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Popular science summary of the thesis 
Our bone marrow continually makes new blood cells, including oxygen-carrying 

red cells, infection-fighting immune cells, and platelets that prevent bleeding. This 

process, hematopoiesis, depends on stem and progenitor cells that must tightly 

balance self-renewal with differentiation. When these cells acquire disease-

driving genomic changes, blood production can become unbalanced, abnormal 

clones can expand, and disorders such as myelodysplastic neoplasms (MDS) and 

acute myeloid leukemia (AML) can develop. Studying disease mechanisms 

directly in patients can prove difficult because bone marrow samples are limited, 

heterogeneous, and hard to maintain in long-term culture. This thesis therefore 

uses patient-derived induced pluripotent stem cells (iPSCs), which can be 

expanded indefinitely and differentiated into blood progenitors, to recreate 

disease-relevant models of hematopoietic development in a controlled system 

and to test whether specific genetic lesions create targetable weaknesses. 

Study I investigated SF3B1-mutant MDS, where RNA splicing is altered. Using 

genetically matched SF3B1-mutant and control iPSCs, we identified an SF3B1-

specific mis-splicing event in UBA1, detected in iPSC-derived progenitors, cell 

lines, and supported by MDS patient cohort data. While the mis-spliced UBA1 RNA 

was stable, the resulting protein product was rapidly degraded, lowering total UBA1 

protein levels. UBA1 is essential to maintain cellular protein balance and the 

reduced UBA1 reserve created a vulnerability. SF3B1-mutant cells showed greater 

sensitivity to the UBA1 inhibitor TAK-243 across cell models, iPSC-derived CD34+ 

progenitors, and primary patient colony assays. 

Study II focused on aggressive KMT2A-rearranged AML. Patient-derived AML 

iPSCs and isogenic controls were transcriptionally similar at the iPSC stage but 

diverged during hematopoietic specification, when AML-like progenitors showed 

abnormal repression of developmental and hematopoietic programs. Multiple 

analyses connected this state to a Polycomb (PRC2)-mediated epigenetic 

repression. Targeting PRC2 by pharmacologic EZH1/2 inhibition with UNC1999, 

especially in combination with 5-azacitidine, derepressed Polycomb-associated 

gene sets and preferentially impaired clonogenic output and replating capacity in 

KMT2A-rearranged models. Together, these studies show how iPSC-based 

disease modeling can connect defined genetic variants to tractable mechanisms 

and actionable vulnerabilities, supporting UBA1 targeting in SF3B1-mutant MDS 

and Polycomb-linked epigenetic dependency in KMT2A-rearranged AML.   



Allgemeinverständliche Zusammenfassung 
Unser Körper produziert ständig neue Blutzellen, darunter rote Blutkörperchen, 

Immunzellen und Blutplättchen. Dieser Prozess, die Hämatopoese, beruht auf 

Stamm- und Vorläuferzellen, die Selbsterneuerung und Differenzierung im Gleich-

gewicht halten müssen. Erwerben diese Zellen krankheitstreibende genetische 

Veränderungen, können sich abnorme Zellen ausbreiten und Erkrankungen wie 

myelodysplastische Neoplasien (MDS) und akute myeloische Leukämie (AML) 

entstehen. Krankheitsmechanismen lassen sich im Patientenmaterial oft nur 

schwer untersuchen, weil Proben begrenzt, heterogen und in Kultur schwer zu 

erhalten sind. Diese Arbeit nutzt daher induzierte pluripotente Stammzellen 

(iPSCs) von Patienten, um krankheitsrelevante Prozesse in Kultur kontrolliert 

nachzubilden und gezielt angreifbare Schwachstellen zu identifizieren. 

Studie I untersucht SF3B1-mutiertes MDS, bei dem die RNA-Spleißung verändert 

ist. Mithilfe SF3B1-mutierter und Kontroll-iPSCs identifizierten wir ein SF3B1-

spezifisches Fehl-Spleißen in UBA1 (UBA1ms), nachweisbar in iPSC-abgeleiteten 

Blutzellen und gestützt durch Patientenkohortendaten. Obwohl die fehl-

gespleißte UBA1-RNA stabil bleibt, war das entstehende Proteinprodukt instabil 

und wurde rasch abgebaut, wodurch die Gesamtmenge an UBA1-Protein sank. 

UBA1 ist ein Schlüsselenzym des Proteinhaushalts und die verringerte UBA1-

Reserve stellte eine Verwundbarkeit dar. Entsprechend waren SF3B1-mutierte 

Zellen gegenüber dem UBA1-Inhibitor TAK-243 in Zellmodellen, iPSC-abgeleiteten 

CD34+-Vorläuferzellen und primären Patientenzellen empfindlicher. 

Studie II fokussiert auf aggressive KMT2A-rearrangierte AML. AML-iPSCs und 

isogene Kontrollen waren im iPSC-Stadium ähnlich, entfalteten jedoch während 

der Differenzierung unterschiedliche genetische Programme, in denen AML-

Vorläuferzellen eine abnorme Repression entwicklungs- und hämatopoese-

assoziierter Vorgänge zeigten. Mehrere Analysen verknüpften diesen Zustand mit 

Polycomb (PRC2). Die Hemmung mit UNC1999, insbesondere in Kombination mit 

5-Azacitidin, stellte Polycomb-assoziierte Genprogramme teilweise wieder her 

und beeinträchtigte in KMT2A-rearrangierten Modellen die leukämische Kapazität. 

Zusammen zeigen diese Studien, wie iPSC-basierte Krankheitsmodelle definierte 

genetische Veränderungen mit untersuchbaren Mechanismen und therapeutisch 

nutzbaren Verwundbarkeiten verknüpfen können. Sie stützen UBA1 als Zielstruktur 

bei SF3B1-mutiertem MDS und eine Polycomb-assoziierte epigenetische 

Abhängigkeit bei KMT2A-rearrangierter AML. 



 

 

Abstract 
Hematopoiesis is a tightly regulated process that sustains the production of blood 

cells. Disruption in hematopoietic stem and progenitor cells (HSPCs) can impair 

differentiation, promote clonal expansion, and lead to myeloid malignancies such 

as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). 

Mechanistic studies and drug discovery are often limited by the availability, 

heterogeneity, and limited ex vivo stability of primary patient material. In this 

thesis, patient-derived induced pluripotent stem cells (iPSCs), together with 

isogenic wild-type controls, were used to model hematopoietic differentiation 

and link recurrent disease-defining lesions to downstream mechanisms and 

therapeutic vulnerabilities. 

In Study I, we investigated SF3B1-mutant MDS, a distinct subgroup characterized 

by RNA mis-splicing and erythroid dysplasia. Isogenic SF3B1K700E and SF3B1WT iPSCs 

from an MDS patient were differentiated into hematopoietic cells and analyzed by 

full-length RNA sequencing, uncovering mutated SF3B1-specific mis-splicing of 

UBA1, which encodes the major E1 enzyme at the apex of the ubiquitination 

cascade. While the mis-spliced UBA1 transcript was stable, its protein product 

was rapidly degraded, lowering total UBA1 levels and rendering SF3B1-mutant cells 

particularly sensitive to the UBA1 inhibitor TAK-243. CD34⁺ RNA sequencing from 

an MDS patient cohort confirmed UBA1 mis-splicing as a prevalent feature of 

MDS-SF3B1, absent in other spliceosome-mutant MDS cases and healthy controls. 

Functionally, TAK-243 selectively reduced SF3B1-mutant primary CD34⁺ cells and 

decreased mutant colony output, sparing wild-type hematopoietic progenitors.  

In Study II, we addressed epigenetic and transcriptional deregulation in KMT2A-

rearranged (KMT2A-r) AML using patient-derived iPSCs. Transcriptional analysis 

during iPSC-directed hematopoietic development identified key activators and 

repressors contributing to the altered regulatory landscape in KMT2A-r AML. 

Integration with chromatin immunoprecipitation sequencing analyses indicated 

that a substantial fraction of genes downregulated in AML iPSC-derived HSPCs 

were direct targets of Polycomb Repressive Complex 2 (PRC2). Pharmacologic 

inhibition PRC2 via EZH1/2 using UNC1999, in combination with 5-azacitidine, 

reactivated PRC2 target genes specifically in AML-HSPCs, shifting expression 

toward a more normal hematopoietic program and reducing leukemic properties 

in KMT2A-r cells. Together, these findings support targeting Polycomb-associated 

repression as a potential epigenetic strategy in KMT2A-rearranged AML.
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Introduction 
The Background section of this thesis sets the conceptual framework for the two 

studies that use patient-derived induced pluripotent stem cells (iPSCs) to model 

myeloid disease in a human, stage-specific hematopoietic context. It begins with 

an overview of normal hematopoiesis, spanning developmental and adult blood 

formation, to establish a physiological reference point. Since iPSC-based 

hematopoietic differentiation draws heavily on early developmental programs, a 

working understanding of developmental hematopoiesis is important for 

interpreting differentiation protocols and for recognizing the strengths and 

limitations of iPSC-derived models. The next section reviews myelodysplastic 

neoplasms (MDS), including diagnosis, mutations and risk stratification, and 

current therapeutic strategies, before focusing on SF3B1-mutant MDS/MDS-RS 

and the rationale for examining UBA1 in Study I. The chapter then turns to acute 

myeloid leukemia (AML), covering clinical features, classification, treatment, and 

the broader genetic landscape, followed by a focused presentation of KMT2A-

rearranged AML, which provides the disease context for Study II. The final sections 

summarize commonly used experimental model systems for myeloid neoplasms 

and introduce iPSC approaches, including key principles of hematopoietic and 

erythroid differentiation and how iPSC-based platforms enable mechanistic 

interrogation and therapeutic testing in genetically defined settings. 
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1 Background 

1.1 Hematopoiesis 

Hematopoiesis is the process by which all cellular components of blood are 

generated and replenished throughout life. These cells perform essential 

functions, including oxygen transport, hemostasis and wound repair, and immune 

defense against pathogens and malignant transformation [1,2]. Although blood 

cells are highly specialized according to their function, their developmental 

programs are remarkably conserved among vertebrates. This has enabled the 

study of hematopoietic development and function using animal models, primarily 

mouse and zebrafish [3]. 

1.1.1 Developmental hematopoiesis 

Given the essential functions of blood cells, the hematopoietic system is 

established early in embryogenesis, producing cells adapted to the demands of 

the developing conceptus [4]. In mammals, developmental hematopoiesis 

proceeds through three successive, spatially and temporally distinct waves 

(Figure 1) [5–8]. The extraembryonic yolk sac, a membranous structure outside the 

embryo, is the first site of hematopoietic development [4,9]. Here, mesoderm-

derived blood islands predominantly generate large, nucleated primitive 

erythroblasts, along with primitive macrophages and megakaryocytes [10–12]. 

With the onset of cardiac activity, these primitive erythroblasts enter the 

circulation and supply oxygen to meet the demand for growth and organ 

development [13]. This wave is short-lived and followed by a second, yolk sac-

derived, wave of erythro-myeloid progenitor cells and the first progenitors with 

lymphoid potential [7,14–16].  

Definitive hematopoietic cells, capable of long-term multilineage reconstitution, 

originate from a third, intraembryonic wave within the aorta–gonad–mesonephros 

(AGM) region of the dorsal aorta [17,18]. Here, a specialized subset of CD34+ 

hemogenic endothelial cells change identity through endothelial-to-

hematopoietic transition, budding from the endothelium and ultimately 

generating the first hematopoietic stem cells (HSCs) [2,19–25]. The genesis and 

population size of AGM HSCs have been debated. Lineage-tracing experiments 

based on vascular endothelial cadherin expression, imaging of AGM explants in 

mouse and in vivo imaging of the AGM region in zebrafish embryos collectively 

support an endothelial origin of definitive HSCs [26–28]. Fluorescent reporter and 
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genetic barcoding approaches indicate that approximately 500 distinct clones 

arise from the AGM and go on to sustain adult hematopoiesis [29–31]. Detached 

from the aortic wall, this small pool of cells enters the bloodstream and migrates 

to the fetal liver to mature and expand further, before homing to the bone marrow 

to establish life-long niches and largely enter quiescence [32–35]. These AGM-

derived HSCs are defined by long-term, multilineage reconstitution and self-

renewal and support lifelong hematopoiesis [18,36].  

 

Figure 1: Sites of hematopoiesis during embryonic development adapted from Yoder (2014) [37]. E7, 8.5, and 
10.5 correspond to mouse developmental stages. EMP, erythromyeloid progenitor; HSC, hematopoietic stem 
cell; AGM, aorta-gonad-mesonephros. Created with BioRender.com. 

1.1.2 Adult hematopoiesis 

The classical model for the generation of hematopoietic lineages has been 

described as a hierarchical (tree-like) structure with terminally differentiated cells 

arising from a small pool of self-renewing HSCs at the apex, generating distinct 

sets of progenitors that become progressively specialized and restricted to their 

respective lineages (Figure 2, left) [3,38,39]. The HSC compartment can be further 

subdivided by characteristics such as reconstitution capacity, quiescence, and 

lineage output into long- and short-term HSCs [38,40,41]. Long-term (LT) 

reconstituting HSCs persist over the lifetime, remaining largely quiescent but able 

to transition in and out of the cell cycle [42–44]. LT-HSCs give rise to short-term 

(ST) HSCs, which can still reconstitute all blood lineages but may exhaust their 

self-renewal capacity, as evidenced by failure to engraft secondary recipients in 

serial transplantation experiments [45]. ST-HSCs differentiate into multipotent 

progenitors (MPPs) that proliferate and give rise to progenitors with lymphoid and 

myeloid potential (often described as CLPs and CMPs in classical models).  
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Although this scheme of organized cell identities and stepwise lineage restriction 

is convenient for assigning markers and attributes, the classical model is 

increasingly challenged by advancements in the field. Advances in single-cell 

isolation and profiling, including single-cell RNA sequencing (RNA-seq), suggest 

that hematopoietic specification and cell fate restriction may occur along a 

continuum, with a more heterogeneous HSC and progenitor pool exhibiting 

plasticity and lineage biases (Figure 2, right) [46–53]. Investigating the properties 

of lineage biases within the HSC compartment and identifying new markers that 

distinguish specific populations have further demonstrated that cells collectively 

referred to as HSCs comprise multiple subsets of cells with distinct clonal 

contributions [54–58]. 

 

Figure 2: Hematopoiesis models as a “stepwise” process (left), compared to the “continuous” model (right), 
adapted from Laurenti and Göttgens (2018) [44]. LT, long-term; ST, short-term; MPP, multipotent progenitor; 
CMP, common myeloid progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte 
progenitor; CLP, common lymphoid progenitor. Created with BioRender.com. 

1.1.3 Erythropoiesis 

The remarkable generative capacity of the hematopoietic system is illustrated by 

the large numbers of red blood cells (RBCs) that must be replenished constantly 

to sustain gas exchange throughout the organism [59]. In healthy adults, 

erythropoiesis produces on the order of 2 × 10¹¹ new RBCs per day [60], which 

corresponds to roughly two million erythrocytes every second, about one for 

every inhabitant of the Stockholm metropolitan area.  

To meet this demand, RBCs are the product of a series of expansion and 

differentiation steps, along which hematopoietic progenitors become increasingly 

lineage-restricted (Figure 3) [59]. The earliest committed erythroid progenitors, 
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burst-forming unit–erythroid (BFU-E) and colony-forming unit–erythroid (CFU-

E), arise from megakaryocyte–erythroid progenitors (MEPs) and are defined by 

their in vitro colony-forming capacity [61,62]. Along the trajectory from CFU-E to 

mature erythrocytes, erythroid precursors progressively decrease in size, 

accumulate hemoglobin, clear organelles, and condense their nuclei, culminating 

in enucleation [59,60,63]. Proerythroblasts progress through basophilic, 

polychromatic, and orthochromatic erythroblast stages, which can be 

distinguished morphologically or by surface expression of CD49d, CD71, CD105, 

CD233, and CD235a [64–67]. Nuclear extrusion generates reticulocytes, which 

complete terminal maturation by clearing residual organelles and entering the 

circulation, where they acquire the characteristic biconcave shape [60].  

A primary regulator of erythroid expansion, differentiation, and survival is 

erythropoietin (EPO), produced by the kidneys in response to hypoxia [68]. Iron 

delivery via transferrin is crucial for heme synthesis and hemoglobinization of cells 

[69,70]. Additional regulators of erythroid development include insulin and insulin-

like growth factors, interleukin-3 (IL-3) and IL-10, activin and other TGF-β family 

ligands, thrombopoietin (TPO), and angiotensin [71–76]. 

 

Figure 3: Key erythroid maturation stages, surface marker dynamics, and supplementation dependencies, 
adapted from Elvarsdóttir (2019). BFU-E, burst-forming unit–erythroid; CFU-E, colony-forming unit–erythroid; 
Pro, proerythroblasts; Baso, basophilic; Poly, polychromatic; Ortho, orthochromatic; Retic, reticulocyte; RBC, 
red blood cell. Created with BioRender.com. 

1.1.4 The bone marrow niche  

To maintain steady-state hematopoiesis while enabling rapid responses to 

demand, the hematopoietic system is subject to complex regulation from cell-

intrinsic mechanisms and the external environment. This specialized bone marrow 
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microenvironment, composed of cellular and acellular components, is commonly 

referred to as the HSC niche [77,78].  

The niche concept was proposed as early as the 1970s by Schofield [79]. Scadden 

later defined it as a specific anatomic location that integrates local and systemic 

signals to regulate stem cell self-renewal, differentiation, and protection from both 

exhaustion and uncontrolled proliferation [80]. The cellular compartment 

comprises a heterogeneous mixture of lineages, including endothelial, 

osteolineage, fibroblastic, stromal, neuronal, macrophage, and mesenchymal cells 

[32,81–86]. These cells regulate HSC quiescence, survival, proliferation, and 

differentiation in part by providing ligands and cytokines. A key cytokine for HSC 

maintenance is stem cell factor (SCF), which promotes anti-apoptotic signaling 

and can act systemically or proximally through soluble and membrane-bound 

forms [87]. Similarly, TPO, more commonly known for its role in thrombopoiesis, is 

also a critical factor in HSC maintenance [88].  

In addition to cell–cell interactions and signaling through soluble factors, acellular 

factors of the niche, such as the extracellular matrix composition, mechanical 

properties, and oxygen tension, play important roles in the regulation of 

hematopoiesis [89,90]. Major components of the bone marrow extracellular 

matrix are collagens, proteoglycans, and glycoproteins, acting as scaffolding for 

cells and growth factors [91]. Biophysical properties (e.g., stiffness, topography, 

porosity) also influence stem cell behavior. This has been observed in various 

stem cell subtypes, such as neural stem cells, mesenchymal stem cells, muscle 

stem cells, and hematopoietic cells [92–97]. The role of the extracellular matrix in 

hematopoiesis has been reviewed in detail by Lee-Thedieck and colleagues [98–

102].  

Overall, the hematopoietic niche integrates signals that regulate HSC fate 

decisions and maintains hematopoietic homeostasis. The importance of this role 

becomes evident when dysregulation of HSCs or the niche occurs, which can 

eventually amount to hematopoietic malignancies [103,104].  

1.1.5 Clonal hematopoiesis 

Somatic variants arise continuously throughout life and are acquired across cell 

types, including stem cells. HSCs are therefore not spared; they accumulate 

somatic mutations over time (estimates are ~17 variants per year), leading to 

substantial accumulation over an individual’s lifetime [105–108]. While most 

alterations change the nucleotide sequence, many do not affect the amino acid 
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sequence or measurably alter protein function. These variants remain largely 

inconsequential and are commonly referred to as passenger mutations.  

By contrast, specific genetic abnormalities can confer a fitness advantage to the 

affected HSC, promoting clonal outgrowth of the mutant cell and its descendants 

through positive selection; these events are termed driver mutations. The process 

of expansion and increasing prevalence of such clones is known as clonal 

hematopoiesis (CH) [109,110]. Several studies have identified a recurring pattern of 

driver mutations in a small set of genes, often found in myeloid malignancies, in 

individuals without a diagnosis of hematological neoplasms [111–114]. These studies 

further reported that the prevalence of CH rises with age, reaching approximately 

10–20% among individuals aged ≥70 years. Notably, germline genetic background 

can also shape CH dynamics by modifying the growth advantage of mutant 

clones. In a recent genome-wide association study, Agarwal et al. identified a 

protective noncoding regulatory variant (rs17834140-T) that downregulates 

expression of musashi RNA-binding protein 2 in HSCs and is associated with 

slower CH expansion and reduced risk of CHIP and myeloid malignancies[115]. 

Using next-generation sequencing approaches, Young et al. described CH-

associated variants as ubiquitous in adults, detectable in a large fraction of 

individuals aged 50–60 when very low variant allele frequencies (VAFs) were 

included [116].  

With advancements in our understanding of the underlying molecular 

mechanisms and their consequences, CH has been further subdivided. The 

presence of a CH clone with a VAF ≥2% in the absence of cytopenias is commonly 

termed clonal hematopoiesis of indeterminate potential (CHIP), whereas clonal 

cytopenia of undetermined significance (CCUS) refers to otherwise unexplained 

cytopenias with evidence of clonality [109,117,118]. While CH remains subclinical in 

most individuals, factors such as higher VAF, mutations in spliceosome 

components, and overall mutational burden increase the risk of disease 

progression [119–121].  

1.2 Myelodysplastic neoplasms 

Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous set of 

myeloid neoplasms arising from HSPCs and characterized by ineffective, 

dysregulated hematopoiesis. [122]. Key features of MDS include hematopoietic cell 

dysplasia, cytopenias—especially of the erythroid lineage—bone marrow failure, 

and an elevated risk of progression to AML [123–126]. MDS presents in 
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approximately 3–5 cases per 100,000 individuals in Sweden and the US. MDS is 

largely a disease of older individuals, with a median age at diagnosis >70 years. The 

incidence increases markedly with advancing age and is higher in men than in 

women, placing MDS among the most frequent hematologic malignancies in older 

populations [127–129].  

Most MDS cases are de novo, arising without a clear precipitating cause. However, 

several risk factors have been identified. Prior exposure to cytotoxic 

chemotherapy and/or radiation is a well-established risk factor: therapy-related 

MDS (or therapy-related myeloid neoplasms) comprises ~10–20% of cases and is 

associated with substantially poorer outcomes than de novo disease [130–133]. 

Similarly, prolonged exposure to benzene and organic solvents has been 

connected to an increased risk of developing MDS [134]. Aside from acquired risk 

factors, there is growing recognition of hereditary predispositions to MDS. 

Together, these findings underscore that MDS pathogenesis is multifactorial, 

involving environmental exposures, genetic predispositions, and acquired somatic 

mutations, which will be described in a later section. 

1.2.1 MDS diagnosis 

MDS presents with a broad range of clinical features, reflecting the heterogeneous 

nature of the disease. Symptoms that raise suspicion of MDS are associated with 

an underlying cytopenia: anemia (fatigue, dyspnea, reduced exercise tolerance), 

neutropenia (recurrent infections), or thrombocytopenia (bruising, bleeding) [135–

137]. Some patients	are asymptomatic at diagnosis, with MDS first suspected due 

to abnormal routine blood counts. The initial clinical findings are not specific to 

MDS, and other causes of cytopenias—such as dietary deficiencies, chronic 

disease, medications, and other factors from the patient’s history—must be ruled 

out. In clinical practice, older patients with persistent, unexplained cytopenias 

should be considered for bone marrow examination to evaluate for MDS [138]. 

Diagnosis and categorization are based on integrated clinicopathologic evaluation 

according to the 5th edition of the World Health Organization (WHO) classification 

of haematolymphoid tumours and the International Consensus Classification 

(ICC), incorporating morphologic, cytogenetic, and molecular genetic features 

[139,140]. 

1.2.1.1 Laboratory findings  

Laboratory findings are not specific to MDS and are often linked to the underlying 

cytopenias. This can include elevated erythrocyte sedimentation rate and C-
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reactive protein levels, low hemoglobin levels (<10 g/dL), and macrocytosis 

[136,141–143]. 

1.2.1.2 Bone marrow examination 

The gold standard for the diagnosis of MDS is bone marrow examination via bone 

marrow aspirate and/or biopsy [135]. May-Grünwald–Giemsa staining enables 

assessment of cell identity and morphology, lineage dysplasia, and hypocellularity 

or hypercellularity [138]. Quantification of the percentage of nucleated bone 

marrow blasts is important for categorizing disease, predicting prognosis, and 

distinguishing higher-risk MDS from AML [139,140,144,145]. The 5th edition WHO 

distinguishes MDS from AML at a blast threshold <20%, whereas the 2022 ICC 

introduces the subgroup MDS/AML from 10-20% blasts. Additional iron staining 

with Prussian blue can detect ring sideroblasts [144]. While bone marrow aspirates 

remain essential to diagnosis, sampling error and subjective interpretation can 

limit reliability [135]. 

1.2.1.3 Cytogenetics 

Cytogenetic analyses are performed using G-banding (karyotyping) and 

fluorescence in situ hybridization (FISH). Chromosomal abnormalities are present 

in around half of MDS cases; thus, their identification is essential to obtain a 

complete diagnosis. The most common aberrations in MDS involve partial deletion 

of large chromosomal segments [del(5q), del(7q), del(20q)], loss or gain of entire 

chromosomes (monosomy 7, trisomy 8), or an accumulation of multiple events 

referred to as a complex karyotype [146,147]. 

1.2.1.4 Targeted sequencing 

Targeted next-generation sequencing (NGS) is a key component of the MDS 

diagnostic workup and is incorporated into the current classification frameworks. 

Both the 5th WHO classification of hematolymphoid tumors and the ICC include 

MDS subtypes defined by specific genetic variants, such as TP53 alterations or 

somatic mutations in SF3B1 [139,140]. Because most MDS driver lesions occur in a 

core set of ~50 recurrently mutated genes, targeted panels enable sensitive 

detection of recurrent mutations that complement morphology, cytopenias, and 

cytogenetics by providing molecular evidence of clonality [148]. Diagnostic 

interpretation should account for both the mutational profile and clonal burden: 

the presence of multiple mutations and higher VAFs supports an underlying 

myeloid neoplasm, whereas the absence of detectable driver mutations has a high 
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negative predictive value but does not fully rule out MDS [148]. Testing can be 

done in peripheral blood and bone marrow which have been shown to be 

concordant for mutation detection [149]. NGS may also flag possible germline 

predisposition variants (often ~40–60% VAF), warranting confirmatory testing in 

non-hematopoietic tissues [150]. 

1.2.1.5 Clinical flow cytometry 

Flow cytometric analysis of bone marrow cells can be a complementary tool to 

further refine diagnosis and classification, enabling analysis of antigen expression 

patterns across samples [151,152]. This is employed for assessment of lineage 

distribution, maturation patterns, and abnormal populations [153]. Consensus 

recommendations on sample preparation methods and staining panels can 

further improve reproducibility and interpretation of results [154].  

1.2.2 Classification and prognosis 

In summary, a confirmed MDS diagnosis involves correlating clinical, morphologic, 

and laboratory findings while excluding other conditions that can mimic MDS. 

Based on diagnostic findings, the underlying disease is then further categorized. 

Historically, classification systems mostly recognized morphological features and 

peripheral blood cytopenias [144]. However, cytogenetic and molecular events 

have gained importance in the most recent classification schemes of the WHO 

and ICC, both published in 2022. These include MDS subtypes defined by specific 

genetic lesions, such as TP53 alterations or somatic mutations in SF3B1 [139,140]. 

Risk stratification for MDS patients has similarly evolved since implementation of 

the International Prognostic Scoring System (IPSS) in 1997, which was revised 15 

years later (IPSS-R) [141,145]. In its latest iteration in 2022, referred to as IPSS-M, 

Bernard et al. proposed a molecularly informed scoring system based on 22 

variables that assigns patients to one of six risk categories [155]. 

1.2.3 Treatment of MDS  

Following diagnosis, therapeutic approaches focus on prolonging survival and, if 

possible, curing the patient; otherwise, improving the quality of life is the priority. 

The treatment approach for MDS patients depends on the specific risk score and 

generally distinguishes lower-risk from higher-risk MDS. This section summarizes 

the general treatment strategies, but a more detailed compilation can be found in 

a recent review series by Merz and Platzbecker, and Kröger [156,157].  
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Treating higher-risk MDS focuses on reducing disease burden and preventing 

progression to AML. Allogeneic hematopoietic stem cell transplantation (HSCT) 

remains the only curative treatment for MDS. Thus, eligibility should be considered 

following careful evaluation and, when appropriate, performed promptly to 

improve outcomes for higher-risk patients [158–160]. The hypomethylating agents 

azacitidine and decitabine are widely used disease-modifying therapies, either as 

a bridge to allogeneic HSCT or to delay progression in patients who are not 

transplant candidates. 

Treatment strategies for lower-risk disease center on supportive care, focused on 

improving cytopenias. Erythropoiesis-stimulating agents are the standard-of-

care first-line treatment to boost RBC counts and are administered alone or 

combined with granulocyte colony-stimulating factor (G-CSF). Thrombopoietin 

receptor agonists can improve platelet counts in some patients [161]. More 

recently, treatment of patients with MDS with ring sideroblasts (MDS-RS), which 

is described in more details in a later section, using luspatercept, a TGF-β 

superfamily ligand trap, has received Food and Drug Administration (FDA) 

approval [162–164]. For patients harboring del(5q), treatment with lenalidomide 

should be considered [165,166]. RBC transfusions are frequently administered to 

combat anemia, and transfusion dependency is common in patients (30–50% at 

diagnosis) [129,140]. While more liberal transfusion strategies may improve quality 

of life, transfusion dependency at diagnosis and within the first year is associated 

with worse outcomes. Thus, starting treatment with erythropoiesis-stimulating 

agents early and achieving transfusion independence can improve prognosis 

[167–169]. 

1.2.4 Genomic landscape of MDS 

With the advent of reliable and widely available next-generation sequencing 

techniques over the past decades, it has become evident that genetic mutations 

are major drivers of malignant clonal evolution in many cancers, including MDS 

[135,170]. In 2013 and 2014, two landmark papers by Papaemmanuil et al. and 

Haferlach et al. provided detailed descriptions of the genomic landscape of MDS 

in large patient cohorts [171,172]. This was later complemented by an analysis of 

nearly 3,000 MDS patients from 24 centers by the International Working Group 

for Prognosis in MDS [155,173]. Within the cohort, 90% of patients harbored at least 

one oncogenic mutation (out of 9254 identified in total) distributed across 121 

genes [155].  
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This diverse spectrum of recurrently mutated genes can be grouped into several 

functional groups, outlined in  

Table 1. Somatic mutations in epigenetic regulators involved in DNA methylation 

and histone modification include DNMT3A, TET2, ASXL1, and EZH2, which are 

implicated in clonal expansion. Heterozygous spliceosome mutations involving 

SF3B1, SRSF2, U2AF1, or ZRSR2 are associated with widespread RNA mis-splicing, 

often leading to nonsense-mediated mRNA decay (NMD) and reduced functional 

expression of some genes [174]. These effects can confer a fitness advantage, 

leading to clonal expansion, and/or impair progenitor maturation. A more detailed 

description of the role splicing factor mutations have in MDS is included in an 

upcoming section. Other somatic mutations involve transcription regulators, the 

DNA repair machinery and cohesion complex, as well as signaling pathways [173]. 

Mutation frequencies are not uniformly distributed across the mutational 

landscape. Instead, a small set of events is clearly overrepresented. This includes 

mutations in TET2, ASXL1, or SF3B1 in >20% of patients, and DNMT3A, SRSF2, RUNX1, 

or TP53 in approximately 10–20%.  

Mutated genes 

Epigenetic regulators TET2 (>20% of patients) 

ASXL1 (>20% of patients) 

DNMT3A (10–20% of patients) 

EZH2, BCOR, IDH2, IDH1, PHF6, BCORL1, ZBTB33, EP300, 

KMT2D 

RNA splicing SF3B1 (>20% of patients) 

SRSF2 (10–20% of pts) 

U2AF1, ZRSR2, PRPF8, U2AF2 

Transcription regulation RUNX1 (10–20% of patients) 

CUX1, MLL (KMT2A), ETV6, CEBPA, CTCF, WT1, ZBTB33, 

GATA2, NFE2 

DNA repair control TP53 (10-20% of patients) 

PPM1D, BRCC3 

Cohesin complex STAG2, SMC1A, RAD21 

Signaling CBL, NRAS, KRAS, JAK2, MPL, SH2B3, PTPN11, GNB1, FLT3 

Miscellaneous SETBP1, DDX41, ETNK1, KMT2C, CSNK1A1, NPM1, GNAS, ARID2 

Cytogenetic alterations 

Alterations del(5q) (10–20% of patients) 
complex karyotype +8, -Y, -7, del(7q), del(11q), -13, +21, 

del(4q), del(1p) 
 
Table 1: Overview over recurrent (>1% of patients) gene mutations and cytogenetic alterations in patients 
with MDS [155]. Events used for IPSS-M prognostic calculations are underscored. Adapted from Cazzola and 
Malcovati (2025) [173] 
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Large-scale genomic studies and investigations of familial histories of hematologic 

malignancies have identified a group of germline mutations (e.g., GATA2, RUNX1, 

DDX41, TP53, SAMD9/SAMD9L) that confer inherited susceptibility to MDS/AML 

and collectively account for up to 15% of cases [173,175–181]. These germline 

predisposition syndromes can significantly influence therapeutic choices and the 

selection of suitable donors for transplantation. 

1.2.5 SF3B1-mutant MDS and MDS-RS 

Next-generation sequencing studies of large patient cohorts established that 

MDS is frequently driven by mutations in spliceosome components, with SF3B1, 

SRSF2, U2AF1, and ZRSR2 among the most commonly mutated splicing factor 

genes [155,171,172]. Among these, SF3B1 mutations uniquely stand out as they are 

tightly linked to the disease phenotype of MDS-RS [182]. MDS-RS is a distinct 

subset of MDS which was originally described in the 1950s and later recognized 

as a separate entity in the French–American–British (FAB) and WHO 

classifications [144,183,184]. The defining morphological feature is the presence of 

ring sideroblasts in the bone marrow of patients (Figure 4). These aberrant 

erythroblasts contain iron-laden mitochondria forming a perinuclear ring, which 

becomes visible after iron staining [124,185].  

 

Figure 4: Ring sideroblasts stained with Perls’ Prussian blue stain. (A) RS from MDS-RS patient bone marrow 
samples. Image adapted from Lours et al. (2022) [186], licensed under CC BY 4.0. Modifications include removal 
of labels and image sharpening. (B) Isolated RS from MDS-SF3B1 patient-derived iPSCs from Study II. 

The SF3B1 protein encodes a core component of the U2 small nuclear 

ribonucleoprotein complex that contributes to 3’ splice site recognition during 

spliceosome assembly [187–189]. SF3B1 mutations in MDS typically constitute 

heterozygous missense substitutions, clustering in the HEAT repeat domain with 

K700 as a common hotspot [190–193]. Mechanistically, SF3B1 mutations drive 
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misrecognition of 3′ splice sites on pre-mRNAs, resulting in widespread cryptic 

splicing (Figure 5) [194,195]. Aberrantly spliced transcripts are frequently targeted 

for degradation by NMD, reducing functional protein levels. In vitro studies 

connected mis-splicing of key erythroid genes, including the mitochondrial iron 

transporter ABCB7 and genes involved in heme biosynthesis (ALAS2, TMEM14C, 

PPOX, MAP3K7), to impaired heme production, mitochondrial iron accumulation, 

and RS generation [185,196–201]. Further, RNA mis-splicing increases during 

erythroid differentiation, causing cells to engage pathways that downregulate 

oxidative stress and NMD, which promotes cell survival and may contribute to 

clonal expansion [202].  

 

Figure 5: Mechanism-of-action and downstream consequences of wild-type SF3B1 (SF3B1WT)- and mutant 
SF3B1 (SF3B1mut)-mediated mRNA splicing, adapted from Zhou et al. [203]. U2 snRNP, U2 small nuclear 
ribonucleoprotein; ss, splice site; BPS, branchpoint sequence; NMD, nonsense-mediated mRNA decay. 
Created with BioRender.com.  

Across patients, SF3B1 mutations occur in most MDS-RS cases, have a strong 

positive predictive value, and have been incorporated into diagnostic frameworks 

as a defining feature of the MDS-RS entity [126,139,140]. From an evolutionary 

perspective, SF3B1 mutation is considered an early event in MDS-RS, often 

represented in the dominant clone and present at higher VAFs than other genetic 

lesions [171,204]. Clinically, MDS-RS is relatively indolent compared to higher-risk 

disease and has one of the most favorable outcomes across MDS subtypes 

[182,205]. Subsequent studies demonstrated that SF3B1-mutant MDS-RS 

represents a relatively homogeneous subgroup characterized by erythroid 

dysplasia and abnormal erythroid maturation. Accordingly, treatment typically 

focuses on alleviating anemia through erythropoiesis-stimulating agents and 

establishing transfusion independence [206]. However, it is increasingly 

understood that favorable prognosis is not uniformly distributed but depends on 

co-mutations. Isolated SF3B1 mutations or a “simple” co-mutation pattern 
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involving epigenetic regulators retains favorable prognosis, whereas del(5q) or 

mutations in BCOR, NRAS, RUNX1, and others are associated with worse outcome 

[155,207,208]. 

1.2.6 UBA1 mutations 

Despite major advances in identifying genetic alterations and integrating them 

into modern classification, treatment, and risk-stratification systems, 5–10% of 

patients still lack an identifiable disease-defining mutation [139,140,155,172,209]. In 

addition, a sizable fraction of patients (approximately 10–30%) develop 

inflammatory manifestations without an obvious etiology, which can complicate 

both diagnosis and management and has been associated with higher-risk 

disease features [209–213]. A major advance in this area came in 2020, when Beck 

et al. identified somatic UBA1 mutations as the cause of a subset of these 

unexplained inflammatory phenotypes and introduced the entity VEXAS 

(vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome [214]. UBA1 

encodes the principal ubiquitin-activating E1 enzyme, which is essential for 

initiating protein ubiquitination and thereby influences protein homeostasis and 

diverse downstream cellular processes (Figure 6, left). Pathogenic variants in 

VEXAS commonly disrupt expression of the cytosolic UBA1b isoform, frequently 

by affecting translation initiation (Figure 6, right) [214–217]. Clinically, the overlap 

with myeloid disease is notable: MDS is reported in roughly 25–55% of individuals 

with VEXAS, and in a large, representative diagnostic MDS cohort, about 1% of 

patients carried likely pathogenic UBA1 variants [209,218,219]. Collectively, these 

data support considering UBA1 mutation testing in the diagnostic work-up of MDS 

when inflammatory features are prominent and particularly in male, given the X-

linked nature of UBA1 and the marked male predominance of VEXAS syndrome.  

 

Figure 6: UBA1 mechanisms of action (left), and role in VEXAS (right), adapted from Ferrada et al. (2022) [220].  
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1.3 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is a myeloid neoplasm closely related to MDS and 

can arise from MDS when additional genetic and/or cytogenetic events drive 

leukemic transformation. AML is defined by excessive proliferation of leukemic 

blasts (poorly differentiated hematopoietic progenitors) that infiltrate the bone 

marrow, blood, and other tissues [221]. The resulting disruption of normal 

hematopoiesis causes severe cytopenias, and AML remains a life-threatening 

diagnosis. Outcomes have nevertheless improved over recent decades. Whereas 

AML was historically associated with very poor long-term survival, 5-year survival 

rates now stand at 62% for patients diagnosed before age 50, 37% for those aged 

50–64, and 9.4% for patients 65 years and older [222]. A Swedish registry study 

reported that survival gains over the past 20 years were most pronounced among 

middle-aged men [223]. While AML often presents sporadically, an increased risk 

of development has been associated with the same factors as in MDS, including 

exposure to certain chemicals, cytotoxic therapies, and germline predispositions 

[126]. 

1.3.1 Presentation and diagnosis  

AML is a medical emergency that requires urgent evaluation and management. 

Similar to MDS, symptoms are often non-specific but typically reflect suppression 

of normal hematopoiesis and may raise suspicion of a hematological malignancy. 

This includes severe cytopenias (anemia, thrombocytopenia, and/or neutropenia) 

and, in some patients, abnormally high white blood cell counts (leukocytosis). 

Patients may present with fatigue, dyspnea, bleeding, infections, or headaches. 

Historically, AML diagnosis required a minimum of 30% myeloid blasts in the bone 

marrow or peripheral blood according to the FAB system, later revised to ≥20% in 

WHO classifications. In the most recent frameworks, AML	may be diagnosed below 

the 20% blast threshold for specific genetically defined entities. A comprehensive 

diagnostic work-up includes assessment of morphology, immunophenotype, 

cytogenetics, and molecular genetics, while the patient is closely monitored and 

acute complications are managed [140,224,225]. 

1.3.2 Classification and prognosis  

The classification of AML has evolved from the morphology-based FAB system to 

frameworks that increasingly emphasize cytogenetic and molecular features, as 

reflected in the 2022 5th edition WHO and ICC systems. Both prioritize genetic 
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abnormalities over morphology in defining AML subtypes by recurrent gene 

mutations and chromosomal rearrangements [139,140,144]. Despite minor 

differences, both systems broadly agree on genetically defined entities, but they 

apply blast thresholds differently. WHO 2022 permits diagnosis of many AML 

entities with defining genetic abnormalities even when blasts are <20%, while 

maintaining a ≥20% blast requirement for selected entities, including BCR::ABL1 

fusion AML and AML with CEBPA mutation [139]. The ICC defines many genetically 

recurrent AML categories with a blast threshold of ≥10%, while maintaining a ≥20% 

blast requirement for patients with the BCR::ABL1 fusion to limit overlap with 

chronic myeloid leukemia [140]. An additional change in the ICC is the introduction 

of “MDS/AML” for cases with 10–19% blasts in settings that do not otherwise meet 

criteria for a genetically defined AML entity, reflecting the biologic and clinical 

continuum and potentially expanding access to therapies and trials [226,227]. The 

ICC also recognizes “AML with mutated TP53” as a distinct, high-risk category with 

particularly poor prognosis. In contrast to WHO, the ICC does not retain therapy-

related, secondary, or germline-associated myeloid neoplasms as separate AML 

entities; instead, these features are used as diagnostic qualifiers alongside the 

genetically defined diagnosis. 

Prognosis is informed by biological and clinical factors at diagnosis. Besides age, 

performance status, comorbidities, and prior history, prognosis is largely 

determined by the genetic background of the leukemia [223,228–231]. The current 

European LeukemiaNet (ELN) guidelines stratify AML patients undergoing 

intensive chemotherapy into favorable, intermediate, and adverse risk groups 

based on cytogenetic events and genetic events [232]. The core-binding factor 

leukemias, NPM1 mutations without FLT3-ITD, and AML with in-frame CEBPA bZIP 

mutations comprise the favorable risk group. These subtypes are generally more 

chemotherapy-sensitive and are characterized by higher remission rates and 

improved survival. Conversely, the adverse-risk category is linked to poorer 

response, with fewer patients achieving complete remission, and a propensity for 

relapse. This group includes TP53 mutations, specific adverse cytogenetic 

abnormalities (including monosomies such as −5 and −7, inv(3)), complex 

karyotype, and myelodysplasia-related gene mutations. The remaining ~40% of 

cases fall within the intermediate risk group, including many patients with normal 

cytogenetics and, as of the 2022 ELN update, FLT3-ITD–mutated cases in the 

absence of favorable or adverse defining features [225]. Recently, the ELN also 

proposed risk models tailored to patients receiving less-intensive therapies [233]. 
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1.3.3 AML therapy 

Recent years have seen advances in AML treatment options, moving beyond 

conventional chemotherapy to incorporate more targeted approaches. 

Treatment is generally divided into an induction phase (to achieve complete 

remission, defined by <5% bone marrow blasts with peripheral blood count 

recovery), followed by consolidation to eliminate residual malignant cells and 

prevent relapse [234]. An upfront evaluation of patient fitness guides treatment 

decisions, as intensive chemotherapy is not advised for patients of higher age or 

with significant comorbidities [235–237]. While there is no universal tool to assess 

fitness, the Ferrara criteria are often used to identify patients unfit for intensive 

chemotherapy [238].  

The standard intensive approach is the “7+3” induction regimen, consisting of 7 

days of continuous cytarabine plus 3 days of an anthracycline (daunorubicin or 

idarubicin) [239]. In Sweden, a modified “5+3” regimen with higher-dose 

cytarabine is commonly used; reported remission rates in younger adults are 

~60–85% following this intensive induction strategy [239,240]. Several additions 

to 7+3 have improved outcomes in selected molecular and clinical subgroups 

[241]. Incorporation of FLT3 inhibitors (midostaurin, quizartinib) for FLT3-mutated 

AML has been associated with improved remission rates and long-term survival 

[242,243]. Secondary AML and therapy-related AML (t-AML) benefit from CPX-

351, a liposomal daunorubicin–cytarabine formulation, compared to conventional 

7+3 in selected settings [244,245]. Immunotherapy approaches, including 

antibody-based therapies, cancer vaccines, immune-checkpoint inhibitors, and 

adoptive T-cell therapies, are under active investigation to address primary and 

acquired resistance [246,247]. Following induction, patients in remission receive 

consolidation therapy. Allogeneic HSCT is recommended for intermediate- and 

adverse-risk AML in first remission, whereas favorable-risk patients frequently 

undergo intensive post-remission chemotherapy [234].  

In patients who are ineligible for, or elect not to receive, transplant, remission can 

be prolonged through maintenance therapy, including oral 5-azacitidine (CC-486) 

[248]. Patients evaluated as unfit for intensive chemotherapy are generally treated 

with a low-intensity regimen, often combining hypomethylating agents with the 

BCL-2 inhibitor venetoclax [249,250]. In addition, targeted inhibitors (e.g., 

IDH1/IDH2 or FLT3-directed agents) have shown promising results in molecularly 

defined subsets [251–253]. Prognosis remains unfavorable in relapsed or 

refractory disease, and only a small proportion of patients attain a second 
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remission with salvage therapy. [237,254]. When remission is achieved, salvage 

allogeneic HSCT remains the best option for durable cure [255–257]. 

1.3.4 Genomic landscape of AML 

Large sequencing studies report that ~97% of AML patients harbor at least one 

recurrent somatic mutation [258]. These variants frequently co-occur, and most 

patients harbor multiple mutations at diagnosis. Recurrent AML mutations can be 

clustered into functional groups including signaling/kinase pathways, NPM1, 

epigenetic modifiers, transcription factors, tumor suppressors, spliceosome 

genes, and cohesin complex genes (Table 2) [221,259,260]. Together, these 

alterations illustrate how AML pathogenesis involves combinations of proliferative 

signaling lesions, differentiation blockades, epigenetic dysregulation, and loss of 

tumor suppression. The following section provides an overview of these 

categories, including example genes and disease-contributing mechanisms 

[258,261]. 

Functional Group Example mutations 

Signaling/Kinase pathway FLT3, KRAS, NRAS, KIT, PTPN11, NF1 

Nucleophosmin NPM1 

Epigenetic regulators DNMT3A, IDH1, IDH2, TET2, ASXL1, EZH2, MLL/KMT2A 

Transcription factors CEBPA, RUNX1, GATA2 

Tumor suppressors TP53 

RNA splicing SRSF2, U2AF1, SF3B1, ZRSR2 

Cohesin complex RAD21, STAG1, STAG2, SMC1A, SMC3 

Table 2: Overview of recurrent genetic lesions in AML sorted by functional groups. Adapted from Döhner et 
al. (2015) and DiNardo and Cortes (2016) [221,259] 

1.3.4.1 Signaling and kinase pathways mutations 

Found in ~60–70% of patients, this is the most frequently mutated functional 

group. Frequently mutated genes include FLT3, NRAS/KRAS, KIT, PTPN11, and NF1. 

FLT3 is mutated in nearly one third of patients, often resulting in ligand-

independent FLT3 tyrosine kinase signaling [262]. Similarly, RAS pathway genes are 

mutated in ~10–15% of cases, driving aberrant activation of MAPK signaling. KIT 

mutations are comparatively rare overall but are enriched in core-binding factor 

AML [263]. Collectively, this group confers a proliferative advantage to the 

malignant clone through hyperactivation of cell growth and survival pathways. 
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1.3.4.2 Nucleophosmin (NPM1) mutations 

NPM1 mutations are among the most frequent genetic lesions in AML, found in 

~25–30% of cases and enriched in patients with normal karyotype. NPM1 

mutations disrupt the nuclear localization of the NPM1 shuttle protein, leading to 

aberrant accumulation of NPM1 and its binding partners in the cytoplasm. 

Cytoplasmic mislocalization of NPM1 is a hallmark of this subtype and interferes 

with normal nucleolar functions, including regulation of p53 and HOX gene 

expression programs [264]. 

1.3.4.3 Epigenetic modifier mutations 

Epigenetic regulators—affecting DNA methylation and chromatin modification— 

are recurrent mutations in >50% of AML cases and include DNMT3A, TET2, IDH1, 

IDH2, ASXL1, and EZH2. Mutations in DNMT3A are among the most common events 

in AML (~20% of de novo AML) and are connected to changed DNA methylation 

patterns, increased self-renewal, and impaired differentiation [265,266]. 

Conversely, TET2 mutations (~10–20% of AML) disrupt 5-methylcytosine 

demethylation, resulting in accumulation of DNA methylation marks and impaired 

myeloid differentiation. Neomorphic IDH1/IDH2 mutations (~20% of AML) produce 

2-hydroxyglutarate, which can inhibit TET enzymes and certain histone 

demethylases, promoting an aberrant hypermethylation state and contributing to 

a differentiation block [267]. Truncating mutations in ASXL1 can reduce the 

stability and function of PRC2, leading to loss of repressive histone methylation 

marks on lysine 27 (H3K27me3), derepression of normally silenced programs, and 

aggressive disease biology [268]. 

1.3.4.4 Transcription factor mutations 

Somatic mutations in transcription factors (e.g., RUNX1, CEBPA, GATA2) and fusion 

genes generated by chromosomal rearrangements can disrupt transcriptional 

programs and impair differentiation. 

1.3.4.5 Tumor suppressor mutations 

TP53 is mutated in ~5–15% of AML cases, is enriched in older patients, and is 

associated with complex karyotype as well as secondary and therapy-related 

AML. Mutations in TP53 disrupt the canonical function of p53 in mediating 

responses such as cell-cycle arrest and apoptosis, contributing to cell survival and 

genomic instability [269]. As a consequence, TP53 mutations represent a 

particularly high-risk lesion associated with poor prognosis. 
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1.3.4.6 Spliceosome complex mutations 

Spliceosome gene mutations are also observed in AML, particularly in secondary 

AML in older patients; for mechanistic background, see the MDS section. 

1.3.4.7 Cohesin complex mutations 

The cohesin complex mediates sister chromatid cohesion and is important for 

proper chromosome segregation during mitosis and 3D genome organization 

[270]. Mutations in cohesin members (e.g., STAG2, RAD21, SMC1A, SMC3) may 

contribute to genome dysregulation and altered expression of differentiation-

associated gene programs. 

1.3.4.8 Cytogenetics 

Over half of AML patients present with cytogenetic abnormalities, frequently 

resulting in chromosomal rearrangements and gene fusions, and ~10–12% have 

complex karyotype (often defined as ≥3 abnormalities) [271–273]. Recurrent AML-

defining rearrangements include the core-binding factor events t(8;21) and 

inv(16)/t(16;16), generating the RUNX1::RUNX1T1 and CBFB::MYH11 fusions, 

respectively [139,140,274]. Translocation t(15;17) generates the PML::RARA fusion, 

encoding the PML–RARA oncoprotein that functions as a transcriptional 

repressor, blocks myeloid differentiation, and promotes aberrant survival signaling 

[275,276]. Less frequent events include DEK::NUP214 and MECOM rearrangements. 

1.3.5 KMT2A-rearranged AML 

Chromosomal rearrangements involving the KMT2A gene (KMT2A-r; formerly 

MLL), located on chromosome 11q23, constitute a recurring group of cytogenetic 

abnormalities present in roughly 5–10% of acute leukemias [277]. These 

rearrangements are particularly frequent in infant leukemias, where 70–80% of 

cases harbor KMT2A fusions [278]. In AML, KMT2A-r comprise about 20% of 

pediatric cases compared to 5–10% of adult cases and are generally a dismal 

prognostic factor, including higher relapse rates and resistance to intensive 

chemotherapy [279]. KMT2A-r are heterogeneous, and over 100 fusion partners 

have been identified in acute leukemias. However, specific fusion partners are 

overrepresented, with a small set accounting for the majority of cases [280]. 

Fusion partners often influence disease phenotype. For example, t(4;11)(q21;q23), 

encoding KMT2A::AFF1 (historically MLL–AF4), is most common in ALL. In contrast, 

t(9;11)(p21;q23), encoding KMT2A::MLLT3 (historically MLL–AF9), is the most 

common fusion in KMT2A-rearranged AML [280,281]. Overall, KMT2A::MLLT3 is 
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among the most prevalent KMT2A-r and accounts for a substantial fraction of 

cases across acute leukemias [282].  

1.3.5.1 Canonical roles of wild-type KMT2A 

KMT2A is a crucial epigenetic regulator of hematopoiesis and development. It 

encodes a large protein with histone methyltransferase activity that is 

proteolytically cleaved into two subunits [283–285]. In the healthy setting, the 

KMT2A protein regulates expression of key developmental genes, including HOX 

clusters and the cofactor MEIS1. Specifically, KMT2A has been shown to sustain 

expression of HOXA9 and MEIS1 in the earliest HSC and MPP populations, 

supporting expansion and self-renewal [286–289]. Structurally, the KMT2A protein 

contains several functional domains, including N-terminal DNA-binding motifs and 

a C-terminal SET domain that trimethylates histone H3 lysine 4 (H3K4me3) in 

association with multiple core cofactors (Figure 7, left) [290–292]. Through this, 

KMT2A deposits active histone marks and supports an open chromatin state at 

HOX loci. KMT2A also harbors a transactivation domain that recruits histone 

acetyltransferases, reinforcing active chromatin and transcription [293,294]. 

KMT2A functions within a multi-protein complex including Menin, LEDGF, and 

PAFc, which recruit KMT2A to target promoters and gene loci [295–297]. 

1.3.5.2 Consequences of the KMT2A::MLLT3 fusion 

KMT2A protein fusions retain the N-terminal domain, maintaining the DNA- and 

Menin-binding functions, but lose the C-terminal SET domain. In its place, the 

fusion protein gains interaction motifs contributed by the partner. Many KMT2A 

fusion partners encode components of the super elongation complex (SEC) 

machinery e.g., MLLT3 (AF9), AFF1 (AF4), MLLT1 (ENL), and ELL [298,299]. Through 

this, the fusion proteins aberrantly recruit SEC to KMT2A target genes, driving 

sustained transcriptional activation (Figure 7, right) [300]. A hallmark molecular 

consequence is enforced expression of HOX genes (especially HOXA9) and MEIS1, 

promoting an early arrest of myeloid differentiation while maintaining a self-

renewing state that drives uncontrolled proliferation and leukemogenesis 

[301,302]. AF9 additionally contributes to epigenetic activation through 

interactions with the DOT1L methyltransferase complex, which mediates 

activating H3K79 methylation at HOXA/MEIS1 loci and sustains expression [303]. 

Activation of HOX/MEIS1 programs, Menin dependence, and recruitment of DOT1L 

are shared features across many KMT2A fusions, creating convergent therapeutic 

vulnerabilities. 
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Figure 7: Molecular function of wild-type KMT2A (KMT2A-wt, left) and rearranged KMT2A (KMT2A-r, right) in 
regulating histone methylation marks and downstream consequences adapted from Mercher and Schwaller 
(2019) [304]. Recurrence of KMT2A fusion partners is adapted from Meyer et al. (2023) [280]. 
H3K4me/H3K79me, histone 3 lysine 4/79 methylation; SEC, super elongation complex; DOT1L, H3K79 histone 
methyltransferase. Created with BioRender.com. 

1.3.5.3 Targeted treatments for KMT2A-r leukemias 

Menin acts as a scaffolding protein that regulates gene expression by bridging 

DNA-bound factors and chromatin-associated complexes and is an essential 

cofactor in recruiting KMT2A fusion proteins to target loci [305–307]. This 

dependency has been demonstrated in studies where loss or inhibition of Menin 

abrogated oncogenic activity of KMT2A fusions, causing downregulation of 

HOX/MEIS1 expression and reversal of the leukemic phenotype [308–311]. Mouse 

studies using small-molecule Menin inhibitors further reinforced the therapeutic 

potential of this strategy [312,313]. Several Menin–KMT2A inhibitors, including 

SNDX-5613 (revumenib) and KO-539 (ziftomenib), have entered clinical testing 

[314]. Targeting DOT1L using pinometostat (EPZ-5676) reduces H3K79 methylation 

and has shown modest activity in subsets of advanced KMT2A-r leukemia 

patients [315]. Combination strategies—especially with venetoclax-based 

regimens and hypomethylating agents —are being explored to improve depth and 

durability of response and to overcome resistance to Menin inhibition [316–320]. 

1.4 Experimental models of myeloid neoplasms 

Preclinical models are pivotal for understanding MDS/AML pathogenesis and for 

testing therapies under controlled conditions. Most commonly, cell lines, primary 

patient material, patient-derived xenografts, and genetically engineered mouse 
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models have been employed [195,201,321–324]. This section briefly summarizes 

how these systems have advanced the field.  

Immortalized cell lines have been particularly useful for studying AML biology and 

for evaluating efficacy and toxicity profiles of candidate drugs. With hundreds of 

characterized leukemic cell lines (e.g., KG-1, MOLM-13, Kasumi-1, HL-60, U937, and 

THP-1), these models are generally easy to maintain and modify, inexpensive, and 

scalable, but they have limited fidelity relative to primary disease [325,326]. A key 

limitation of cancer cell lines is that they can adapt to in vitro conditions through 

clonal selection and genetic drift. This may lead to the acquisition or enrichment 

of additional genetic alteration and downstream functional changes that diverge 

from the original patient background [327]. As a result, the genomic profile of the 

same cell line and drug responses can vary substantially between labs and 

findings from cell line-based screens may not reliably predict therapeutic activity 

in primary patient samples [328]. In contrast to the abundance of immortalized 

cell line models of AML, MDS cell lines are notoriously scarce, often fail to 

represent the disease phenotype, and are limited by poor proliferation and overall 

performance in vitro [329].  

Genetically engineered mouse models that carry mutations designed to model 

key oncogenic events in humans have been widely used to dissect AML 

mechanisms and therapeutic responses [330]. For example, mouse models have 

been central to understanding the role of the KMT2A::MLLT3 fusion in 

leukemogenesis and the regulation of HOX gene programs in hematopoiesis [287]. 

Similar mouse models have been generated for recurrent MDS genetic events, 

including heterozygous mutations in SF3B1, SRSF2, and U2AF1 [331–334]. However, 

modeling low-risk MDS in mice is challenging, as current models often recapitulate 

only partial disease phenotypes and may fail to produce overt disease [335]. For 

example, in SF3B1K700E models of MDS-SF3B1, mice develop anemia but typically 

lack defining features such as bone marrow dysplasia and ring sideroblasts and 

do not establish clear MDS [333]. More broadly, murine models with single-gene 

perturbations often miss the genetic complexity of primary MDS/AML. 

Encouragingly, ongoing advances in gene-editing approaches increasingly enable 

multi-lesion models that better reflect the heterogeneous nature of human 

disease [336]. Patient-derived xenograft models are widely used for studying 

leukemic complexity in vivo and are generated by transplanting primary patient 

cells into immunodeficient mice [337]. These systems have been successful in 

many AML contexts, including enabling identification of leukemic stem cells and 
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associated gene signatures, as well as supporting preclinical testing of novel 

treatments [338–340]. For MDS, results have been more mixed due to limited 

engraftment potential, particularly in lower-risk disease, which continues to 

hamper drug development [341]. Several strategies have improved engraftment in 

some settings by “humanizing” the niche, such as mice engineered to express 

human cytokines, as in MISTRG and NSGS mice, or through co-transplantation of 

human stromal components [342–345].  

Because these systems incompletely recapitulate MDS (especially lower-risk 

disease), primary patient-derived cells have remained instrumental for advancing 

mechanistic understanding. For example, gene expression analyses of bone 

marrow CD34+ cells from SF3B1-mutant patients identified key mis-splicing 

events and downstream pathways that shape MDS biology and drive ring 

sideroblast development [190,200,201,321–323,346,347]. At the same time, work 

with primary patient material has practical constraints, including limited 

availability, invasive sampling procedures, ethical considerations, short in vitro 

viability, and restricted experimental tractability. Induced pluripotent stem cells 

(iPSCs) have increasingly emerged as a tool to help bridge these gaps and are the 

focus of the following sections. 

1.5 Induced pluripotent stem cells  

In 2006, Takahashi and Yamanaka first described reprogramming mouse 

fibroblasts into iPSCs by expressing four transcription factors, OCT4, SOX2, KLF4, 

and c-MYC (OSKM; the “Yamanaka factors”) [348]. Soon thereafter, iPSCs were 

generated from human cells using similar transcription factor combinations 

(Figure 8) [349,350]. In 2012, John B. Gurdon and Shinya Yamanaka were jointly 

awarded the Nobel Prize in Physiology or Medicine for the discovery that mature 

cells can be reprogrammed to pluripotency [351]. Like embryonic stem cells, iPSCs 

are capable of virtually unlimited self-renewal and can generate derivatives of all 

three germ layers [348,352].  

While the original protocols used integrating retroviral vectors to deliver 

reprogramming factors, methods have evolved toward non-integrating systems 

(Sendai virus, mRNA, episomal DNA) to avoid genomic integration [353]. Further 

optimization of reprogramming cocktails has improved efficiency, and the range 

of somatic cell sources has expanded substantially [354]. The reprogramming 

process comprises two phases. In an initial stochastic phase, somatic lineage 

programs are progressively shut down while pluripotency-associated loci 
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become activated through epigenetic remodeling. In a subsequent hierarchical 

phase, an autoregulatory network consolidates and stabilizes self-sustaining 

pluripotency [355]. Once iPSC clones are established, iPSC quality is typically 

assessed by pluripotency marker expression, tri-lineage differentiation capacity, 

and genomic integrity [349,352]. Although iPSCs can be cultured for extended 

periods, it is recommended to routinely screen for acquired chromosomal 

abnormalities [356].  

 

Figure 8: Generation of induced pluripotent stem cells. iPSC, induced pluripotent stem cell. Created with 
BioRender.com. 

Today, iPSC culture is commonly performed under feeder-free and serum-free 

conditions (and in some cases xeno-free), enabling improved reproducibility while 

maintaining pluripotency. Cells are maintained in defined media on extracellular 

matrix components such as Matrigel, fibronectin, vitronectin, or laminins [357].  

1.5.1 Hematopoietic differentiation protocols 

iPSCs have been transformative for in vitro research and hold strong potential in 

disease modeling and regenerative medicine [358]. Beyond their expansion 

capacity and amenability to genetic manipulation, iPSCs can differentiate into a 

broad range of somatic cell types [353,359,360]. Generating bona fide HSCs from 

iPSCs has been a longstanding goal in regenerative medicine, with the promise of 

reducing donor dependence and immune rejection. As a result, multiple strategies 

to generate hematopoietic cells from iPSCs have been developed over the past 

decades [361].  

Most differentiation protocols attempt to mimic aspects of in vivo hematopoietic 

development, although they differ in media composition, cytokine combinations, 

and timing [362]. In general, iPSCs are differentiated either as three-dimensional 

(3D) aggregates (embryoid bodies and related formats) or as a monolayer. 
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Mesoderm induction is followed by a hematopoietic specification stage that 

promotes development of hemogenic endothelium and endothelial-to-

hematopoietic transition, producing CD34+ HSPCs (Figure 9). Established 

protocols use sequential growth factors and morphogens, such as BMP4, VEGF, 

SCF, IL-3, and TPO, applied with staged timing to guide each developmental step 

[362–368].  

 

Figure 9: Critical steps and cell populations for the generation of hematopoietic cells from iPSCs, adapted from 
Rao et al. (2022) [369]. HSPC, hematopoietic stem and progenitor cell. Created with BioRender.com. 

Despite advances, generating functional HSCs with robust long-term engraftment 

from iPSC cultures has proven challenging. iPSC-derived hematopoietic outputs 

often resembled yolk sac-like programs rather than AGM-like definitive 

hematopoiesis [370,371]. Multiple studies have shown that HOXA expression 

distinguishes yolk sac from AGM-like progenitors, and that adding the Wnt 

agonist/GSK3 inhibitor CHIR99021 and/or the ALK inhibitor SB431542 during 

mesoderm differentiation can promote a HOXA+, AGM-like state [371–376]. 

Transient overexpression of HOXA5 and/or HOXA9 during endothelial-to-

hematopoietic transition or in myeloid precursors has been reported to enhance 

repopulating capacity of iPSC-derived progenitors, but these approaches rely on 

genetic modification [377,378]. More recently, Ng et al. reported the generation of 

iPSC-derived HSCs capable of long-term multilineage engraftment in 

approximately half of recipient mice across multiple iPSC lines. This was achieved 

through precise timing and dosing of Wnt agonists, retinoic acid derivatives, and 

VEGF in a fully defined culture medium [379]. This development supports progress 

toward clinical translation and increases the relevance of iPSC-derived 

hematopoiesis for modeling adult hematopoietic malignancies. 

1.5.2 Erythroid differentiation of iPSCs 

In parallel to efforts to generate definitive HSCs, the production of functional 

erythroid cells from iPSCs holds promise for therapeutic applications and disease 

modeling. In transfusion medicine, iPSC-derived RBCs are attractive because they 
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could enable scalable production, expand access to rare blood types, and support 

donor-independent inventories that reduce immunological risks [380,381].  

Differentiation of iPSC-derived hematopoietic progenitors toward erythroid cells 

is well described and typically involves multi-week protocols supplying factors 

such as EPO, IL-3, IL-6, TPO, and SCF, along with iron sources [382]. However, two 

major hurdles remain: yield and maturation. Current protocols fall short of 

producing the number of RBCs required for a single transfusion unit (on the order 

of 1012 cells) at a cost-effective scale [365,383]. To address this, multiple efforts to 

scale cultures using bioreactors, microcarriers, and agitation have been explored, 

alongside cost-reduction strategies such as simplified media formulations and 

reduced cytokine or iron supplementation [362,363,384–389].  

The second hurdle is maturation. Key features of definitive RBCs include efficient 

enucleation and expression of β-globin, a component of the adult hemoglobin 

HbA. In contrast, iPSC-derived erythroid cells often remain partially nucleated and 

show incomplete switching from embryonic and fetal globin programs [390]. 

Strategies that better recapitulate physiological environments, including dynamic 

culture, 3D systems incorporating niche matrix components, or co-culture with 

macrophages or stromal elements, can improve maturation. In addition, 

transplantation studies suggest that iPSC-derived erythroid cells can complete 

maturation more effectively in vivo, supporting the possibility that clinically 

relevant RBC production may become feasible [391–393]. 

1.5.3 iPSCs as models of hematopoietic malignancies 

Whereas therapeutic applications of iPSC-derived hematopoiesis still face major 

hurdles, iPSC systems have been used successfully to model a broad range of 

hematological diseases [394]. iPSCs can provide patient-specific, genetically 

defined platforms that capture the mutational landscape of the originating clone. 

They enable clonal expansion in culture and can be differentiated into desired 

target cell types, helping to overcome the scarcity and fragility of primary patient 

cells. Importantly, isogenic controls enable direct genotype-phenotype 

comparisons and can be generated either by reprogramming wild-type cells or by 

CRISPR-based editing of iPSC lines [353,395]. iPSCs also enable human-specific 

drug screening and mechanistic studies at scale (Figure 10) [396,397].  
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Figure 10: Schematic workflow for the generation and application of patient-derived iPSCs for disease 
modeling, mechanistic studies, and drug discovery. Created with BioRender.com. 

Until recently, iPSCs were primarily applied to monogenic disorders with clear 

genotype-phenotype relationships, including inherited bone marrow failure 

syndromes [398,399]. Examples include Fanconi anemia, Diamond-Blackfan 

anemia, congenital neutropenia, familial platelet disorder, and others [400–404]. 

These diseases are often rare, patient material is limited, and a monogenic etiology 

simplifies generation of disease lines and corresponding isogenic controls [399]. 

More recently, improvements in gene editing and clonal isolation have expanded 

iPSC modeling to more genetically complex myeloid diseases, including MDS and 

AML. 

In 2015, Kotini et al. generated MDS patient-derived iPSCs with del(7q) and 

established isogenic controls with normal karyotype [405]. In culture, del(7q) 

iPSC-derived hematopoietic progenitors showed impaired myeloid 

differentiation, consistent with features observed in primary patient samples 

[406]. Mechanistically, engineering heterozygous loss of defined chromosome 7 

regions in normal iPSCs helped identify cooperating haploinsufficient genes, 

including EZH2 and additional loci, as disease-relevant events [405]. These 

findings were later reproduced across panels of isogenic iPSC lines, where del(7q) 

induced a severe differentiation block in hematopoietic progenitor cells, 

consistent with its association with higher-risk MDS and disease progression. A 

large-scale drug screen using iPSC-derived hematopoietic progenitor cells from 

multiple del(7q) lines identified niflumic acid as a compound that selectively 

inhibited growth of del(7q) cells while sparing isogenic controls. This effect was 

also validated in primary samples from MDS and secondary AML patients with 

del(7q) or monosomy 7, illustrating how iPSC models can support discovery of 

targetable vulnerabilities [407].  
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Hsu et al. reported the generation of iPSC lines from SF3B1-mutant MDS using 

episomal reprogramming and showed that iPSC-derived hematopoietic 

progenitors could differentiate into erythroid cells with mitochondrial defects, 

recapitulating a key feature of SF3B1-mutant MDS [204]. Through integration of 

splicing and gene expression analyses, Asimomitis et al. identified a mis-splicing 

signature shared between iPSC-derived progenitors carrying SF3B1K700E and 

primary patient cells. The same study also used chromatin accessibility analyses 

to implicate TEA domain transcription factor as a transcriptional regulator 

associated with the mutant state [408]. In a complementary study, Singh et al. 

reported that SF3B1-mutant cells derived from patient iPSCs, cell lines, and patient 

CD34+ cells accumulate R-loops (RNA–DNA hybrids). This was tied to increased 

DNA damage and activation of the ATR–Chk1 pathway, which could be mitigated 

by RNase H1-mediated R-loop resolution. Notably, SF3B1-mutant cells were 

selectively sensitive to ATR or Chk1 inhibition, and this vulnerability was enhanced 

by the splicing modulator sudemycin D6, suggesting a potential therapeutic 

strategy [409].  

As an additional disease-relevant readout, Clough et al. generated ring 

sideroblasts in in vitro differentiated erythroid cells from SF3B1K700E iPSCs. RNA-

seq confirmed mis-splicing events and downregulation of genes involved in iron 

metabolism and heme synthesis (ABCB7, MAP3K7, PPOX, TMEM14C), consistent 

with observations in primary cells. Restoring expression of ABCB7 (and to some 

extent PPOX) reduced ring sideroblast formation, supporting a functional link 

between reduced ABCB7 and this phenotype [410]. Together, these studies 

reinforce mechanistic connections between spliceosome dysfunction and MDS 

pathophysiology and suggest downstream vulnerabilities for therapeutic 

targeting [394].  

Modeling disease progression from MDS to AML and dissecting the contributions 

of individual mutations is challenging, given the complexity of clonal evolution. To 

address this, Kotini et al. generated iPSC panels from four patients reflecting 

preleukemia, lower-risk MDS, higher-risk MDS, and secondary AML. Hematopoietic 

progenitors derived from these lines captured stage-specific phenotypes and 

transcriptional programs associated with disease progression. Modeling 

transitions by correcting variants or sequentially introducing mutations through 

gene editing enabled either reversal of disease severity or stepwise progression 

from a near-normal phenotype toward transplantable AML [411]. Collectively, this 

work provided a framework for how stage transitions across myeloid malignancies 
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can be driven by combinations of cooperating lesions [412]. Using a similar 

approach, Wang et al. modeled progression from a healthy state through CH and 

MDS to AML by serially introducing mutations in ASXL1, SRSF2, and NRAS. Stage 

transitions were associated with transcriptomic and chromatin accessibility 

signatures that mirrored primary human MDS/AML. Importantly, inflammatory 

signaling dysregulation emerged as an early and persistent feature of 

leukemogenesis, suggesting a potential target for early intervention [413].  

RAS pathway mutations are often late events, acquired upon progression from 

MDS or in relapsed/refractory AML [171,258,414–416]. The mechanistic basis for 

their timing has been unclear. Sango et al. generated CRISPR-edited iPSC models 

and reported that NRAS mutations alone were insufficient to establish leukemia, 

instead requiring preceding cooperating lesions to transform granulocyte-

monocyte progenitors [417]. Acquisition of RAS mutations drove aberrant 

expression of BCL2 family genes, promoted a monocytic phenotype, coupled with 

a resistance against BCL-2 inhibition by venetoclax, offering a mechanistic 

explanation for poorer therapeutic responses in these settings [418,419]. A 

recurring theme across these studies is that disease phenotypes often emerge 

only during hematopoietic differentiation. Moreover, iPSC-derived hematopoietic 

progenitors corresponding to overt AML states have been most successful at 

serial engraftment and disease propagation in mice, whereas modeling pre-

malignant states and lower-risk disease remains more challenging.  

These dynamics were also observed in KMT2A::MLLT3-rearranged AML. Chao et 

al. derived iPSC lines from two individuals with these rearrangements and found 

that iPSCs originating from malignant and non-malignant clones were highly 

similar in the pluripotent state, including comparable transcriptional and 

epigenetic profiles and tri-lineage differentiation potential. In contrast, 

hematopoietic specification re-established leukemic molecular and cellular 

features, underscoring the requirement for a specific cellular context for disease 

manifestation [420]. This model provides a platform to study KMT2A-driven 

leukemogenesis in a human setting and enables testing of targeted therapies for 

this subtype. 

Collectively, iPSC-based studies have uncovered genotype–phenotype 

relationships for specific lesions and enabled controlled modeling of disease 

evolution, improving understanding of clonal hierarchies and therapeutic 

vulnerabilities across myeloid neoplasms. At the same time, these studies 
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highlight important limitations: some clones, particularly those with complex 

genetic backgrounds, reprogram inefficiently and may be underrepresented 

during iPSC generation even when they constitute dominant clones in the patient 

[395,421]. In addition, limited engraftment of pre-malignant or lower-risk states 

remains a barrier. Ongoing improvements in gene editing, reprogramming, 

differentiation, and transplantation protocols are beginning to address these 

limitations, enabling more faithful modeling of complex clonal architectures and 

earlier disease states [379,413,417,422–424]. 
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2 Research aims 
STUDY I: SF3B1-MUTANT MODELS OF RNA MIS-SPLICING UNCOVER UBA1 AS A 

THERAPEUTIC TARGET IN MYELODYSPLASTIC NEOPLASMS 

• To evaluate previously established patient-derived iPSC lines and isogenic 

wild-type cells as models of SF3B1-mutant MDS biology by confirming key 

SF3B1K700E-associated features, including established splicing abnormalities 

and erythroid phenotypes. 

• To discover novel SF3B1K700E-associated mis-splicing events.  

• To assess these across iPSC-derived hematopoietic cell types, additional 

SF3B1-mutant model systems, and an MDS patient cohort. 

• To define the molecular consequences of novel mis-splicing events by 

evaluating RNA fate, ribosome association/translation efficiency, and the 

stability and/or function of the resulting protein products. 

• To test whether these splicing-driven molecular consequences create 

therapeutic vulnerabilities by assessing differential sensitivity of SF3B1-

mutant versus controls, with the goal of selectively impacting mutant cells 

STUDY II: TARGETING DYSREGULATED EPIGENETIC AND TRANSCRIPTION FACTOR 

NETWORKS IN KMT2A-REARRANGED AML USING IPSC MODELS 

• To leverage patient-derived AML iPSCs and isogenic controls to model 

hematopoietic dysregulation in KMT2A-rearranged AML by differentiating 

iPSCs into hematopoietic progenitor populations suitable for mechanistic 

and functional analyses. 

• To define when and how transcriptional dysregulation emerges during 

hematopoietic development in KMT2A::MLLT3 AML via time-course 

transcriptomic profiling of iPSC differentiation. 

• To identify transcription factor programs and epigenetic regulatory 

mechanisms associated with the AML-like HSPC transcriptional state by 

integrating promoter activity with motif enrichment and regulatory 

network inference. 

• To test therapeutic actionability of these inferred dependencies by 

perturbing selected epigenetic regulators and assessing effects on AML-

associated gene programs and hematopoietic output. 
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3 Materials and Methods 
This section provides an overview of the relevant methods used in this thesis; 

detailed descriptions are provided in the Methods sections of the studies. 

Ethical considerations and patient material 

All studies involving human-derived material were conducted in accordance with 

ethical principles for medical research, including the Declaration of Helsinki, with 

written informed consent obtained from all donors or patients prior to sample 

collection and research use. The original iPSC lines used in Study I were generated 

from bone marrow samples obtained from three patients with MDS-RS. Bone 

marrow samples for primary CD34+ CFU assays were obtained from three patients 

with MDS-SF3B1 and two healthy donors at Karolinska University Hospital, 

Huddinge, Sweden. The study was approved by the Ethics Research Committee 

at Karolinska Institutet (2017/1090-31/4, 2022-03406-02 and 2024-03119-02). 

The iPSC lines used in Study II were previously generated from AML patient 

samples obtained under Institutional Review Board-approved protocols at 

Stanford University (Stanford IRB 18329 and 6453), following informed consent, 

and reprogramming of AML samples was conducted under Stanford IRB 28197. 

iPSC culture  

Patient-derived iPSC lines were central to all projects of this thesis, and their 

detailed properties are summarized in Table 3. In Study I, we used iPSC lines from 

a female MDS patient with ring sideroblasts harboring an isolated SF3B1K700E 

mutation, which were generated by Asimomitis et al. [408]. iPSC lines used in 

Study II were previously generated by Chao et al. and are derived from two female 

AML patients harboring KMT2A rearrangements [420]. iPSCs were generated by 

transducing bone marrow mononuclear cells, primary AML cells, and T cells using 

the CytoTune-iPSC 2.0 Sendai reprogramming kit. Specific details for the 

reprogramming conditions are provided in the original publications.  

All iPSC lines were cultured in feeder-free conditions on Matrigel hESC-Qualified 

Matrix. Matrigel is a basement membrane extracellular matrix preparation isolated 

from Engelbreth-Holm-Swarm mouse sarcomas, rich in extracellular matrix 

proteins that support iPSC attachment and growth. iPSCs were maintained in 

mTeSR Plus with 1% penicillin–streptomycin (P/S), clump-passaged with EZ-LiFT 

Stem Cell Passaging Reagent. 
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Study Background Original ID Study Name Cytogenetics  Co-Mutations 

Study I Female 
65 Years 
MDS-RS 

N-22.45 SF3B1WT iPSC 46, XX, +mar  

MDS-22.45 SF3B1K700E iPSC 46, XX, +mar SF3B1-K700E 

Study II Female 
20 Years 
Relapsed AML 

SU223-T3 Normal iPSC 46, XX  

SU223-B3 AML iPSC 1.1 46, XX 
t(9;11)(p22;q23) 

FLT3-ITD 
NRAS-G12D 
SEMA4A-Y589H 

SU223-B5 AML iPSC 1.2 (9;11)(p22;q23) FLT3-ITD 
NRAS-G12D 
SEMA4A-Y589H 

Female 
61 Years 
De novo AML 

SU042-3 AML iPSC 2.1 46, XX 
t(10;11)(p11.2~12;
q23) 

ARID1A-P1326 
ATM-V2193I 
DNMT3A-
S837Stop 
SMG1-L250V 
SPEN-T1673S 

Table 3: iPSC lines used for this thesis including mutational and cytogenetic features.	

Cell culture 

Leukemic cell lines were used in both studies to assess whether findings from the 

iPSCs were consistent across in vitro models. Study I employed the widely used 

K562 erythroleukemia cells, including an engineered line harboring an SF3B1K700E 

mutation. To investigate whether PRC2 inhibition selectively acts in KMT2A-

rearranged cells in Study II, we compared responses in HL-60 and OCI-AML-3 

(KMT2A wild-type) to THP-1 and MONO-MAC-6 (KMT2A::MLLT3) cells. K562, HL-

60, OCI-AML-3, and THP-1 cells were maintained in RPMI 1640 with glutamine, 10% 

heat-inactivated fetal bovine serum (FBS), and P/S. MONO-MAC-6 cells were 

further supplemented with non-essential amino acids, sodium pyruvate, and 

insulin. Leukemic lines were maintained at densities between 0.1–1.0 × 106 cells/mL 

as suspension cultures. HEK-293T cells were cultured in DMEM supplemented 

with 10% newborn calf serum and P/S. All cells were cryopreserved in 50% culture 

medium, 40% heat-inactivated FBS, and 10% DMSO using controlled-rate freezing. 

Cell cultures were maintained in a humidified 37°C incubator under standard 

tissue-culture conditions (5% CO₂,	 normoxia) and regularly confirmed to be 

mycoplasma-negative. 

  



 

  37 

Hematopoietic differentiation 

The generation of hematopoietic cells from iPSCs was central to the studies 

included in this thesis, as HSPCs enabled experimental modeling of disease-

associated phenotypes and responses to treatment. Over the course of the PhD 

projects, multiple differentiation approaches and protocol modifications were 

evaluated. Changes were made based on advances in the field as well as practical 

considerations such as reagent availability, cost, and reproducibility. The following 

section provides an overview of the hematopoietic differentiation workflows 

applied in Study I and Study II, and outlines the current protocol implemented in 

the group for ongoing projects (Figure 11). As described in the background section, 

the generation of hematopoietic cells from iPSCs generally follows a stepwise 

protocol designed to recapitulate key aspects of embryonic hematopoietic 

development in vitro. This involves sequential media changes and timed cytokine 

additions to guide lineage progression from early mesoderm-like states to 

hemogenic endothelial cells, from which HSPCs emerge and accumulate in the 

non-adherent/supernatant fraction. 

For Study I, HSPCs were generated using the commercially available and widely 

used STEMdiff Hematopoietic Kit. This kit is based on two media stages that 

promote mesoderm-like induction, followed by hematopoietic specification. In 

our hands, hematopoietic progenitors emerged from ~day 10, and cells were 

harvested on day 13 for downstream experiments. This protocol was reproducible, 

but it is comparatively cost-intensive and based on proprietary formulations, 

which limits control over individual media components. 

For Study II, we implemented a protocol adapted from Matsubara et al., based on 

the Stemline II Hematopoietic Stem Cell Expansion Medium formulation [425]. This 

13-day protocol comprises four media stages, supported by the addition of 

recombinant cytokines and morphogens. Compared with the kit-based protocol, 

this approach provided greater flexibility and allowed for adjustments; however, 

varying availability and incomplete disclosure of the base media formulation 

remained a challenge. 

Finally, recent work has marked a major milestone in the field with the 

development of differentiation protocols capable of generating iPSC-derived 

hematopoietic cells with multilineage engraftment potential, achieved without 

introducing leukemic driver mutations or relying on artificial transcription factor 

overexpression [378,379,411]. While this protocol was not used in the studies 
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comprising this thesis, we have adapted it in our research group and it currently 

serves as the standard for ongoing projects. Besides the biological relevance of 

the generated cells, a practical advantage of this workflow is the use of fully 

defined, serum-free conditions, which support long-term reproducibility and 

simplify standardization across experiments. 

 

Figure 11: Overview of the hematopoietic differentiation protocols used in the Study I and Study II as well as 
the current approach adapted by our research group. Arrows indicate additions that are continued from that 
timepoint onward. Bottom: Representative images of differentiating cultures from normal iPSC. E8, Essential 8 
medium; E6, Essential 6 medium; SPELS, SPELS medium; CHIR, CHIR99021; SB, SB-431542; RETA, retinyl acetate; 
EHT, endothelial-to-hematopoietic transition.  

In Study I, iPSC-derived hematopoietic progenitors were further directed toward 

the erythroid lineage by changing to media conditions that promote erythroid 

maturation and expansion. This included supplementing cells with erythropoietin 

and transferrin throughout the protocol, as well as SCF and IL3 during the first 

week. CD235a+ erythroid cells were enriched by magnetic separation for 

downstream analyses. 
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Cell transfection experiments  

Transfection-based approaches were used in Study I to manipulate UBA1 

expression and to validate sensitivity to targeted inhibitors. Plasmid transfection 

introduces an expression vector into cells to drive ectopic production of a protein 

of interest, whereas siRNA-mediated knockdown delivers short double-stranded 

RNAs that promote sequence-specific degradation of the target mRNA, thereby 

reducing endogenous protein levels. For overexpression experiments, plasmids 

encoding wild-type UBA1 and the mis-spliced UBA1 variant (including the 

additional 135 bp sequence) were introduced into HEK-293T cells using cationic 

lipid-mediated transfection. To reduce endogenous UBA1 expression, UBA1-

targeting siRNAs were delivered into K562 cells by electroporation. Following 

transfection, cells were harvested at defined time points for downstream RNA and 

protein analyses. 

PCR-based assays 

PCR-based assays were used in Study I to quantify individual gene expression 

levels and to assess specific transcript isoforms, with a particular focus on UBA1 

splice forms. For splice variant quantification, primer design was adapted from a 

previously published strategy [426] to generate primer pairs spanning the 

canonical splice junction, priming within the mis-spliced (variant) sequence, or 

amplifying an external control region upstream of the splice site (Figure 12). 

Primers were designed using various online tools and selected based on predicted 

specificity against human transcript databases. Nucleic acids were isolated using 

spin column–based kits, and input amounts were quantified prior to downstream 

analysis. For reverse transcription quantitative PCR (RT-qPCR), RNA was 

extracted, quantified, and reverse-transcribed to cDNA prior to SYBR Green–

based qPCR. Expression changes were reported as fold change after normalization 

to 18S rRNA and, where applicable, to the upstream control signal. Comparisons 

between groups were made using the ΔΔCt method. Conventional PCR was used 

to detect splice products using exon-spanning primers, with amplicons resolved 

by gel electrophoresis to visualize product sizes. In addition, droplet digital PCR 

(ddPCR) was used in Study I to determine SF3B1K700E status per colony. 



 

 40 

 

Figure 12: Primer design strategy for the detection UBA1 splice forms by PCR amplification of the UBA1ms region 
(black) and quantification of UBA1 splice forms by RT-qPCR (gray, blue, orange). 

Immunoblotting 

Immunoblotting was used to assess protein abundance and post-translational 

marks in response to experimental perturbations. In brief, proteins were extracted 

from cell pellets, separated by SDS–PAGE (where proteins are denatured and 

resolved according to molecular weight), and then transferred to nitrocellulose 

membranes. Proteins were detected using specific primary antibodies followed 

by HRP-conjugated secondary antibodies. Signal was generated by addition of a 

chemiluminescent HRP substrate, which produces light in an enzyme-catalyzed 

reaction at sites where the target protein is bound, enabling band detection and 

quantification. In Study I, immunoblotting was performed on whole-cell lysates to 

confirm UBA1 isoform expression across different experimental settings and cell 

models. The method was also used to evaluate protein-level responses to 

treatment, including global ubiquitination and apoptosis-associated readouts 

such as PARP1 and caspase-3 cleavage. In Study II, immunoblotting was used to 

quantify changes in H3K27me3 following treatment and to guide dose selection 

based on target engagement. Across both studies, protein concentrations were 

determined prior to loading, signals were acquired on an Odyssey FC system, and 

band intensities were quantified in ImageStudio with normalization to 

housekeeping or reference proteins. 

mRNA and protein stability assays 

In Study I, mRNA and protein stability assays were used to determine how the 

mis-spliced UBA1 transcript and its encoded protein are regulated post-

transcriptionally. Transcript stability was assessed in a time-course experiment 

by blocking de novo transcription with actinomycin D, which intercalates into DNA 

and prevents RNA polymerase progression [427], followed by RT-qPCR using 

splice form–specific primers. In parallel, we evaluated sensitivity to NMD, a 

pathway that promotes the degradation of transcripts containing premature stop 

4 5 6 7 …135 bp32Exon 1

Canonical Mis-splicedExternal ControlPrimers: PCR 

ENST00000335972.11 UBA1-201
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codons, by inhibiting translation with cycloheximide and assessing splice variant 

presence by RT–PCR [198]. At the protein level, UBA1 isoform stability was 

measured using cycloheximide chase experiments in cells transfected with 

expression-tagged UBA1 constructs, with time-dependent changes in protein 

abundance quantified by immunoblotting to estimate protein half-life. To evaluate 

proteasome-mediated degradation, transfected cells were co-treated with the 

proteasome inhibitor MG-132 and protein levels were assessed by 

immunoblotting. Throughout these experiments, short-lived transcripts and 

proteins, as well as established NMD target transcripts, were included as controls. 

RNA sequencing analysis 

RNA-seq was used in Study I and Study II to profile the transcriptome, analyze 

splicing patterns, and quantify promoter activity. In both studies, RNA from bulk 

or sorted cell populations was isolated using column-based kits, quality-

controlled prior to library preparation, sequenced, and analyzed using workflows 

that follow the same overall logic: read pre-processing, alignment/mapping, 

quantification, and statistical or functional interpretation. 

In Study I, full-length bulk RNA-seq libraries were prepared from total RNA using 

SMARTer Stranded Total RNA-Seq Kits v2 with enzymatic ribosomal depletion and 

sequenced using an Illumina NovaSeq 6000 S4 as paired-end 150 bp reads. Reads 

were adapter- and quality-trimmed with TrimGalore and Cutadapt prior to two-

pass alignment to the human reference genome (GRCh38) using STAR, and gene-

level counts were generated from uniquely mapped reads using featureCounts. 

Differential expression testing was performed with DESeq2, with p-values 

adjusted using the Benjamini–Hochberg method. Differential splicing analysis 

between splicing factor–mutant and normal samples was performed using rMATS, 

with p-values calculated using a likelihood-ratio test and adjusted using the 

Benjamini–Hochberg correction. Selected splicing events were visualized using 

sashimi plots generated with ggsashimi. 

In Study II, RNA-seq and cap analysis of gene expression (CAGE) were used to 

quantify transcript abundance and promoter activity, respectively. RNA quality 

was assessed using Agilent TapeStation prior to library construction following 

Illumina stranded messenger RNA prep ligation sample preparation protocols. 

Sequencing was performed on an Illumina NextSeq platform. Raw sequencing data 

were processed using the MOIRAI pipeline to obtain uniquely mapped reads. For 

CAGE analyses, mapped reads were overlapped with the FANTOM5 robust 
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promoter set to quantify promoter activity and compare promoter usage 

between conditions. In addition, motif activity response analysis (MARA) was 

performed to assess the promoter-proximal region (-300 bp to +100 bp) 

surrounding representative CAGE peaks and infer transcription factor motif 

activity. Protein interaction context for selected candidates was explored using 

STRING network analysis (v12.0) with default parameters. 

Flow cytometry 

Flow cytometry was used throughout this thesis to benchmark the output of 

hematopoietic differentiation protocols and to assess the cellular composition of 

the generated progenitor populations. In Study I and Study II, iPSC-derived 

hematopoietic progenitors were characterized using CD34, CD43, and CD45, 

together with a viability dye to exclude dead cells. In Study I, erythroid 

differentiation was additionally evaluated using CD71 and CD235a. Cells were 

stained on ice and fixed prior to acquisition and analyzed on a BD LSRFortessa at 

the MedH Flow Cytometry Core Facility, which receives funding from the 

Infrastructure Board at Karolinska Institutet. Flow cytometry was further used for 

viability assays, which are described in a separate section. 

CFU assays 

The colony-forming unit (CFU) assay is a standard functional readout for 

hematopoietic progenitors and is used to assess clonogenic capacity and lineage 

output. Cells are seeded at low density in a semi-solid, methylcellulose-based 

matrix supplemented with cytokines, where single progenitors proliferate and 

differentiate into discrete colonies that can be counted and scored. In this thesis, 

CFU assays served as a functional readout in both studies and were performed 

using iPSC-derived HSPCs, primary CD34+ bone marrow cells, and leukemic cell 

lines. 

In Study II, HSPCs derived from control and AML iPSCs were plated in CFU medium 

containing combinations of the EZH1/2 inhibitor UNC1999, the DNA 

methyltransferase inhibitor 5-azacitidine, or vehicle, to assess the impact of these 

compounds on the clonogenic capacity of KMT2A-rearranged cells. Colonies were 

scored after 14 days. To assess self-renewal following treatment, replating assays 

were performed by collecting colonies from co-treated and untreated AML 

cultures and re-seeding cells in fresh CFU medium without drugs; secondary 

colonies were scored after 10 days. To validate the findings obtained in iPSC-

derived cells, the same experimental setup was applied to an AML cell line panel 
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(HL-60, OCI-AML-3, THP-1, and MONO-MAC-6), with adjustments to seeding 

density and culture duration. 

In Study I, CFU assays were performed using SF3B1WT and SF3B1K700E K562 cells to 

examine the effect of UBA1 inhibition with TAK-243 (or vehicle) on colony-forming 

potential. CFU assays were also performed using primary CD34+ cells from SF3B1-

mutated MDS patients and healthy donors. CD34+ cells were enriched from bone 

marrow mononuclear cells by magnetic separation and plated under TAK-243 or 

vehicle conditions. After 14 days, colonies were scored and individual colonies 

were picked for DNA isolation followed by droplet digital PCR to determine the 

contribution of SF3B1-mutant versus residual wild-type progenitors. To reduce 

bias and improve reproducibility, colony scoring and colony picking were 

performed in a blinded manner. 

Viability assays 

Viability assays were used in Study I to determine how different compounds 

affected SF3B1-mutant versus wild-type cells and to generate dose–response 

curves across the model systems. Cells were treated for 24–72 hours and, 

depending on the assay format, viability was assessed by either flow cytometry–

based staining or a luminescence-based readout. For flow cytometry, treated 

cells were stained with ApoTracker Green and the Aqua LIVE/DEAD viability dye, 

and live cells were defined as Aqua-/ApoTracker- singlets. For the luminescence-

based approach, CellTiter-Glo was used to quantify intracellular ATP as a proxy 

for metabolically active cells. Following treatment, CellTiter-Glo reagent was 

added directly to the cultures and luminescence was recorded on a plate reader. 

Dose–response curves were fitted to determine IC₅₀ values where applicable. 

Data analysis  

Flow cytometry data were analyzed using FlowJo v10. Statistical analyses were 

primarily performed in GraphPad Prism v10 and RStudio, and data are presented 

as mean ± standard error of the mean (SEM) unless stated otherwise. Statistical 

comparisons were performed using unpaired t-tests, one-way ANOVA, or two-

way ANOVA, with multiple comparisons controlled using Šidák, Holm–Šidák, Tukey, 

or Dunnett post hoc tests, as indicated in the figure legends. Nonlinear regression 

was used to fit dose–response relationships (four-parameter logistic curves for 

IC₅₀ estimation) and decay kinetics (one-phase decay). 
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4 Results and Discussion 

4.1 Study I 

Study rationale 

MDS with SF3B1 mutation (MDS-SF3B1) is a clinically and biologically distinct 

subtype of myelodysplastic neoplasms, characterized by ring sideroblasts and 

predominantly erythroid cytopenias. SF3B1 mutations alter splice site recognition, 

causing widespread cryptic 3′ splice site usage, and resulting in mis-splicing of 

genes implicated in hematopoietic and erythroid differentiation. Progress in 

identifying disease-relevant therapeutic targets has been slowed by the fact that 

splicing patterns are cell context-dependent and are not consistently captured 

across commonly used systems (including SF3B1 mouse models, limited primary 

material, and unrepresentative cell line models). To address this in Study I, we 

used genetically matched SF3B1K700E and SF3B1WT patient-derived iPSCs as a 

scalable human platform. We applied full-length RNA-seq with unsupervised 

splicing profiling during hematopoietic differentiation to uncover SF3B1-linked 

mis-splicing events with tractable downstream consequences, ultimately 

highlighting UBA1 mis-splicing as a potential therapeutic vulnerability. 

Results 

Patient-derived, isogenic SF3B1K700E iPSCs were differentiated toward 

hematopoietic and erythroid lineages and analyzed by full-length RNA-seq. This 

revealed a previously unreported RNA mis-splicing event in UBA1 (UBA1ms), created 

through the retention of an intronic sequence between UBA1 exons 5–6 (Figure 

13A; Study I, Figure 1C). RT-qPCR and RT-PCR detected UBA1ms in both SF3B1K700E 

iPSC-derived erythroid cells and CD34+ HSPCs, but not in SF3B1WT controls and 

these results were reflected in K562 cells and primary material (Figure 13B; Study 

I, Figure 1D–F). The same event was present in the patient used for iPSC 

reprogramming and, in cohort CD34+ RNA-seq data, appeared exclusively in 

SF3B1-mutated cases, with no detection in other splice factor-mutated or wild-

type MDS or in healthy donors (Figure 13C; Study I, Figure 5C–F).  
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Figure 13: UBA1 mis-splicing in MDS-SF3B1. (A) Sashimi plots of the mis-spliced region of UBA1 in SF3B1WT and 
SF3B1K700E from total RNA sequencing of iPSC-derived CD235a+ erythroblasts, and primary CD34+ BM MNCs 
from the original MDS-SF3B1 patient (n = 1). Black, canonical splice junction counts; orange, mis-spliced 
junction counts. y-axis, absolute read counts. (B) qPCR analysis of UBA1ms relative to 18S in iPSC-derived CD34+ 
HSPCs (n = 4), K562 cells (n = 3), and CD34+ (filled circles) or CD34- (empty circles) cells from primary BM 
MNCs of healthy donors (NBM; n = 6) and SF3B1-mutated MDS patients (SF3B1mt; n = 7). Mean ± SEM relative 
expression. Unpaired t-test. (C) Violin plots of UBA1 intron 5 mis-splicing PSI from total RNA sequencing of 
CD34+ BM MNCs from our previously published data [208], organized by splicing factor mutation. SF3B1mt, 
SF3B1-mutated; PSI, percent spliced-in; BM MNC, bone marrow mononuclear cells; NBM, normal bone marrow 
from healthy donors. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 

Because UBA1 encodes an E1 enzyme essential for initiating the ubiquitination 

cascade, we asked whether UBA1ms was accompanied by altered protein 

abundance. Indeed, SF3B1K700E iPSC-derived hematopoietic cells showed lower 

total UBA1 protein than SF3B1WT cells (Figure 14A; Study I, Figure 1G–H). An 

orthogonal SF3B1K700E K562 model recapitulated both UBA1ms and reduced UBA1 

protein, indicating that this association was not limited to iPSC-derived cells 

(Figure 14B-C; Study I, Figure 2A–B, 2H–I). 
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Figure 14: Models of MDS-SF3B1 feature reduced UBA1 protein levels. (A) Quantification of UBA1a/b protein 
levels in whole-cell lysates of SF3B1WT and SF3B1K700E iPSC-derived CD34+ cells by immunoblotting analysis (n 
= 4). Actin was used as a loading control, and relative signals were normalized by lane normalization factor. 
Mean ± SEM relative UBA1 signal intensity. Unpaired t-test with Holm-Šídák’s multiple comparisons test. (B) 
Immunoblot analysis and (C) quantification of UBA1 isoforms in whole cell lysates from SF3B1WT and SF3B1K700E 
K562 cells (n = 3). Actin was used as a loading control for total UBA1 and UBA1b; Lamin B1 was used as a loading 
control for nuclear UBA1a, and relative signals were normalized by lane normalization. Mean ± SEM relative 
signal intensity. Unpaired t-test with Holm-Šídák’s multiple comparisons test. *, P ≤ 0.05. 

Because many SF3B1-associated mis-splicing events are degraded through NMD, 

reducing levels of functional transcript, we tested whether altered RNA stability 

could explain reduced UBA1 protein. UBA1ms does not introduce a premature stop 

codon, and after transcriptional shutoff, UBA1ms and canonically spliced UBA1 

transcripts displayed similar stability (Figure 15A; Study I, Figure 2C). In parallel, 

inhibiting NMD did not increase UBA1ms abundance; in contrast, ABCB7, a known 

MDS-SF3B1 mis-spliced NMD target accumulated under the same conditions 

(Study I, Figure 2D-E). Polysome profiling further showed enrichment of UBA1 

transcripts in polysome fractions irrespective of splice form, suggesting that 

impaired ribosome engagement is not the primary driver of reduced protein 

(Study I, Figure 2F–G). This shifted our focus toward post-translational 

mechanisms. When expressed in HEK-293T cells, FLAG-tagged UBA1MS protein 

accumulated to much lower levels than UBA1WT despite comparable transcript 

levels (Study I, Figure 3A–E). Cycloheximide chase experiments showed rapid 

decay of UBA1MS protein compared with UBA1WT, and proteasome inhibition 

partially rescued UBA1MS abundance, consistent with proteasome-dependent 

clearance of an unstable protein (Figure 15B; Study I, Figure 3F–I). 
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Figure 15: UBA1 stability analysis. (A) qPCR analysis of UBA1WT and UBA1ms transcript levels in SF3B1K700E K562 
cells after treatment with actinomycin D (ActD) for the indicated time points (n = 3). Results were normalized 
to 0 hours, and MYC was included as a fast-degrading transcript control. Mean ± SEM relative expression, 
One-phase decay nonlinear curve fit (dotted line). (B) quantification of FLAG-tagged protein levels in HEK293T 
cells 72 hours post-transfection with UBA1 WT, UBA1 MS or control plasmids and treatment with 50 µg/ml 
cycloheximide (CHX) for the indicated time points (n = 3). Actin was used as a loading control, and signals 
were normalized to relative signals at 0 hours for each group. Mean ± SEM relative signal intensity, interpolation 
of a one-phase decay non-linear regression curve (dotted line). 

On this basis, we tested whether SF3B1K700E cells are more sensitive to 

pharmacologic UBA1 inhibition. A previous study identified TAK-243 as a potent, 

selective, small-molecule inhibitor that blocks catalytic activity of UBA1, leading to 

a depletion of cellular ubiquitin conjugates [428]. TAK-243 reduced viability to a 

greater extent in SF3B1K700E than in SF3B1WT K562 cells (Study I, Figure 4A–B). We 

observed a similar effect in iPSC-derived CD34+ HSPCs, where SF3B1K700E cells 

were more sensitive than isogenic controls (Study I, Figure 5A–B). Sensitivity also 

correlated with UBA1 abundance: siRNA-mediated UBA1 knockdown increased 

TAK-243 sensitivity (Study I, Figure 4C–F). Functionally, TAK-243 shifted clonal 

composition in WT:mutant co-cultures and reduced clonogenic output in colony 

assays, with mutant progenitors markedly reduced while WT clonogenicity was 

relatively preserved (Study I, Figure 4G–I). Finally, in primary CD34+-enriched 

bone marrow mononuclear CFU assays, TAK-243 reduced colony output more in 

MDS-SF3B1 samples than in healthy controls, and single-colony genotyping 

indicated that this reduction was largely driven by loss of SF3B1-mutant colonies, 

with relative preservation of WT colonies from residual healthy clones (Figure 16; 

Study I, Figure 5G–I). 
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Figure 16: UBA1ms in MDS-SF3B1 patients confers sensitivity to UBA1 inhibition. (A) Experimental strategy to 
assess the effect of UBA1 inhibition on colony growth and composition in CD34+-enriched bone marrow MNCs 
from MDS-SF3B1 patients and healthy controls. (B) Effect of UBA1 inhibition on CFU counts relative to DMSO 
and (C) frequency of SF3B1WT and SF3B1mt colonies relative to total CFU counts from MDS patient (n = 3) or 
healthy control (n = 2) cells treated with 32 nM TAK-243 or DMSO for 14 days. Numbers within brackets indicate 
colonies assessed by ddPCR. Mean ± SEM. Unpaired t-test. *, P ≤ 0.05; ns, not significant. MDS-RS, MDS with 
ring sideroblasts. 

Discussion 

The main finding of Study I is the identification of UBA1 mis-splicing as a mutant 

SF3B1-linked event that lowers the available UBA1 protein pool and preferentially 

sensitized mutant cells to pharmacologic UBA1 inhibition across model systems. 

Advances in sequencing and integrative analyses continue to refine our view of 

aberrant splicing events in MDS-SF3B1 and help connect individual splicing events 

to their molecular consequences, which is important for improving mechanistic 

understanding and therapeutic approaches [429]. Using 5´-based full-length 

RNA-seq with unsupervised splicing analysis in iPSC-derived hematopoietic cells, 

we identified UBA1ms as a reproducible, SF3B1 mutation-specific event detected 

across progenitor and erythroid stages. Because 5′-based RNA-seq generates 

reads across the transcript body and captures intron-exon junctions in both 

nascent pre-mRNA and mature transcripts, it provides better splice junction 

coverage for identifying novel splice variants than 3′ chemistry, which is biased 

toward the 3′ end and can miss upstream splicing events.  

We supported these findings with primary material and a patient cohort analysis 

in which UBA1ms was observed in SF3B1-mutant cases but not in MDS with 

mutations in other members of the splicing machinery, or in healthy donors. More 

broadly, these results illustrate how iPSC-based differentiation can provide a 

controlled, disease-relevant human system to discover and validate specific 

molecular events and then test their consequences across complementary 

models. 
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Mechanistically, UBA1ms differs from many previously described SF3B1-linked mis-

splicing events that introduce premature termination codons and reduce gene 

output through NMD [198,199]. Here, UBA1ms behaves as a stable transcript that is 

not subject to NMD and remains engaged with the translation machinery, directing 

attention to post-translational mechanisms. The mis-spliced product translates 

to a sequence of 45 amino acids, inserted into the inactive adenylation domain, 

and protein stability assays demonstrated a markedly reduced half-life with 

proteasome-dependent degradation of the UBA1MS protein. While we could not 

assess whether the UBA1MS protein retains enzymatic function, rapid turnover is 

consistent with reduced total UBA1 protein in SF3B1-mutant cells and offers a 

practical reason why detecting an endogenous UBA1MS-specific protein species is 

challenging when degradation is fast. A prior study observed reduced UBA1 RNA 

and protein levels in splicing-factor–mutant MDS, but did not attribute this to 

UBA1 mis-splicing [430]. In contrast, our data show reduced UBA1 protein in MDS-

SF3B1 despite unchanged UBA1 transcript levels, consistent with protein-level loss 

driven by the unstable mis-spliced variant. 

Because UBA1 catalyzes the initiating step of ubiquitin activation and is essential 

for cellular viability [431], a reduced UBA1 protein pool would be expected to impair 

proteostasis capacity. Notably, partial UBA1 loss has been described to trigger 

adaptive stress responses, which is compatible with the idea that SF3B1-mutant 

hematopoietic cells can persist despite a reduced UBA1 pool [432]. Prior work has 

also described stage-specific mis-splicing and survival-associated programs in 

SF3B1-mutant cells [202,433], providing more context for how this deficit may be 

tolerated. Finally, UBA1ms also connects conceptually to VEXAS, where somatic 

UBA1 mutations cause loss of cytosolic UBA1b expression and accumulation of 

catalytically impaired isoforms [214]. In MDS-SF3B1, SF3B1-driven mis-splicing is 

associated with reduced total UBA1 protein, irrespective of isoform, without 

complete loss of function. The clinical context differs as well, with a prominent 

inflammatory phenotype in VEXAS [219] versus a comparatively lower 

inflammatory profile reported for MDS-SF3B1 relative to other low-risk subgroups 

[434]. 
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Figure 17: Visual Abstract of Study I. 
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4.2 Study II 

Rationale 

Acute myeloid leukemia (AML) with KMT2A rearrangements (KMT2A-r) is an 

aggressive subtype that occurs in both adults and children but is particularly 

enriched in younger patients. KMT2A encodes a histone H3K4 methyltransferase 

that helps maintain transcriptionally active chromatin at promoters and 

enhancers. Rearrangements convert this epigenetic regulator into oncogenic 

fusion proteins with many partners, frequently involving elongation machinery 

components such as AF9, encoded by MLLT3. KMT2A-rearranged AML is generally 

associated with poor prognosis, with resistance to chemotherapy and high 

relapse rates. Disruption of epigenetic and transcriptional regulation often 

represents early, disease-initiating lesions in HSPCs, making epigenetic 

dependencies promising therapeutic avenues. Study II aims to address a lack of 

physiologically relevant, human model systems by using HSPCs from patient-

derived KMT2A-r AML-iPSCs and isogenic wild-type controls to capture disease-

associated regulatory mechanisms. The goal was to define the transcription factor 

and epigenetic networks that underlie the gene expression program in AML 

development and test whether they can be exploited for treatment. 

Results 

To generate disease-relevant hematopoietic cells from patient-derived KMT2A-r 

AML-iPSCs and isogenic wild-type controls, we adapted a differentiation protocol 

that robustly produced hematopoietic progenitors (Figure 18A; Study II, Figure 

1A–B). Flow cytometry analysis showed that while both cell lines generated viable 

hematopoietic populations, AML-derived cultures retained an earlier progenitor-

like surface phenotype at the sampled time point, consistent with delayed 

maturation (Figure 18B; Study II, Figure 1C–D). RNA-seq analysis separated the 

two lines by developmental stage: At the iPSC stage, AML and control cells 

clustered closely but diverged after hematopoietic specification, indicating that 

the KMT2A::MLLT3-associated transcriptional program becomes apparent during 

differentiation (Figure 18C; Study II, Figure 1E). Comparing differentiation-

associated gene expression changes, AML-HSPCs included gene sets that failed 

to activate normally, genes that were inappropriately repressed, and genes that 

were uniquely induced in AML (Study II, Figure 1F). Together, these findings show 

that KMT2A::MLLT3 is associated with stage-dependent transcriptional 

dysregulation that emerges as cells enter the progenitor state. 
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Figure 18: Hematopoietic specification of KMT2A-r iPSCs induces a transcriptionally distinct profile. (A) 
Schematic depicting the generation of HSPCs from AML and control-iPSC lines. (B) Representative flow 
cytometry diagrams of hematopoietic cell populations from control- and AML-HSPCs after 13 days of 
differentiation. (C) Principal Component Analysis plot from RNA-seq of iPSCs (triangles) and day 13 HSPCs 
(circles) from AML and control lines, showing the first two principal components (n = 3).  

To connect these changes to upstream regulatory mechanisms, we performed 

CAGE profiling across differentiation time points and observed time-dependent 

deregulation of gene expression in AML, including a prominent subset of genes 

showing aberrant repression during hematopoietic specification (Figure 19A; 

Study II, Figure 2A–B). Motif activity response analysis (MARA) showed broad 

divergence as differentiation progressed, with AML cultures displaying altered 

motif activity, including motifs that remained upregulated and others that failed 

to activate appropriately (Figure 19B; Study II, Figure 2C–D). ChIP-signature 

analyses associated the repressed gene set with Polycomb complex-connected 

regulators, and DNMT-associated signatures also emerged among variable 

regulators (Figure 19C, Study II, Figure 2F). Network analysis further connected 

transcription factors with altered motif activity to Polycomb Repressive Complex 

1/2 (PRC1/2) components, supporting a coupled transcription factor–Polycomb 

network that contributes to transcriptional repression in AML-HSPCs (Study II, 

Figure 2G). 
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Figure 19: PRC2 members associate with repressed genes in AML-HSPCs. (A) Heatmap showing unsupervised 
clustering of the 100 most variable genes in control- and AML-iPSC during hematopoietic specification with 
cells harvested at the indicated time points (n = 4). (B) Individual motif activity profiles of SPI1 and LMO2 
promoters between control and AML differentiation as inferred from CAGE data using MARA. Mean ± SEM. 
Unpaired t-test for each time point. (C) Heatmap showing unsupervised clustering of candidate ChIP-seq 
signatures from ChIP-Atlas, highlighting differential ChIP-seq signatures between control- and AML-iPSC over 
hematopoietic differentiation. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.  

This motivated us to functionally test Polycomb dependency in KMT2A-r cells. 

EZH1 and EZH2 are core components of PRC2, catalyzing repressive H3K27me3 

marks. Treatment of iPSC-derived HSPCs with the dual EZH1/2 inhibitor UNC1999, 

alone or combined with 5-azacitidine, reduced global H3K27me3, consistent with 

on-target PRC2 inhibition, while short-term expansion was not detectably altered 

(Study II, Figure 3A–D). In contrast, colony assays showed that PRC2 inhibition 

impaired clonogenic output across independent AML-HSPC clones, while control-

derived HSPCs were less affected under the same conditions; prior exposure also 

reduced replating capacity, consistent with diminished progenitor function and 

self-renewal potential (Figure 20A; Study II, Figure 3E–F). The dependence of this 

effect on KMT2A-r was supported in leukemia cell lines, where clonogenic 

suppression corresponded to KMT2A::MLLT3 status (Figure 20B; Study II, Figure 

3G).  
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Figure 20: Epigenetic targeting selectively impairs clonogenicity in KMT2A-r AML cells. (A) CFU counts per 
1000 seeded HSPCs treated with 2 µM UNC1999, 1 µM AZA, 2 µM UNC1999 + 1 µM AZA, or DMSO for 14 days (n 
= 6 for DMSO in AML 1.1 and control, n = 3 for others). Mean ± SEM. Two-way ANOVA with Dunnett’s multiple 
comparisons test. (B) CFU counts per 1000 seeded cells from leukemic cell lines treated with 2 µM UNC1999, 
1 µM AZA, 2 µM UNC1999 + 1 µM AZA, or DMSO for 10 days (n = 3). Mean ± SEM. One-way ANOVA with Dunnett’s 
multiple comparisons test. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ns, not significant. 

To define upstream transcriptional changes, RNA-seq after treatment showed a 

markedly stronger response in AML-HSPCs than in controls, with enrichment for 

Polycomb targets and gene sets consistent with derepression of developmentally 

regulated (bivalent) loci. The combination treatment with 5-azacitidine enhanced 

gene derepression relative to UNC1999 alone (Figure 21A; Study II, Figure 4A–C). 

Collectively, these results tie Polycomb-associated repression in KMT2A-r AML 

progenitors to a functional dependency that can be targeted pharmacologically, 

partially shifting gene expression toward a more typical hematopoietic program 

and reducing clonogenic capacity (Figure 21B; Study II, Figure 4E). 
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Figure 21: PRC2 inhibition derepresses transcription of Polycomb target genes that are downregulated in AML-
HSPCs. (A) Volcano plot displaying differentially expressed genes identified using DESeq2 in AML (rose) and 
control (blue) HSPCs, following 72 h of treatment with 2 µM UNC1999 (left) or 2 µM UNC1999 and 1 µM AZA 
(right) compared to DMSO (n = 3). Dashed lines denote cutoffs for the significance threshold (FDR = 0.05, 
horizontal; |log2(fold change)| = 1, vertical). (B) Heatmap showing row-wise z-scores of log2(CPM) expression 
values of 154 upregulated genes in AML-HSPCs treated with 2 µM UNC1999 or 2 µM UNC1999 + 1 µM AZA that 
overlap with genes that are downregulated in DMSO-treated control-HSPCs. 

Discussion 

In Study II, we used patient-derived KMT2A-rearranged AML-iPSCs to show that 

hematopoietic specification is accompanied by transcriptional rewiring of HSPCs 

cells with prominent Polycomb-associated repression. We show that PRC2 

inhibition can partially relieve this repressive program and reduce leukemic-

associated phenotypes, most clearly reflected by reduced clonogenic capacity. 

Because iPSCs retain the genetic background of the patient [353], while 

reprogramming broadly resets epigenetic state [435], this system provides a 

tractable way to test whether disease-linked regulatory states re-emerge 

specifically during hematopoietic lineage development [420]. In line with this, AML 

and control cells showed highly similar transcriptional profiles at the pluripotent 

stage but diverged as they transitioned into HSPC-like states, supporting the view 

that the leukemic program becomes evident during specification rather than 

being present in iPSCs. A plausible cause for this is disruption of transcription 

factor–epigenetic control mechanisms that shape AML initiation and 

maintenance [436]. Consistent with this, MARA network analysis identified 

changes in motif activity for several transcription factors overlapping previously 

described regulatory networks in NPM1-mutated AML [437,438]. Among the 

transcription factors with reduced motif activity, SPI1 (PU.1) is a driver of myeloid 

specification and is active in THP-1 cells [439]. In addition, dysregulated genes 
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were enriched for PRC2 targets and bivalent genes, supporting a model in which 

altered transcription factor activity and chromatin regulation together constrain 

normal hematopoietic programs. 

The Polycomb axis provides a mechanistic bridge between these transcriptional 

patterns and progenitor cell function. Polycomb regulation is central to balancing 

self-renewal and differentiation in hematopoiesis [440,441], and aberrant 

Polycomb activity has been implicated across hematologic malignancies [442]. In 

KMT2A-rearranged AML, PRC2 members have been connected to disease 

maintenance and progression, arguing that PRC2 activity may contribute to 

disease maintenance rather than reflecting only the leukemic state [442]. In our 

study, PRC2 inhibition with UNC1999, alone or combined with 5-azacitidine, 

preferentially reduced clonogenic output and replating potential in KMT2A-

rearranged models, while the corresponding effect was weaker in control HSPC-

like cells and in KMT2A-wild-type leukemia cell lines. This supports the 

interpretation that sensitivity is most consistent with ties to the KMT2A-r 

background rather than co-occurring mutations. Prior mouse studies are 

consistent with this, showing that KMT2A-r AML cells are dependent on PRC2 

activity [443]. Finally, bivalent loci provide a connection between Polycomb 

activity and developmental regulation. Bivalency is frequently perturbed in cancer, 

and AML is often associated with increased DNA methylation and transcriptional 

repression [444,445]. Here, we showed reduced expression of bivalent genes in 

KMT2A::AF9 AML-HSPCs, particularly those related to hematopoietic fate. 

Combined PRC2 and DNMT inhibition preferentially reactivated these genes in 

AML-HSPCs compared with controls. Collectively, these results suggest that 

Polycomb-associated repression contributes to a constrained developmental 

state in KMT2A-rearranged hematopoietic progenitors and can be partially 

reversed by epigenetic inhibition. 
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Figure 22: Visual abstract of Study II. 
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5 Conclusions 
Both Study I and Study II used patient-derived iPSCs to model myeloid 

neoplasms and to connect defined genetic lesions to molecular mechanisms that 

emerge during hematopoietic specification. In both studies, the iPSC platform 

supports functional testing of these mechanisms, including whether lesion-

associated molecular changes create targetable vulnerabilities. Key observations 

from the iPSC-derived systems were then validated in complementary cell 

models and primary material to demonstrate that they are not confined to a single 

experimental setting. Together, these studies underscore the value of iPSC-

derived hematopoietic cells as disease-relevant models and as a practical bridge 

between unbiased molecular discovery and experimentally testable mechanisms 

in myeloid malignancies. 

Study I: UBA1 as an SF3B1-linked vulnerability in MDS 

• SF3B1 splice factor mutations are associated with a specific UBA1 mis-

splicing event (UBA1ms) in MDS, identified in iPSC-derived hematopoietic 

progenitors and corroborated in cell lines and primary patient material. 

• While the UBA1ms transcript is stable and translation-engaged, the 

resulting protein product is rapidly degraded, consistent with reduced 

UBA1 levels in SF3B1-mutant cells. 

• A reduced UBA1 “buffer/capacity” in SF3B1-mutant cells is associated with 

increased susceptibility to UBA1 inhibition across model systems, 

supporting UBA1 targeting as a potential treatment strategy in MDS-SF3B1. 

Study II: Targeting Polycomb in KMT2A-rearranged AML 

• KMT2A-rearranged AML iPSCs diverge from isogenic controls during 

hematopoietic specification, establishing a distinct transcriptional 

program, characterized in part by aberrant repression of developmental 

genes. 

• Promoter- and network-level analyses indicate disrupted transcription 

factor–epigenetic regulation enriched for Polycomb targets and bivalent 

genes, consistent with a constrained developmental program in AML-

HSPCs. 

• PRC2 inhibition, alone or in combination with DNMT inhibition, partially 

relieves this repressive program and reduces leukemic features in a 

KMT2A-rearranged context. 
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6 Points of perspective 
Over the past decade, patient-derived iPSCs have enabled mechanistic 

dissection of how defined genetic events in HSPCs reshape differentiation 

programs and create targetable therapeutic vulnerabilities [411,413]. 

Reprogramming captures patient mutational backgrounds in clonal lines, while 

genome editing enables introduction or correction of mutations in an isogenic 

setting, helping to delineate the contribution of individual lesions to disease 

phenotypes [446].  

Both Study I and Study II leverage iPSC lines derived from primary patient 

material, converting finite clinical specimens into a renewable and expandable 

experimental resource. This helps overcome practical constraints that often limit 

work with primary hematopoietic samples, including restricted material 

availability, variable viability, and differences between sampling time points, and it 

also reduces the vulnerability of a project to irreversible loss of scarce primary 

specimens. In Study I, access to biobanked, clinically well-annotated MDS patient 

material at our center enabled the establishment and long-term use of disease-

relevant iPSC models, underscoring how well-managed biobanks can transform 

one-time collections into reusable experimental platforms. In Study II, patient-

derived AML iPSC lines generated in a different laboratory were shared and 

expanded for downstream analyses in this thesis. This is particularly valuable in 

AML, where aggressive and/or relapsed disease can make repeated collection of 

high-quality primary material difficult, or not feasible. 

A central advantage of iPSC-based modeling is the availability of clonal lines that 

can be expanded and differentiated repeatedly, improving experimental control 

and strengthening causal connections between genotype and phenotype relative 

to heterogeneous primary samples. A particular strength is the possibility of 

generating isogenic control cells that help isolate lesion-associated effects from 

patient-to-patient variability. In Study I, paired SF3B1K700E and SF3B1WT iPSC lines 

from the same patient enabled a close comparison of mutant and wild-type 

hematopoiesis. In Study II, control iPSCs were generated from patient-derived T 

cells that did not harbor the KMT2A rearrangement present in the leukemic 

sample, providing a genetically matched non-malignant reference, albeit also 

lacking the other genetic variants of the mutant clone. iPSC reprogramming largely 

resets the epigenetic landscape, and it has been shown that many disease-

associated regulatory programs are re-established only upon lineage 
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commitment and maturation [447]. This allows for the study of disease 

mechanisms and treatment responses in a cell-type–specific manner. Study II 

illustrates how iPSC differentiation can be used to resolve the developmental 

timing and cellular contexts in which lesion-linked transcriptional and epigenetic 

programs emerge during hematopoietic specification, rather than relying solely on 

analyses of differentiated populations. However, this also necessitates robust 

protocols for the generation of disease-relevant cells. 

Despite these strengths, important limitations remain for modeling MDS and AML 

in vitro. It has become evident that some variants are difficult to reprogram and 

that reprogramming is a selective bottleneck rather than a neutral snapshot of the 

patient’s clonal architecture. Consistent with this, iPSC derivation in the MDS-

SF3B1 setting can be skewed toward normal clones even when the starting 

material has a high SF3B1K700E variant allele fraction. While the KMT2A-r was 

successfully captured in the cells used for Study II, prior reports suggest that 

certain cytogenetic events and mutations can be selected against during 

reprogramming [411,448,449]. This may reflect a requirement for intact epigenetic 

regulators to establish pluripotency and/or activation of stress checkpoints such 

as p53 in highly aneuploid or mutation-burdened cells [450]. Consequently, not 

all leukemic genotypes are likely to be directly amenable to derivation of stable 

pluripotent lines. Encouragingly, refined protocols have improved reprogramming 

efficiency in AML, and genome editing has enabled introduction of lesions after 

reprogramming, together supporting the development of more representative 

iPSC panels [204,423,424]. 

The study of diseases originating at the HSC level in vitro remains challenging due 

to the rarity of these cells and difficulties in maintaining this multipotent cell state 

in culture [451]. Differentiation efficiencies of iPSCs into HSPCs can vary by 

genotype, and often yield progenitors with restricted expansion capacity, limiting 

scalability and reproducibility [452]. More fundamentally, generating bona fide 

long-term repopulating HSCs from iPSCs has proven difficult. The hematopoietic 

differentiation protocols used in Studies I and II generated a heterogeneous 

population of hematopoietic progenitor cells that were characterized by flow 

cytometry using common HSPC markers. However, we did not specifically isolate 

cell populations resembling phenotypic HSCs nor confirm HSC properties such as 

self-renewal and multipotency through transplantation. Accordingly, our data do 

not establish whether the iPSC-derived cells include functionally defined HSCs, 

and their engraftment capacity remains uncertain, given that iPSC-derived HSPCs 
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frequently lack definitive hematopoietic potential [453]. Recent fully defined 

differentiation protocols yielding multilineage-engrafting hematopoietic cells 

therefore represent a notable advance toward the generation of higher-fidelity 

models, and it will be interesting to see how these developments shape the 

robustness and interpretability of in vitro disease modeling systems in the coming 

years [379,394,422]. Another more general limitation of conventional in vitro 

culture systems is the omission of bone marrow niche cues that influence clonal 

fitness, inflammation, differentiation, and treatment resistance. This has motivated 

the incorporation of microenvironmental components through co-culture, 3D 

systems, and engineered niche approaches to enhance physiological relevance 

while balancing experimental convenience [454–456].  

Importantly, these limitations do not preclude translational impact of iPSC 

platforms, as evidenced by progress in other iPSC-derived lineages. Although 

iPSC-derived hematopoietic models are most often used for mechanistic studies 

and hypothesis-driven testing, translational iPSC workflows are currently more 

mature in several other areas [457]. In neurodegenerative disease, patient iPSC-

derived neurons and neural organoid models have supported phenotypic 

screening and drug-repurposing efforts that have progressed into clinical studies, 

including iPSC-informed trials in ALS and familial Alzheimer’s disease [458]. In 

parallel, iPSC-derived cell types are increasingly used to capture human-relevant 

drug liabilities, for example through nephrotoxicity testing in iPSC-derived 

podocytes and cardiotoxicity testing in iPSC-derived 3D cardiac tissues [457]. 

Finally, iPSC technology is also contributing directly to therapeutic development 

via cell-based products, with clinical trials spanning multiple indications, including 

iPSC-derived dopaminergic progenitors in Parkinson’s disease and allogeneic 

iPSC-derived immune cell products such as NK and CAR-NK cells [459,460]. 

Another consideration is that many studies using iPSCs include relatively few 

patient lines, limiting generalization given the heterogeneity of MDS/AML. Similarly, 

the studies in this thesis are largely based on iPSC lines derived from a single 

individual per genotype, and while key experiments were complemented with 

additional iPSC lines/clones, orthogonal in vitro models, and interrogation of 

available datasets, this limited number of patient-derived lines remains an 

important limitation. The generation, maintenance, and differentiation of iPSCs are 

time-consuming, costly, and at times inefficient. However, continued advances in 

reprogramming, gene editing, and differentiation protocols are expected to 

facilitate the generation of larger, genetically diverse iPSC panels. Such resources, 
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particularly when paired with matched isogenic controls, should enable more 

systematic interrogation of lesion-specific mechanisms, co-mutation effects, and 

therapeutic responses [421].  

While MDS-SF3B1 typically presents as a lower-risk disease dominated by 

symptomatic anemia, standard therapy remains largely supportive and focused 

on improving erythropoiesis. Allogeneic HSCT is the only potentially curative 

option; however, it is often precluded by advanced age and comorbidities. Our 

identification of UBA1 mis-splicing as an SF3B1-linked vulnerability in Study I 

suggests a potential strategy to preferentially reduce the mutant clone while 

preserving residual wild-type hematopoiesis. Consistent with this, TAK-243, which 

blocks UBA1-mediated ubiquitin activation, preferentially reduced SF3B1-mutant 

cells while sparing wild-type HSPCs at lower concentrations. Although treatment 

did not fully eradicate mutant cells and TAK-243 also impacted normal cells at 

higher concentrations, our data support the possibility of a lower-intensity, 

disease-modifying approach aimed at reducing mutational burden and 

potentially delaying the need for transplantation. 

To advance this concept toward clinical translation in MDS-SF3B1, a next priority 

is to strengthen the evidence for mutant-selective activity of TAK-243 in primary 

hematopoiesis. Although we observed increased sensitivity of SF3B1-mutant 

patient cells compared with normal bone marrow controls in CFU assays, the 

number of primary samples analyzed in Study I was limited, and validation in a 

larger cohort is warranted. While MDS-SF3B1 represents a relatively molecularly 

defined lower-risk subtype, expanding the analysis across additional patients 

would help capture clinical and genetic variability and better define the 

robustness of the effect. Beyond comparisons to healthy donors, lower-risk MDS 

samples lacking UBA1ms would represent a particularly informative control group, 

enabling a direct test of whether TAK-243 sensitivity is driven by SF3B1-

associated UBA1ms biology. Because clonal fitness in MDS is shaped by 

competition and microenvironmental cues, it will also be important to assess 

whether mutant selectivity is preserved in niche-supported settings. In this 

regard, a previously developed 3D scaffold culture model for MDS-RS may be 

useful, as it supports prolonged culture of primary bone marrow–derived 

populations and maintenance of the mutant clone, providing a tractable system 

to study clonal dynamics under more physiological conditions [347]. More broadly, 

incorporation of iPSC-derived stromal support and other microenvironmental 

components into advanced 3D culture systems should further improve 
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assessment of drug effects in settings that better approximate the marrow niche 

[457]. 

A recent study in a human VEXAS model suggested that impaired UBA1 function 

can create a compensatory dependency on the alternative ubiquitin E1 enzyme 

UBA6. Genetic loss of UBA6 or pharmacologic inhibition with the allosteric 

compound inositol hexaphosphate (IP6) reduced growth and colony formation of 

UBA1-mutant cells [461]. Although IP6 inhibits UBA6 only at high (millimolar) 

concentrations, highlighting the need for more potent and selective agents, these 

findings raise the question of whether similar UBA6-dependent compensation 

occurs in SF3B1-mutant cells and could be therapeutically exploited. 

Beyond E1 inhibition alone, another angle not addressed in Study I is the essential 

role of UBA1 in DNA damage responses that resolve replication stress and double-

strand breaks [462]. Interestingly, increased R-loop formation and DNA damage 

have been associated with SF3B1 and other splice factor mutations in MDS, and 

mutant cells were preferentially sensitive to targeting of the downstream ATR–

Chk1 pathway [409,463,464]. Similarly, Bland et al. showed that SF3B1-mutant cells 

were unable to resolve replication stress induced by PARP inhibition, leading to 

selective killing of mutant cells [465,466]. Future work will be important to assess 

rational combination strategies that leverage SF3B1-associated vulnerabilities to 

deepen responses and improve selectivity for mutant clones [429]. 

Finally, while Study I demonstrates that UBA1 inhibition can selectively suppress 

SF3B1-mutant progenitors in vitro, and TAK-243 has shown activity across 

multiple preclinical models of hematologic malignancies, clinical efficacy and 

tolerability remain to be established [467–469]. An ongoing trial evaluating TAK-

243 in intermediate-2 or high-risk refractory MDS and leukemias (NCT03816319) 

may be informative to define the therapeutic window and dosing, and to inform 

whether UBA1-targeted strategies could be extended to MDS-SF3B1. 

In Study II, we used patient-derived iPSC models of KMT2A-rearranged AML to 

map transcriptional and epigenetic dysregulation during hematopoietic 

differentiation and to test whether targeted epigenetic therapy could partially 

counteract these abnormalities. Transcriptional profiling and regulatory network 

analyses implicated Polycomb-associated repression as a prominent feature of 

AML iPSC-derived HSPCs, and pharmacologic inhibition of EZH1/2 using UNC1999, 

in combination with 5-azacitidine, reactivated a subset of repressed genes and 

reduced leukemic phenotypes in KMT2A-r cells. Through this analysis, we 
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identified NFYA as a candidate target with evidence of fusion occupancy at the 

NFYA promoter, consistent with elevated NFYA expression and increased NFY 

motif activity in AML-HSPCs. NF-Y is a CCAAT-binding transcription factor 

complex in which NFYA confers sequence-specific DNA recognition [470]. Across 

cancer types, NF-Y has been implicated in maintaining pro-growth transcriptional 

programs, including cell-cycle regulation and metabolism, and it emerges as a 

proliferation-linked node also in KMT2A-r AML [439,471]. Consistently, NFYA or 

broader NF-Y complex loss-of-function suppresses proliferation and can trigger 

apoptosis. Transcription factor-focused CRISPR screens have placed all three NF-

Y subunits among a small set of transcription factors broadly required for cancer 

cell proliferation, including in KMT2A-r contexts [471,472]. Conversely, multiple 

studies support oncogenic behavior upon NFYA upregulation, suggesting that 

increased NFYA activity can reinforce malignant growth programs [471]. 

Collectively, these data support a model in which KMT2A fusion-dependent 

binding at the NFYA promoter is associated with elevated NFYA expression and 

sustains transcriptional programs that favor leukemic growth and self-renewal. 

While our analysis indicates a potential role for NFYA in the KMT2A-r gene 

expression program, we did not test this mechanistically. Follow-up work should 

therefore focus on directly perturbing NFYA or the NF-Y complex in KMT2A-r AML 

models to establish its functional requirement for the leukemic state and to 

evaluate whether NFY-dependent circuitry represents a therapeutic vulnerability. 

Targeting epigenetic dependencies in KMT2A-r AML is the focus of ongoing 

therapeutic development. As outlined in the introduction, Menin, together with 

cofactors such as LEDGF, coordinate chromatin binding and the activation of 

target genes by KMT2A fusion complexes, making disruption of the Menin–KMT2A 

interaction a strategy to inhibit HOXA9 and MEIS1 gene expression [297,311]. 

Clinically, the oral Menin inhibitor revumenib has shown meaningful activity in 

heavily pretreated KMT2A-r/NPM1-mutant AML and has received FDA approval in 

the relapsed/refractory KMT2A-r acute leukemia setting [473,474]. Additional 

Menin inhibitors, including ziftomenib and newer agents such as bleximenib and 

enzomenib, have also shown encouraging efficacy signals and are now being 

advanced into combination regimens with intensive chemotherapy or 5-

azacitidine/venetoclax in early-phase studies [475]. In parallel, DOT1L is aberrantly 

recruited by KMT2A fusion proteins to deposit H3K79 methylation and maintain 

HOXA gene expression [303]. While the DOT1L inhibitor pinometostat 

demonstrated only modest single-agent efficacy, this has shifted clinical 
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emphasis toward combination strategies [315]. Although UNC1999 and 5-

azacitidine in Study II reactivated PRC2 target genes and reduced leukemic 

properties, we did not observe downregulation of HOX/MEIS1 expression, 

suggesting that this regimen alone may not directly disrupt the core KMT2A-

fusion transcriptional program. This supports a rationale to explore combination 

strategies that pair PRC2-directed therapy with agents that more directly target 

KMT2A-fusion function, such as Menin or DOT1L inhibitors, to more 

comprehensively attenuate leukemogenic gene expression and phenotype. 

Taken together, Study I and Study II illustrate how patient-derived iPSC 

hematopoiesis can bridge mechanistic discovery and therapeutic hypothesis 

testing in myeloid malignancies. In MDS-SF3B1, this approach tied a mutation-

specific splicing event (UBA1ms) to a defined molecular consequence and a 

pharmacologically addressable vulnerability, supported across iPSC-derived 

progenitors, complementary models, and primary cells. In KMT2A-r AML, stage-

resolved profiling in iPSC-derived hematopoiesis mapped when leukemic 

regulatory programs emerge during differentiation and identified a PRC2-

controlled repressive profile that can be partially reversed pharmacologically, 

underscoring the value of developmental context for interpreting malignant cell 

states and drug responses.  

Through these studies, I also came to appreciate the current boundaries of iPSC-

based hematopoietic modeling. Key challenges include generating cells that 

faithfully capture bona fide HSC biology, incorporating the instructive complexity 

of the niche and microenvironment, modeling clonal competition in genetically 

diverse settings, and translating selective in vitro effects into durable clinical 

benefit. Looking forward, I see integration as the central direction for the field: 

coupling higher-fidelity stem and progenitor differentiation with engineered 

microenvironments, expanding genetically diverse patient-derived and isogenic 

panels, and applying systematic therapeutic testing, including rational 

combinations, to exploit convergent dependencies in stress responses, 

proteostasis, and epigenetic regulation while preserving normal hematopoiesis. 
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