression curve (dotted line).

On this basis, we tested whether SF3BI°% cells are more sensitive to
pharmacologic UBAI inhibition. A previous study identified TAK-243 as a potent,
selective, small-molecule inhibitor that blocks catalytic activity of UBA], leading to
a depletion of cellular ubiquitin conjugates [428]. TAK-243 reduced viability to a
greater extent in SF3BT¥°% than in SF3BTVT K562 cells (Study |, Figure 4A-B). We
observed a similar effect in iPSC-derived CD34* HSPCs, where SF3BT¥CCE cells
were more sensitive than isogenic controls (Study |, Figure 5A-B). Sensitivity also
correlated with UBA1 abundance: siRNA-mediated UBAT knockdown increased
TAK-243 sensitivity (Study |, Figure 4C—F). Functionally, TAK-243 shifted clonal
composition in WT:mutant co-cultures and reduced clonogenic output in colony
assays, with mutant progenitors markedly reduced while WT clonogenicity was
relatively preserved (Study |, Figure 4G-I). Finally, in primary CD34*-enriched
bone marrow mononuclear CFU assays, TAK-243 reduced colony output more in
MDS-SF3B1 samples than in healthy controls, and single-colony genotyping
indicated that this reduction was largely driven by loss of SF3BI-mutant colonies,
with relative preservation of WT colonies from residual healthy clones (Figure 16;
Study |, Figure 5G-I).
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Figure 16: UBAT™ in MDS-SF3BI patients confers sensitivity to UBA1 inhibition. (A) Experimental strategy to
assess the effect of UBAT inhibition on colony growth and composition in CD34*-enriched bone marrow MNCs
from MDS-SF3BI patients and healthy controls. (B) Effect of UBAT inhibition on CFU counts relative to DMSO
and (C) frequency of SF3BMT and SF3BI™ colonies relative to total CFU counts from MDS patient (n = 3) or
healthy control (n = 2) cells treated with 32 nM TAK-243 or DMSO for 14 days. Numbers within brackets indicate
colonies assessed by ddPCR. Mean + SEM. Unpaired t-test. *, P < 0.05; ns, not significant. MDS-RS, MDS with
ring sideroblasts.

Discussion

The main finding of Study | is the identification of UBAT mis-splicing as a mutant
SF3Bi-linked event that lowers the available UBA1 protein pool and preferentially
sensitized mutant cells to pharmacologic UBA1 inhibition across model systems.
Advances in sequencing and integrative analyses continue to refine our view of
aberrant splicing events in MDS-SF3B7 and help connect individual splicing events
to their molecular consequences, which is important for improving mechanistic
understanding and therapeutic approaches [429]. Using 5™-based full-length
RNA-seq with unsupervised splicing analysis in iPSC-derived hematopoietic cells,
we identified UBATI™ as a reproducible, SF3B1 mutation-specific event detected
across progenitor and erythroid stages. Because 5'-based RNA-seq generates
reads across the transcript body and captures intron-exon junctions in both
nascent pre-mRNA and mature transcripts, it provides better splice junction
coverage for identifying novel splice variants than 3' chemistry, which is biased

toward the 3’ end and can miss upstream splicing events.

We supported these findings with primary material and a patient cohort analysis
in which UBAI™ was observed in SF3BI-mutant cases but not in MDS with
mutations in other members of the splicing machinery, or in healthy donors. More
broadly, these results illustrate how iPSC-based differentiation can provide a
controlled, disease-relevant human system to discover and validate specific
molecular events and then test their consequences across complementary

models.
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Mechanistically, UBAT™s differs from many previously described SF3BI-linked mis-
splicing events that introduce premature termination codons and reduce gene
output through NMD [198,199]. Here, UBAT™ behaves as a stable transcript that is
not subject to NMD and remains engaged with the translation machinery, directing
attention to post-translational mechanisms. The mis-spliced product translates
to a sequence of 45 amino acids, inserted into the inactive adenylation domain,
and protein stability assays demonstrated a markedly reduced half-life with
proteasome-dependent degradation of the UBAIS protein. While we could not
assess whether the UBAI™ protein retains enzymatic function, rapid turnover is
consistent with reduced total UBA1 protein in SF3Bl-mutant cells and offers a
practical reason why detecting an endogenous UBAI™-specific protein species is
challenging when degradation is fast. A prior study observed reduced UBA1 RNA
and protein levels in splicing-factor—-mutant MDS, but did not attribute this to
UBAT mis-splicing [430]. In contrast, our data show reduced UBAI protein in MDS-
SF3BI1 despite unchanged UBAT transcript levels, consistent with protein-level loss

driven by the unstable mis-spliced variant.

Because UBAI catalyzes the initiating step of ubiquitin activation and is essential
for cellular viability [431], a reduced UBAT1 protein pool would be expected to impair
proteostasis capacity. Notably, partial UBAI loss has been described to trigger
adaptive stress responses, which is compatible with the idea that SF3BI-mutant
hematopoietic cells can persist despite a reduced UBA1 pool [432]. Prior work has
also described stage-specific mis-splicing and survival-associated programs in
SF3BIl-mutant cells [202,433], providing more context for how this deficit may be
tolerated. Finally, UBAI™ also connects conceptually to VEXAS, where somatic
UBAT mutations cause loss of cytosolic UBAlb expression and accumulation of
catalytically impaired isoforms [214]. In MDS-SF3B], SF3BI1-driven mis-splicing is
associated with reduced total UBAI protein, irrespective of isoform, without
complete loss of function. The clinical context differs as well, with a prominent
inflammatory phenotype in VEXAS [219] versus a comparatively lower
inflammatory profile reported for MDS-SF3BI relative to other low-risk subgroups
[434].
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4.2 Studyll

Rationale

Acute myeloid leukemia (AML) with KMT2A rearrangements (KMT2A-r) is an
aggressive subtype that occurs in both adults and children but is particularly
enriched in younger patients. KMT2A encodes a histone H3K4 methyltransferase
that helps maintain transcriptionally active chromatin at promoters and
enhancers. Rearrangements convert this epigenetic regulator into oncogenic
fusion proteins with many partners, frequently involving elongation machinery
components such as AF9, encoded by MLLT3. KMT2A-rearranged AML is generally
associated with poor prognosis, with resistance to chemotherapy and high
relapse rates. Disruption of epigenetic and transcriptional regulation often
represents early, disease-initiating lesions in HSPCs, making epigenetic
dependencies promising therapeutic avenues. Study Il aims to address a lack of
physiologically relevant, human model systems by using HSPCs from patient-
derived KMT2A-r AML-iPSCs and isogenic wild-type controls to capture disease-
associated regulatory mechanisms. The goal was to define the transcription factor
and epigenetic networks that underlie the gene expression program in AML

development and test whether they can be exploited for treatment.
Results

To generate disease-relevant hematopoietic cells from patient-derived KMT2A-r
AML-iPSCs and isogenic wild-type controls, we adapted a differentiation protocol
that robustly produced hematopoietic progenitors (Figure 18A; Study I, Figure
1A-B). Flow cytometry analysis showed that while both cell lines generated viable
hematopoietic populations, AML-derived cultures retained an earlier progenitor-
like surface phenotype at the sampled time point, consistent with delayed
maturation (Figure 18B; Study II, Figure 1C-D). RNA-seq analysis separated the
two lines by developmental stage: At the iPSC stage, AML and control cells
clustered closely but diverged after hematopoietic specification, indicating that
the KMT2A:MLLT3-associated transcriptional program becomes apparent during
differentiation (Figure 18C; Study I, Figure 1E). Comparing differentiation-
associated gene expression changes, AML-HSPCs included gene sets that failed
to activate normally, genes that were inappropriately repressed, and genes that
were uniquely induced in AML (Study II, Figure 1F). Together, these findings show
that KMT2A:MLLT3 is associated with stage-dependent transcriptional
dysregulation that emerges as cells enter the progenitor state.
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Figure 18: Hematopoietic specification of KMT2A-r iPSCs induces a transcriptionally distinct profile. (A)
Schematic depicting the generation of HSPCs from AML and control-iPSC lines. (B) Representative flow
cytometry diagrams of hematopoietic cell populations from control- and AML-HSPCs after 13 days of
differentiation. (C) Principal Component Analysis plot from RNA-seq of iPSCs (triangles) and day 13 HSPCs
(circles) from AML and control lines, showing the first two principal components (n = 3).

To connect these changes to upstream regulatory mechanisms, we performed
CAGE profiling across differentiation time points and observed time-dependent
deregulation of gene expression in AML, including a prominent subset of genes
showing aberrant repression during hematopoietic specification (Figure 19A;
Study I, Figure 2A-B). Motif activity response analysis (MARA) showed broad
divergence as differentiation progressed, with AML cultures displaying altered
motif activity, including motifs that remained upregulated and others that failed
to activate appropriately (Figure 19B; Study IlI, Figure 2C-D). ChlP-signature
analyses associated the repressed gene set with Polycomb complex-connected
regulators, and DNMT-associated signatures also emerged among variable
regulators (Figure 19C, Study Il, Figure 2F). Network analysis further connected
transcription factors with altered motif activity to Polycomb Repressive Complex
1/2 (PRC1/2) components, supporting a coupled transcription factor—Polycomb
network that contributes to transcriptional repression in AML-HSPCs (Study I,
Figure 2G).
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Figure 19: PRC2 members associate with repressed genes in AML-HSPCs. (A) Heatmap showing unsupervised
clustering of the 100 most variable genes in control- and AML-iPSC during hematopoietic specification with
cells harvested at the indicated time points (n = 4). (B) Individual motif activity profiles of SPIT and LMO2
promoters between control and AML differentiation as inferred from CAGE data using MARA. Mean + SEM.
Unpaired t-test for each time point. (C) Heatmap showing unsupervised clustering of candidate ChIP-seq
signatures from ChIP-Atlas, highlighting differential ChIP-seq signatures between control- and AML-iPSC over
hematopoietic differentiation. *, P < 0.05; **, P < 0.01; *** P < 0.001.

This motivated us to functionally test Polycomb dependency in KMT2A-r cells.
EZH1 and EZH2 are core components of PRC2, catalyzing repressive H3K27me3
marks. Treatment of iPSC-derived HSPCs with the dual EZH1/2 inhibitor UNC1999,
alone or combined with 5-azacitidine, reduced global H3K27me3, consistent with
on-target PRC2 inhibition, while short-term expansion was not detectably altered
(Study I, Figure 3A-D). In contrast, colony assays showed that PRC2 inhibition
impaired clonogenic output across independent AML-HSPC clones, while control-
derived HSPCs were less affected under the same conditions; prior exposure also
reduced replating capacity, consistent with diminished progenitor function and
self-renewal potential (Figure 20A; Study II, Figure 3E—F). The dependence of this
effect on KMT2A-r was supported in leukemia cell lines, where clonogenic
suppression corresponded to KMT2A:MLLT3 status (Figure 20B; Study II, Figure
3G).
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Figure 20: Epigenetic targeting selectively impairs clonogenicity in KMT2A-r AML cells. (A) CFU counts per
1000 seeded HSPCs treated with 2 uM UNC1999, 1 uM AZA, 2 pM UNCI1999 + 1uM AZA, or DMSO for 14 days (n
= 6 for DMSO in AML 1.1 and control, n = 3 for others). Mean = SEM. Two-way ANOVA with Dunnett's multiple
comparisons test. (B) CFU counts per 1000 seeded cells from leukemic cell lines treated with 2 uM UNC1999,
TpM AZA, 2 pM UNC1999 + 1uM AZA, or DMSO for 10 days (n = 3). Mean + SEM. One-way ANOVA with Dunnett’s
multiple comparisons test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.

To define upstream transcriptional changes, RNA-seq after treatment showed a
markedly stronger response in AML-HSPCs than in controls, with enrichment for
Polycomb targets and gene sets consistent with derepression of developmentally
regulated (bivalent) loci. The combination treatment with 5-azacitidine enhanced
gene derepression relative to UNC1999 alone (Figure 21A; Study I, Figure 4A-C).
Collectively, these results tie Polycomb-associated repression in KMT2A-r AML
progenitors to a functional dependency that can be targeted pharmacologically,
partially shifting gene expression toward a more typical hematopoietic program

and reducing clonogenic capacity (Figure 21B; Study I, Figure 4E).
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Figure 21: PRC2 inhibition derepresses transcription of Polycomb target genes that are downregulated in AML-
HSPCs. (A) Volcano plot displaying differentially expressed genes identified using DESeq2 in AML (rose) and
control (blue) HSPCs, following 72 h of treatment with 2 pM UNC1999 (left) or 2 uM UNCI1999 and 1 pM AZA
(right) compared to DMSO (n = 3). Dashed lines denote cutoffs for the significance threshold (FDR = 0.05,
horizontal; [logz(fold change)l = 1, vertical). (B) Heatmap showing row-wise z-scores of loga(CPM) expression
values of 154 upregulated genes in AML-HSPCs treated with 2 uM UNCI1999 or 2 uM UNCI1999 + 1 uM AZA that
overlap with genes that are downregulated in DMSO-treated control-HSPCs.

Discussion

In Study Il, we used patient-derived KMT2A-rearranged AML-iPSCs to show that
hematopoietic specification is accompanied by transcriptional rewiring of HSPCs
cells with prominent Polycomb-associated repression. We show that PRC2
inhibition can partially relieve this repressive program and reduce leukemic-
associated phenotypes, most clearly reflected by reduced clonogenic capacity.
Because iPSCs retain the genetic background of the patient [353], while
reprogramming broadly resets epigenetic state [435], this system provides a
tractable way to test whether disease-linked regulatory states re-emerge
specifically during hematopoietic lineage development [420]. In line with this, AML
and control cells showed highly similar transcriptional profiles at the pluripotent
stage but diverged as they transitioned into HSPC-like states, supporting the view
that the leukemic program becomes evident during specification rather than
being present in iPSCs. A plausible cause for this is disruption of transcription
factor—epigenetic control mechanisms that shape AML initiation and
maintenance [436]. Consistent with this, MARA network analysis identified
changes in motif activity for several transcription factors overlapping previously
described regulatory networks in NPMI-mutated AML [437,438]. Among the
transcription factors with reduced motif activity, SPI1 (PU.1) is a driver of myeloid

specification and is active in THP-1 cells [439]. In addition, dysregulated genes
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were enriched for PRC2 targets and bivalent genes, supporting a model in which
altered transcription factor activity and chromatin regulation together constrain

normal hematopoietic programs.

The Polycomb axis provides a mechanistic bridge between these transcriptional
patterns and progenitor cell function. Polycomb regulation is central to balancing
self-renewal and differentiation in hematopoiesis [440,441], and aberrant
Polycomb activity has been implicated across hematologic malignancies [442]. In
KMT2A-rearranged AML, PRC2 members have been connected to disease
maintenance and progression, arguing that PRC2 activity may contribute to
disease maintenance rather than reflecting only the leukemic state [442]. In our
study, PRC2 inhibition with UNC1999, alone or combined with 5-azacitidine,
preferentially reduced clonogenic output and replating potential in KMT2A-
rearranged models, while the corresponding effect was weaker in control HSPC-
like cells and in KMT2A-wild-type leukemia cell lines. This supports the
interpretation that sensitivity is most consistent with ties to the KMT2A-r
background rather than co-occurring mutations. Prior mouse studies are
consistent with this, showing that KMT2A-r AML cells are dependent on PRC2
activity [443]. Finally, bivalent loci provide a connection between Polycomb
activity and developmental regulation. Bivalency is frequently perturbed in cancer,
and AML is often associated with increased DNA methylation and transcriptional
repression [444,445]. Here, we showed reduced expression of bivalent genes in
KMT2A:AF9 AML-HSPCs, particularly those related to hematopoietic fate.
Combined PRC2 and DNMT inhibition preferentially reactivated these genes in
AML-HSPCs compared with controls. Collectively, these results suggest that
Polycomb-associated repression contributes to a constrained developmental
state in KMT2A-rearranged hematopoietic progenitors and can be partially

reversed by epigenetic inhibition.
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5 Conclusions

Both Study | and Study Il used patient-derived iPSCs to model myeloid
neoplasms and to connect defined genetic lesions to molecular mechanisms that
emerge during hematopoietic specification. In both studies, the iPSC platform
supports functional testing of these mechanisms, including whether lesion-
associated molecular changes create targetable vulnerabilities. Key observations
from the iPSC-derived systems were then validated in complementary cell
models and primary material to demonstrate that they are not confined to a single
experimental setting. Together, these studies underscore the value of iPSC-
derived hematopoietic cells as disease-relevant models and as a practical bridge
between unbiased molecular discovery and experimentally testable mechanisms

in myeloid malignancies.
Study I: UBAT as an SF3BI-linked vulnerability in MDS

e SF3BI splice factor mutations are associated with a specific UBAT mis-
splicing event (UBAT™) in MDS, identified in iPSC-derived hematopoietic
progenitors and corroborated in cell lines and primary patient material.

o While the UBAI™ transcript is stable and translation-engaged, the
resulting protein product is rapidly degraded, consistent with reduced
UBAL levels in SF3BI-mutant cells.

e Areduced UBA1 “buffer/capacity” in SF3BI-mutant cells is associated with
increased susceptibility to UBAT1 inhibition across model systems,

supporting UBAI targeting as a potential treatment strategy in MDS-SF3BI.
Study II: Targeting Polycomb in KMT2A-rearranged AML

e KMT2A-rearranged AML iPSCs diverge from isogenic controls during
hematopoietic specification, establishing a distinct transcriptional
program, characterized in part by aberrant repression of developmental
genes.

e Promoter- and network-level analyses indicate disrupted transcription
factor—epigenetic regulation enriched for Polycomb targets and bivalent
genes, consistent with a constrained developmental program in AML-
HSPCs.

¢ PRC2 inhibition, alone or in combination with DNMT inhibition, partially
relieves this repressive program and reduces leukemic features in a

KMT2A-rearranged context.
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6 Points of perspective

Over the past decade, patient-derived iPSCs have enabled mechanistic
dissection of how defined genetic events in HSPCs reshape differentiation
programs and create targetable therapeutic vulnerabilities [411,413].
Reprogramming captures patient mutational backgrounds in clonal lines, while
genome editing enables introduction or correction of mutations in an isogenic
setting, helping to delineate the contribution of individual lesions to disease
phenotypes [446].

Both Study | and Study Il leverage iPSC lines derived from primary patient
material, converting finite clinical specimens into a renewable and expandable
experimental resource. This helps overcome practical constraints that often limit
work with primary hematopoietic samples, including restricted material
availability, variable viability, and differences between sampling time points, and it
also reduces the vulnerability of a project to irreversible loss of scarce primary
specimens. In Study |, access to biobanked, clinically well-annotated MDS patient
material at our center enabled the establishment and long-term use of disease-
relevant iPSC models, underscoring how well-managed biobanks can transform
one-time collections into reusable experimental platforms. In Study II, patient-
derived AML iPSC lines generated in a different laboratory were shared and
expanded for downstream analyses in this thesis. This is particularly valuable in
AML, where aggressive and/or relapsed disease can make repeated collection of

high-quality primary material difficult, or not feasible.

A central advantage of iPSC-based modeling is the availability of clonal lines that
can be expanded and differentiated repeatedly, improving experimental control
and strengthening causal connections between genotype and phenotype relative
to heterogeneous primary samples. A particular strength is the possibility of
generating isogenic control cells that help isolate lesion-associated effects from
patient-to-patient variability. In Study |, paired SF3BT¥°°t and SF3BMT iPSC lines
from the same patient enabled a close comparison of mutant and wild-type
hematopoiesis. In Study I, control iPSCs were generated from patient-derived T
cells that did not harbor the KMT2A rearrangement present in the leukemic
sample, providing a genetically matched non-malignant reference, albeit also
lacking the other genetic variants of the mutant clone. iPSC reprogramming largely
resets the epigenetic landscape, and it has been shown that many disease-

associated regulatory programs are re-established only upon lineage
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commitment and maturation [447]. This allows for the study of disease
mechanisms and treatment responses in a cell-type—specific manner. Study Il
illustrates how iPSC differentiation can be used to resolve the developmental
timing and cellular contexts in which lesion-linked transcriptional and epigenetic
programs emerge during hematopoietic specification, rather than relying solely on
analyses of differentiated populations. However, this also necessitates robust

protocols for the generation of disease-relevant cells.

Despite these strengths, important limitations remain for modeling MDS and AML
in vitro. It has become evident that some variants are difficult to reprogram and
that reprogramming is a selective bottleneck rather than a neutral snapshot of the
patient’s clonal architecture. Consistent with this, iPSC derivation in the MDS-
SF3BI setting can be skewed toward normal clones even when the starting
material has a high SF3BIF°%* variant allele fraction. While the KMT2A-r was
successfully captured in the cells used for Study Il, prior reports suggest that
certain cytogenetic events and mutations can be selected against during
reprogramming [411,448,449]. This may reflect a requirement for intact epigenetic
regulators to establish pluripotency and/or activation of stress checkpoints such
as p53 in highly aneuploid or mutation-burdened cells [450]. Consequently, not
all leukemic genotypes are likely to be directly amenable to derivation of stable
pluripotent lines. Encouragingly, refined protocols have improved reprogramming
efficiency in AML, and genome editing has enabled introduction of lesions after
reprogramming, together supporting the development of more representative
iPSC panels [204,423,424].

The study of diseases originating at the HSC level in vitro remains challenging due
to the rarity of these cells and difficulties in maintaining this multipotent cell state
in culture [451]. Differentiation efficiencies of iPSCs into HSPCs can vary by
genotype, and often yield progenitors with restricted expansion capacity, limiting
scalability and reproducibility [452]. More fundamentally, generating bona fide
long-term repopulating HSCs from iPSCs has proven difficult. The hematopoietic
differentiation protocols used in Studies | and Il generated a heterogeneous
population of hematopoietic progenitor cells that were characterized by flow
cytometry using common HSPC markers. However, we did not specifically isolate
cell populations resembling phenotypic HSCs nor confirm HSC properties such as
self-renewal and multipotency through transplantation. Accordingly, our data do
not establish whether the iPSC-derived cells include functionally defined HSCs,
and their engraftment capacity remains uncertain, given that iPSC-derived HSPCs
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frequently lack definitive hematopoietic potential [453]. Recent fully defined
differentiation protocols yielding multilineage-engrafting hematopoietic cells
therefore represent a notable advance toward the generation of higher-fidelity
models, and it will be interesting to see how these developments shape the
robustness and interpretability of in vitro disease modeling systems in the coming
years [379,394,422]. Another more general limitation of conventional in vitro
culture systems is the omission of bone marrow niche cues that influence clonal
fitness, inflammation, differentiation, and treatment resistance. This has motivated
the incorporation of microenvironmental components through co-culture, 3D
systems, and engineered niche approaches to enhance physiological relevance
while balancing experimental convenience [454-456].

Importantly, these limitations do not preclude translational impact of iPSC
platforms, as evidenced by progress in other iPSC-derived lineages. Although
iPSC-derived hematopoietic models are most often used for mechanistic studies
and hypothesis-driven testing, translational iPSC workflows are currently more
mature in several other areas [457]. In neurodegenerative disease, patient iPSC-
derived neurons and neural organoid models have supported phenotypic
screening and drug-repurposing efforts that have progressed into clinical studies,
including iPSC-informed trials in ALS and familial Alzheimer’s disease [458]. In
parallel, iPSC-derived cell types are increasingly used to capture human-relevant
drug liabilities, for example through nephrotoxicity testing in iPSC-derived
podocytes and cardiotoxicity testing in iPSC-derived 3D cardiac tissues [457].
Finally, iPSC technology is also contributing directly to therapeutic development
via cell-based products, with clinical trials spanning multiple indications, including
iPSC-derived dopaminergic progenitors in Parkinson’s disease and allogeneic
iPSC-derived immune cell products such as NK and CAR-NK cells [459,460].

Another consideration is that many studies using iPSCs include relatively few
patient lines, limiting generalization given the heterogeneity of MDS/AML. Similarly,
the studies in this thesis are largely based on iPSC lines derived from a single
individual per genotype, and while key experiments were complemented with
additional iPSC lines/clones, orthogonal in vitro models, and interrogation of
available datasets, this limited number of patient-derived lines remains an
important limitation. The generation, maintenance, and differentiation of iPSCs are
time-consuming, costly, and at times inefficient. However, continued advances in
reprogramming, gene editing, and differentiation protocols are expected to

facilitate the generation of larger, genetically diverse iPSC panels. Such resources,
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particularly when paired with matched isogenic controls, should enable more
systematic interrogation of lesion-specific mechanisms, co-mutation effects, and
therapeutic responses [421].

While MDS-SF3BI typically presents as a lower-risk disease dominated by
symptomatic anemia, standard therapy remains largely supportive and focused
on improving erythropoiesis. Allogeneic HSCT is the only potentially curative
option; however, it is often precluded by advanced age and comorbidities. Our
identification of UBAT mis-splicing as an SF3BI-linked vulnerability in Study |
suggests a potential strategy to preferentially reduce the mutant clone while
preserving residual wild-type hematopoiesis. Consistent with this, TAK-243, which
blocks UBAl-mediated ubiquitin activation, preferentially reduced SF3BI-mutant
cells while sparing wild-type HSPCs at lower concentrations. Although treatment
did not fully eradicate mutant cells and TAK-243 also impacted normal cells at
higher concentrations, our data support the possibility of a lower-intensity,
disease-modifying approach aimed at reducing mutational burden and

potentially delaying the need for transplantation.

To advance this concept toward clinical translation in MDS-SF3B], a next priority
is to strengthen the evidence for mutant-selective activity of TAK-243 in primary
hematopoiesis. Although we observed increased sensitivity of SF3BI-mutant
patient cells compared with normal bone marrow controls in CFU assays, the
number of primary samples analyzed in Study | was limited, and validation in a
larger cohort is warranted. While MDS-SF3BI represents a relatively molecularly
defined lower-risk subtype, expanding the analysis across additional patients
would help capture clinical and genetic variability and better define the
robustness of the effect. Beyond comparisons to healthy donors, lower-risk MDS
samples lacking UBAT™ would represent a particularly informative control group,
enabling a direct test of whether TAK-243 sensitivity is driven by SF3BI-
associated UBAI™ biology. Because clonal fitness in MDS is shaped by
competition and microenvironmental cues, it will also be important to assess
whether mutant selectivity is preserved in niche-supported settings. In this
regard, a previously developed 3D scaffold culture model for MDS-RS may be
useful, as it supports prolonged culture of primary bone marrow—derived
populations and maintenance of the mutant clone, providing a tractable system
to study clonal dynamics under more physiological conditions [347]. More broadly,
incorporation of iPSC-derived stromal support and other microenvironmental

components into advanced 3D culture systems should further improve
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assessment of drug effects in settings that better approximate the marrow niche
[457].

A recent study in a human VEXAS model suggested that impaired UBA1 function
can create a compensatory dependency on the alternative ubiquitin E1 enzyme
UBAB. Genetic loss of UBA6 or pharmacologic inhibition with the allosteric
compound inositol hexaphosphate (IP6) reduced growth and colony formation of
UBAT-mutant cells [461]. Although IP6 inhibits UBA6 only at high (millimolar)
concentrations, highlighting the need for more potent and selective agents, these
findings raise the question of whether similar UBA6-dependent compensation

occurs in SF3BI-mutant cells and could be therapeutically exploited.

Beyond E1inhibition alone, another angle not addressed in Study | is the essential
role of UBATin DNA damage responses that resolve replication stress and double-
strand breaks [462]. Interestingly, increased R-loop formation and DNA damage
have been associated with SF3BT and other splice factor mutations in MDS, and
mutant cells were preferentially sensitive to targeting of the downstream ATR-
Chk1 pathway [409,463,464]. Similarly, Bland et al. showed that SF3B1-mutant cells
were unable to resolve replication stress induced by PARP inhibition, leading to
selective killing of mutant cells [465,466]. Future work will be important to assess
rational combination strategies that leverage SF3Bl-associated vulnerabilities to

deepen responses and improve selectivity for mutant clones [429].

Finally, while Study | demonstrates that UBAI inhibition can selectively suppress
SF3Bl-mutant progenitors in vitro, and TAK-243 has shown activity across
multiple preclinical models of hematologic malignancies, clinical efficacy and
tolerability remain to be established [467-469]. An ongoing trial evaluating TAK-
243 in intermediate-2 or high-risk refractory MDS and leukemias (NCT03816319)
may be informative to define the therapeutic window and dosing, and to inform
whether UBA1-targeted strategies could be extended to MDS-SF3BI.

In Study II, we used patient-derived iPSC models of KMT2A-rearranged AML to
map transcriptional and epigenetic dysregulation during hematopoietic
differentiation and to test whether targeted epigenetic therapy could partially
counteract these abnormalities. Transcriptional profiling and regulatory network
analyses implicated Polycomb-associated repression as a prominent feature of
AML iPSC-derived HSPCs, and pharmacologic inhibition of EZH1/2 using UNC1999,
in combination with 5-azacitidine, reactivated a subset of repressed genes and

reduced leukemic phenotypes in KMT2A-r cells. Through this analysis, we
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identified NFYA as a candidate target with evidence of fusion occupancy at the
NFYA promoter, consistent with elevated NFYA expression and increased NFY
motif activity in AML-HSPCs. NF-Y is a CCAAT-binding transcription factor
complex in which NFYA confers sequence-specific DNA recognition [470]. Across
cancer types, NF-Y has been implicated in maintaining pro-growth transcriptional
programs, including cell-cycle regulation and metabolism, and it emerges as a
proliferation-linked node also in KMT2A-r AML [439,471]. Consistently, NFYA or
broader NF-Y complex loss-of-function suppresses proliferation and can trigger
apoptosis. Transcription factor-focused CRISPR screens have placed all three NF-
Y subunits among a small set of transcription factors broadly required for cancer
cell proliferation, including in KMT2A-r contexts [471.472]. Conversely, multiple
studies support oncogenic behavior upon NFYA upregulation, suggesting that
increased NFYA activity can reinforce malignant growth programs [471].
Collectively, these data support a model in which KMT2A fusion-dependent
binding at the NFYA promoter is associated with elevated NFYA expression and
sustains transcriptional programs that favor leukemic growth and self-renewal.
While our analysis indicates a potential role for NFYA in the KMT2A-r gene
expression program, we did not test this mechanistically. Follow-up work should
therefore focus on directly perturbing NFYA or the NF-Y complex in KMT2A-r AML
models to establish its functional requirement for the leukemic state and to

evaluate whether NFY-dependent circuitry represents a therapeutic vulnerability.

Targeting epigenetic dependencies in KMT2A-r AML is the focus of ongoing
therapeutic development. As outlined in the introduction, Menin, together with
cofactors such as LEDGF, coordinate chromatin binding and the activation of
target genes by KMT2A fusion complexes, making disruption of the Menin—KMT2A
interaction a strategy to inhibit HOXA9 and MEIST gene expression [297,311].
Clinically, the oral Menin inhibitor revumenib has shown meaningful activity in
heavily pretreated KMT2A-r/NPMi-mutant AML and has received FDA approval in
the relapsed/refractory KMT2A-r acute leukemia setting [473,474]. Additional
Menin inhibitors, including ziftomenib and newer agents such as bleximenib and
enzomenib, have also shown encouraging efficacy signals and are now being
advanced into combination regimens with intensive chemotherapy or 5-
azacitidine/venetoclax in early-phase studies [475]. In parallel, DOTIL is aberrantly
recruited by KMT2A fusion proteins to deposit H3K79 methylation and maintain
HOXA gene expression [303]. While the DOTIL inhibitor pinometostat
demonstrated only modest single-agent efficacy, this has shifted clinical
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emphasis toward combination strategies [315]. Although UNC1999 and 5-
azacitidine in Study Il reactivated PRC2 target genes and reduced leukemic
properties, we did not observe downregulation of HOX/MEIST expression,
suggesting that this regimen alone may not directly disrupt the core KMT2A-
fusion transcriptional program. This supports a rationale to explore combination
strategies that pair PRC2-directed therapy with agents that more directly target
KMT2A-fusion function, such as Menin or DOTIL inhibitors, to more

comprehensively attenuate leukemogenic gene expression and phenotype.

Taken together, Study | and Study Il illustrate how patient-derived iPSC
hematopoiesis can bridge mechanistic discovery and therapeutic hypothesis
testing in myeloid malignancies. In MDS-SF3B]I, this approach tied a mutation-
specific splicing event (UBAI™) to a defined molecular consequence and a
pharmacologically addressable vulnerability, supported across iPSC-derived
progenitors, complementary models, and primary cells. In KMT2A-r AML, stage-
resolved profiling in iPSC-derived hematopoiesis mapped when leukemic
regulatory programs emerge during differentiation and identified a PRC2-
controlled repressive profile that can be partially reversed pharmacologically,
underscoring the value of developmental context for interpreting malignant cell

states and drug responses.

Through these studies, | also came to appreciate the current boundaries of iPSC-
based hematopoietic modeling. Key challenges include generating cells that
faithfully capture bona fide HSC biology, incorporating the instructive complexity
of the niche and microenvironment, modeling clonal competition in genetically
diverse settings, and translating selective in vitro effects into durable clinical
benefit. Looking forward, | see integration as the central direction for the field:
coupling higher-fidelity stem and progenitor differentiation with engineered
microenvironments, expanding genetically diverse patient-derived and isogenic
panels, and applying systematic therapeutic testing, including rational
combinations, to exploit convergent dependencies in stress responses,
proteostasis, and epigenetic regulation while preserving normal hematopoiesis.
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