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Popular science summary of the thesis

Cancer is often described as body’s own cells rebelling against itself. Throughout
our lifetime, millions of our cells acquire the changes it takes to turn a healthy cell
into a cancerous one. However, both our cells and our bodies are equipped with
defense systems to counter harmful changes to our organisms. When the damage
inside the cells becomes too overwhelming for the cell to repair, these damaged,
transformed cells can start the process of dying themselves, but most of the time,
they are eliminated by specialized cells of our immune system, known as

lymphocytes.

The immune system is made of two complementary immune systems: the innate
and the adaptive, the former of which is the fastest and more sensitized to identify
and alert the body of infections and inflammations and the latter of which is more
adapted to completely clear the pathogenic entities and form a memory in case
the body is exposed to this particular pathogen again.

Natural killer (NK) cells are the killer cells of the innate immune system and as such
they are considered the first line of defense against invading bacteria and viruses,
as well as stressed cells and cancer cells. NK cells do not need to “learn” what a
cancer cell looks like before attacking. They constantly patrol the body, scanning
for signs of stress or abnormality, kill dangerous cells by releasing toxic granules
and call in other immune cells by producing inflammatory molecules. All of these
features make NK cells attractive for “off-the-shelf” cell therapies, where carefully
prepared NK cells are given to patients as living drugs. But to use them well, we

first need to understand which genes and switches control their behavior.

In the first part of this thesis work, a large-scale genetic screening method called
CRISPR was used to systematically switch off thousands of genes one-by-one in
an NK cell line and see how this affected their ability to kill and to produce
inflammatory substances. This revealed not only many well-known players, but
also hundreds of genes and pathways that fine-tune how aggressively NK cells
attack. An important finding was that NK cells seem to have many internal “brakes”
that prevent uncontrolled killing, while producing immune signals such as
interferon-gamma depends on broad support from the cell's metabolism and
machinery. These insights highlight concrete targets that could one day be

adjusted to make NK cell therapies stronger or safer.



To turn NK cells into precision cancer fighters, sometimes new genes need to be
added, for example to make them recognize specific tumor markers. However, NK
cells are naturally very good at sensing and resisting viruses, which makes it hard
to deliver genetic material into them. The second part of the thesis identifies a
small molecule that can temporarily lower this antiviral “shield” and allow much
more efficient delivery of therapeutic genes by modified viruses, not only into NK
cells but also into T and B cells. Crucially, this boost in gene transfer does not
measurably harm cell survival or function, making it a promising tool for

manufacturing future engineered cell therapies.

The third study focuses on ovarian cancer, a disease where many patients still
relapse despite surgery and chemotherapy. Here, an NK cell line was equipped
with a specially designed version of a natural death signal called TRAIL, tuned to
bind strongly to a receptor named DR5 on tumor cells. These engineered cells
killed a TRAIL-sensitive ovarian cancer cell line more efficiently than unmodified
NK cells and released higher levels of toxic enzymes and immune-activating
molecules. At the same time, another ovarian cancer cell line with high DR5 levels
remained resistant, showing that the presence of the target receptor alone is not
enough to guarantee success and that tumors can block death signals from within.

Finally, the thesis also explores a less obvious side of NK biology: in some tumors,
NK cells can be reshaped by their environment and start supporting cancer
growth instead of fighting it. Tumor-exposed NK cells can begin to produce the
inflammatory molecule interleukin-6, which in turn drives other immune cells,
called myeloid-derived suppressor cells, to shut down the activity of cancer-killing
T cells. Blocking this signal in experimental models reduced these suppressive
cells, strengthened T-cell responses and slowed tumor growth. This shows that
successful therapies must not only boost the killing side of NK cells but also

prevent them from being turned into unwitting allies of the tumor.

Together, these four studies chart the genetic wiring of NK cells, provide tools to
modify them, demonstrate a targeted NK therapy concept in ovarian cancer, and
uncover how NK cells can sometimes fuel tumor immune escape. This knowledge
brings the field closer to designing smarter, safer NK cell-based treatments for
cancer patients.
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Abstract

Natural killer (NK) cells have emerged as potent cytotoxic lymphocytes in cellular
immunotherapies in the recent decades. 50 years of extensive research into their
multidimensional nature have led to their substantial characterization, however,
the genetic circuits governing their cytotoxic and cytokine programs, and the
constraints limiting their therapeutic engineering and in-tumor function, remain
incompletely defined. This thesis combines genome-wide functional genomics,
small molecule—assisted gene delivery, and translational NK cell engineering to

dissect and therapeutically exploit NK-cell biology in cancer.

In Study |, a genome-wide loss-of-function CRISPR-Cas9 screen in NK-92 cells
simultaneously interrogated degranulation and interferon-gamma (IFNy)
production. The results mapped 914 regulators of NK effector functions,
recovering known genes in cytotoxic granule trafficking and primary
immunodeficiencies, and revealing a predominance of negative regulators limiting
degranulation versus extensive positive regulators sustaining IFNy production.
Pathway-level analyses highlighted vesicle trafficking, mitochondrial metabolism,
translational control, and signaling modules downstream of activating receptors,
and an updated NK cell cytotoxicity gene set was curated to better align

CRISPR-based functional data with existing transcriptomic resources.

To overcome innate antiviral barriers that limit NK-cell engineering, RIG-I-pathway
inhibitor, 5Z-7-oxozeaenol, was identified as a transient, low-toxicity enhancer of
lentiviral gene delivery in Study Il. Short-term exposure to 5Z-7-oxozeaenol
increased transduction efficiencies up to eight-fold in NK cell lines and up to
four-fold in primary NK and T cells across multiple multiplicities of infection,
without impairing viability, degranulation, or IFNy responses, and with activity
extending to B and T cell lines in an envelope-dependent manner.

Study Il explored the translational potential of engineered NK cells in ovarian
cancer models using KHYG-1 cells modified with a DR5-selective TRAIL variant
(TRAILv-KHYG-1). TRAILvV-KHYG-1 cells exhibited enhanced apoptosis induction and
reduced viability in TRAIL-sensitive OVCAR-3 cells compared to parental KHYG-],
associated with increased granzyme and IFNy secretion and elevated soluble
TRAIL, whereas both NK cell products showed minimal cytotoxicity against
TRAIL-resistant SKOV-3 cells despite higher DR5 surface expression, indicating
that DR5 abundance alone is insufficient to overcome intrinsic TRAIL resistance.



Finally, in Study IV, the thesis outlines a regulatory role of NKs, whereby
tumor-associated NK cells promote myeloid-derived suppressor cell (MDSC)-
mediated immune tolerance through IL-6/STAT3 signaling. Tumor-experienced
human NK cells acquired a CD69perforin- phenotype and reprogrammed
monocytes and neutrophils toward suppressive, MDSC-like states characterized
by defective antigen presentation, up-regulation of PD-L1 and ER-stress markers,
and enhanced suppression of CD8" T cells. In patient tumors and multiple murine
models, NK cell-derived IL-6 correlated with MDSC accumulation in an MHC class
I-dependent manner. Genetic or siRNA-mediated IL-6 ablation in NK cells, or
pharmacologic blockade of the IL-6/STAT3 axis, reduced MDSC-associated
suppression, limited metastatic lesions, and improved T-cell activity in xenograft

and zebrafish models.

To conclude, these studies provide a systemwide map of NK effector functions,
introduce a strategy to enhance NK genetic modification, demonstrate the
opportunities and limits of death receptor—targeted NK cell therapy in solid
tumors, and uncover a role of NK cells in actively shaping tumor-associated

immune suppression that can be therapeutically overcome.
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Janus kinase
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Lipid nanoparticles
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NF-«kB
NK
NTB-A
pNK
PAKs
PB
PBMCs
PCNA
PD-1
PEI
PI3K
PID
PKC
PLCy
PMA
PRF
PRRs
RANTES
RIG-I
RNPs
SAP
SB
SHP-1/ SHP-2
SLAMF
SLP-76
Syk
SNARE
SNAP23
STAT
TAA
TCR
TBK1

Natural cytotoxicity receptors

Nuclear factor kappa-B

Natural killer (cell)

NK-T-B antigen (SLAMF6)

Primary natural killer (cell)

p21-activated kinases

piggyBac (DNA transposon)

Peripheral blood mononuclear cells

Proliferating cell nuclear antigen

Programmed cell death protein 1

Polyethyleneimine

Phosphoinositide 3-kinase

Primary immunodeficiency

Protein kinase C

Phospholipase C gamma

Phorbol 12-myristate 13-acetate

Perforin

Pattern recognition receptors

Regulated on Activation, Normal T cell Expressed and Secreted
Retinoic acid-inducible gene | (RNA sensor)
Ribonucleoproteins (e.g., Cas9 RNP)

SLAM-associated protein

Sleeping Beauty (DNA transposon)

Src homology region 2 domain-containing phosphatase-1/ -2
Signaling lymphocytic activation molecule family

SH2 domain-containing leukocyte protein of 76 kDa (implied)

Spleen tyrosine kinase

Soluble N-ethylmaleimide—sensitive factor attachment protein receptor

Synaptosomal-associated protein 23 kDa
Signal transducer and activator of transcription
Tumor-associated antigen

T cell receptor

TANK-binding kinase 1



TCR
TIRs
TLRs
TME
TNF
TRAIL
TriKEs
TSA
uLBP
VAMP7
VEGF
VLPs
VSV-G

T cell receptor

Terminal inverted repeats

Toll-like receptors

Tumor microenvironment

Tumor necrosis factor (alpha)
TNF-related apoptosis-inducing ligand
Trispecific killer cell engagers
Tumor-specific antigen

UL binding protein

Vesicle-associated membrane protein 7
Vascular endothelial growth factor
Virus-like particles

Vesicular stomatitis virus glycoprotein G (envelope)



1 Background

1.1 Natural Killer Cells

111  Introduction to NK Cells

Natural killer (NK) cells are cytotoxic innate lymphocytes that play a pivotal role in
immune surveillance and homeostasis. They comprise approximately 5-25% of
peripheral blood mononuclear cells (PBMCs) and are also widely distributed as
tissue-resident populations in organs such as the liver, lungs, gastrointestinal tract,
and uterus. Like other immune cells, NK cells secrete a broad array of cytokines,
chemokines, and growth factors that contribute to intercellular signaling,
angiogenesis, and apoptosis. Their secretory profile is highly dynamic, varying in
response to environmental cues and tissue-specific contexts.

NK cells were initially discovered at Karolinska Institutet as a distinct lymphocyte
population capable of spontaneous tumor cell lysis in 1975 by Rolf Kiessling, along
with Hans Wigzell and Eva Klein (1). Their novel observations of mouse
lymphocytes, that could exert spontaneous cytotoxicity towards cancer cells
without prior sensitization, would significantly contribute to the understanding of
the immune landscape as well as revolutionize cell-based immunotherapies in the

coming 50 years.

A central function of NK cells is the recognition and elimination of physiologically
aberrant or stressed cells, including virally infected and transformed cells, thereby
contributing to maintenance of immune homeostasis (1, 2). Traditionally, NK cells
have been classified based on surface receptor expression into two major
subsets: CD56E"CD164™ and CD569™CD16*&". The former, which constitute
about 10% of circulating NK cells, are primarily immunoregulatory, whereas the
latter, comprising the remaining 90%, are highly cytotoxic. Beyond these canonical
subsets, additional populations such as tissue-resident NK cells, tumor-infiltrating
NK cells, tumor-associated NK cells and adaptive NK cells have been identified (3,
4). Adaptive NK cells, which emerge following human cytomegalovirus (HCMV)
infection, exhibit distinct phenotypic and epigenetic profiles compared to their
canonical subsets and possess enhanced cytotoxic potential. Notably, they can
expand upon re-exposure to the same or related viral antigens, demonstrating
memory-like behavior (5, 6).



NK cell cytotoxicity is orchestrated through a complex interplay of activating,
inhibitory, and co-stimulatory receptors expressed on their surface (Fig. 1) (3, 7).
Engagement of activating receptors triggers degranulation and the release of
perforin and granzymes at the immune synapse, leading to target cell lysis. In
contrast, inhibitory receptor binding transmits signals that suppress cytotoxic
responses, typically indicating that the target cell is healthy and part of “self”. The
balance between activating and inhibitory signals determines NK cell
responsiveness, with the strength and number of receptor-ligand interactions
influencing the outcome. This finely tuned mechanism underlies NK cell self-

tolerance and prevents unintended damage to healthy tissues.

A key aspect of NK cell self-recognition involves the detection of major
histocompatibility complex (MHC) class | molecules via inhibitory receptors such
as NKG2A and killer cell immunoglobulin-like receptors (KIRs). These receptors
recognize the complex of self-peptides presented by MHC class | and inhibit
cytotoxic activity. Conversely, the absence or downregulation of MHC class |,
which is a hallmark of stressed or transformed cells, can trigger NK cell activation,
a concept known as the “missing-self” hypothesis, first proposed by Klas Karre in
his doctoral thesis in 1981 (8), and later refined by Ljunggren and Karre (8-10).
However, MHC class | loss alone is insufficient to induce cytotoxicity; additional
stress-induced ligands, such as MHC class I-chain related protein A and B

(MICA/B), are typically required to fully activate NK cells (11).

In short, NK cells are vital components of the immune system with a wide set of
functions that bridge the gap between the innate and adaptive immunity. Their
ability to eliminate target cells without prior sensitization, coupled with their high
off the shelf potential make them an attractive candidate for cancer
immunotherapies, which is addressed in more detail in this kappa, focused on
human NK cells. However, to understand the full picture it is important to delve

deeper in their biology.

11.2 Mechanisms of NK Cell Activation and Inhibition

NK cell cytotoxicity relies heavily on its germline-encoded activating and
inhibitory receptors. These receptors, which are structurally diverse, are present
on the cell surface and are capable of binding their respective ligands. The
receptor expression profile of NK cells is influenced by the environment,

abundance of the cognate ligand and gene loci methylation patterns (12-14).



Environmental cues such as oxygen concentration, pH, metabolites, and access to
cytokines like interleukin 2, 7,12,15, 18, and 21 (IL-2, IL-7, IL-12, IL-15, IL-18, and IL-21)
also play in this process (15, 16).

NK cell receptors can be homo- or heterodimers, where ligand binding-mediated
dimerization is a key process in their activation (7, 17). Structurally, they typically
have an extracellular ligand-binding domain, an anchoring transmembrane
domain, and an intracellular signaling domain. Additionally, most receptors utilize
intracellular DNAX-activating protein 10 (DAP10) or 12 (DAP12), CD247 (CD37) or Fc
epsilon receptor subunit gamma (FCeRly) for downstream signaling (7).
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Figure 1: Schematic overview of the NK cell surface receptor repertoire. The illustration depicts major
activating and inhibitory receptors, adhesion molecules, cytokine receptors, and the Fc receptor CD16 that
mediates potent antibody-dependent cellular cytotoxicity (ADCC). It also shows membrane-bound death
ligands and their receptors involved in apoptosis induction. Selected tumor-associated ligands (for example
MICA, B7-H6, CD155 and HLA-E) and soluble mediators (such as IL-2, IL-15 and IFNy) are indicated to highlight
key receptor-ligand interactions shaping NK cell activation and effector function.

NK cell activating receptor repertoire is diverse, including, but not limited to, the
highly potent CDI16, activating killer cell immunoglobulin-like receptors (KIRs) and
natural cytotoxicity receptors (NCRs) such as NKp30O, NKp44 and NKp46.
Activating intracellular signaling cascades vary according to the engaged receptor
and involve different adaptor and effector proteins which is discussed in more

detail in this thesis. Moreover, uninhibited activating signaling culminates in the



reorganization of the cytoskeleton to enable degranulation by the polarized

release of perforin and granzyme towards the target cell (18, 19).

In addition to activating receptors, NK cells also express inhibitory receptors,
which are vital for the interplay between self-tolerance and cytotoxicity. These
receptors are structurally diverse, with the largest group being the highly
polymorphic inhibitory KIRs (20). Other inhibitory receptors include NKG2A,
Siglec-7/9, T-cell Ig and ITIM domain (TIGIT) and programmed cell death protein 1
(PD-1), latter of which features variable distribution across different NK cell
subsets.

In addition to inhibitory and activating receptors, NK cells also feature membrane-
bound cytokine, chemokine and co-stimulatory receptors, as well as membrane
bound death ligands such as TRAIL and FASL, all working in synergy for optimal NK
cell functions, be it cytotoxic or aimed towards tolerance.

The formation of an immune synapse by receptor/ligand interactions between NK
and target cells is the initial step towards the outcome. For the scope of this thesis,
only some mechanisms of activation and inhibition are detailed below.

1.1.3 Natural Cytotoxicity Receptors (NKp30, NKp44, NKp46)

Natural cytotoxicity receptors (NCRs) represent some of the most potent
activating receptors on NK cells. Upon engagement with their cognate ligands on
target cells, a robust cytotoxic response is initiated through NKp30, NKp44, and
NKp46. These receptors are key components of the non-MHC-restricted
recognition system and are primarily responsible for detecting stress-induced
ligands on tumor or virally infected cells (7, 21, 22). NKp30 and NKp46 are
constitutively expressed on resting NK cells, while NKp44 is upregulated upon
activation (22, 23). In terms of their ligands, they all recognize various viral
hemagglutinins as well as multiple other ligands (7). Experimentally it has been
reported that NKp30 recognizes B7-H6, a ligand selectively expressed by tumors
such as melanoma and carcinoma and BAG family molecular chaperone regulator
6 (BAGG, previously known as BAT3), which acts as a stress-induced, tumor-
associated ligand. As well as this, it has been proposed that NKp30 also recognizes
certain heparan sulphate molecules and the cytomegalovirus tegument protein
pp65 (7, 22). NKp44 binds to both activating as well as inhibitory ligands. Namely,

its activating ligand, mixed-lineage leukemia-5 (MLL5) is enriched in transformed



cells and not in healthy tissues. The primary proposed inhibitory ligand of NKp44
is proliferating cell nuclear antigen (PCNA), a protein overexpressed in many
cancer cells (22). Co-expression of PCNA and human leukocyte antigen (HLA)
class | molecules on cancer cells play a large part in immune evasion (24). On the
other hand, NKp46 recognizes mostly activating ligands, with a heavy emphasis on
viral hemagglutinins, heparan sulfate proteoglycans and ecto-calreticulin,
particularly the ones from influenza and zika virus as well as vimentin expressed
by mycobacterium tuberculosis-infected cells (22-24). This receptor is vital in
antiviral immunity. Research into the ligands for NCRs has only gained traction in
the last few years, and while some of them have now been elucidated, more are

likely to be discovered in the

future due to the promiscuity of
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mobilize intracellular calcium
and activate protein kinase C (PKC) (7, 25). Concurrently, activation of Vavl, a
guanine nucleotide exchange factor, leads to the activation of Rho family GTPases
such as Racl and Cdc42 (25). These molecules orchestrate the reorganization of
the actin cytoskeleton through effectors like WASp and Arp2/3 complex,

facilitating the formation of the immune synapse (26). This reorganization is



critical for the polarization of the microtubule-organizing center (MTOC) and the
directed movement of lytic granules toward the synapse, setting the stage for
targeted degranulation and cytotoxicity.

Additionally, NCRs play pivotal roles in cytokine and chemokine production as well
as modulating chemokine receptor expression and the subsequent migratory
properties of NK cell subsets. NCR binding induces rapid secretion of chemokines
such as MIP-1a, MIP-1b and RANTES promotes the recruitment of myeloid and
lymphoid effector cells to sites of infection and tumorigenesis (27, 28). These
chemokines are produced earlier and in greater abundance than classical
proinflammatory cytokines such as IFNy and TNF, whose release requires stronger
receptor engagement or more stringent co-stimulation frequently including

synergy between multiple NCRs or accessory receptors (22, 28).

1.1.4 CD16 (FcyRllla)

CD16, also known as FcyRllla, is a high-affinity receptor for the Fc region of
immunoglobulin G (IgG) antibodies and is expressed on the mature CD56%™
subset of NK cells. This receptor plays a pivotal role in antibody-dependent
cellular cytotoxicity (ADCC), a mechanism by which NK cells recognize and kill
antibody-coated target cells. Upon binding to IgG, CD16 signals through multiple
ITAM-bearing CD3¢ and FcRy, utilizing pathways similar to those of NKp30 and
NKp46. However, CD16 engagement delivers strong activating signals to NK cells
since it is directly coupled to potent ITAMs and does not have to associate to
them upon activation (29). Unlike NCRs, it does not have to rely on co-stimulation

for a full functional activation.

The downstream signaling cascade involves Src family kinases, Syk or ZAP-70, and
PLCy1/2, leading to IP3 and DAG production, calcium mobilization, and PKC
activation. Vav1 activation and subsequent engagement of Racl and Cdc42 drive
actin cytoskeletal rearrangement, immune synapse formation, and lytic granule

polarization - culminating in effective target cell lysis.

The strength and independence of CD16 signaling likely evolved to ensure that NK
cells can swiftly recognize and kill opsonized cells even if other activating receptor
ligands are missing or suboptimal. Regulatory mechanisms in this pathway, such
as ADAMI17-mediated cleavage of CDI6 after the cytotoxic event, act to dampen

the response and prevent autoreactive tissue damage, which further underscores



the potency of CDI6-mediated cytotoxicity. Another safeguard of this process
includes the production of antibodies for opsonization which is under strict
control of the adaptive immune system.

1.1.56 Other activating and co-stimulatory receptors

Apart from the NCRs and the highly potent CD16, NK cells feature other activating
receptors on the cell surface, some of which are discussed below.

NKG2D is a prominent activating receptor that recognizes stress-induced ligands
such as MICA, MICB, and ULBP proteins on target cells (7, 30). Unlike ITAM-
associated receptors, NKG2D signals through the adaptor protein DAP10, which
contains a YINM motif instead of ITAMs (30). This motif recruits the p85 subunit
of PI3K and the adaptor protein Grb2, initiating the PI3K-Akt signaling pathway.
Grb2 also recruits Vavl, linking NKG2D activation to the same cytoskeletal
remodeling machinery—Racl, Cdc42, WASp, and Arp2/3—that facilitates
formation of the immune synapse and granule polarization. Thus, although the
upstream signaling differs, the terminal cytotoxic machinery converges with that
of ITAM-dependent pathways.

Killer cell immunoglobulin-like receptors (KIRs) are a diverse family involved in
both NK cell activation and self-tolerance. While inhibitory KIRs recognize self-
MHC class | molecules to counter self-reactivity, activating KIRs such as KIR2DS],
KIR2DS2, and KIR3DST bind to HLA class | molecules, with KIR2DS1 binding HLA-C2,
KI2DS2 to HLA-C1 and KIR3DS1 to HLA-Bw4 (31, 32). These activating KIRs
associate with DAP12, an ITAM-bearing adaptor, and initiate signaling cascades
that mirror those of NCRs and CD16.

Co-stimulatory receptors add to the complexity of NK cell activation network.
Unlike primary activating receptors, which initiate activation events
independently, co-stimulatory receptors function synergistically to fine-tune the
magnitude and quality of the immune response. Key co-stimulatory receptors
include CD2, signaling lymphocytic activation molecule family (SLAMF) members
(2B4 (CD244), CRACC, NTB-A, etc.) and the DNAX accessory molecule-1 (DNAM-
1) all of which interact with ligands associated with stressed, infected or aberrant
cells (7, 33). For instance, 2B4 binds to CD48, while DNAM-1 interacts with CD112
and CD155 - ligands often dysregulated in tumor and virally infected cells (7).

Ligand engagement activates downstream pathways that involve adaptor



proteins such as SAP (SLAM-associated protein) and Fyn kinase, leading to an
enhancement in actin remodelling, granule polarization and degranulation. Co-
stimulatory signaling also promotes the production of pro-inflammatory
cytokines such as IFNy and TNF, which reinforces both the innate and the following
adaptive responses. Importantly, the functional outcome of co-stimulatory
receptor engagement is context-dependent and can be modulated by the
presence of inhibitory signals or immune checkpoints. Due to this, these receptors
now present as promising targets for immunotherapeutic strategies aimed at

boosting NK cell activity in cancers via agonistic antibodies (34-36).

1.1.6 Downstream events in activating signaling

Activated Cdc42 forms a complex with WASp and ARP2/3, which nucleates new
actin filaments, promoting the formation of branched actin networks that are
critical for immune synapse architecture (37). Additionally, adaptor proteins such
as Grb2 help localize and stabilize these interactions at the synapse. Cdc42 also
activates p2l-activated kinases (PAKs), which modulate actin dynamics by
phosphorylating LIM kinase, leading to the inactivation of cofilin and stabilization
of actin filaments (37, 38). Cdc42 coordinates the polarization of the microtubule
organizing center and the migration of secretory lysosomes towards the lytic

synapse, culminating in granule docking and fusion at the immune synapse.

Delivery of a successful cytotoxic signal to the target cell is the cue for NK
detachment, however the exact mechanism of this sensing of target cell death is
unknown and needs to be researched further.

1.1.7 Inhibitory receptors and immune checkpoints

NK cells rely on a finely tuned balance between activating and inhibitory signals to
discriminate between healthy and abnormal cells (7, 18, 39). Central to this
regulation is the engagement of inhibitory receptors, which recognize self-
molecules such as MHC class |. Upon ligand binding, these receptors initiate
intracellular signaling cascades that suppress NK cell activation and cytotoxicity.
Given the diversity of inhibitory receptors expressed by NK cells, this thesis will
only provide a small overview to briefly illustrate their roles in maintaining immune

tolerance and preventing self-reactivity.



In addition to classical inhibitory receptors, NK cells also express immune
checkpoint molecules such as programmed cell death protein 1 (PD-1), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), lymphocyte activation gene-3
(LAG-3), and T cell immunoglobulin and mucin domain containing-3 (TIM-3),
which are upregulated in chronic infection and tumor microenvironments.
Understanding the interplay between inhibitory receptors and immune
checkpoints is essential for elucidating NK cell regulation and for developing
strategies to enhance their function in immunotherapy.

1.1.8 Inhibitory receptors and downstream signaling

Inhibitory KIRs represent the largest cluster of inhibitory receptors on NK cells,
playing critical roles in self-tolerance and immune regulation (20). This inhibitory
family consists of seven members: KIR2DL], KIR2DL2/3, KIR2DL4, KIR2DL5, KIR3DLI,
KIR3DL2 and KIR3DL3 which are acquired by naive NK cells during maturation (20,
40). In mice, the expression dynamics of their functional analogs, Ly49 receptors,
are refined through a process known as education or “licensing”, a complex area
of study which can loosely be defined as the exposure of immature NK cells to a
plethora of self-ligands in the bone marrow milieu with the aim of tuning their
tolerance and cytotoxic responses (41). However, in humans, KIR expression
dynamics are independent of presence of cognate self-ligand (42). These
receptors have the capacity to recognize specific allotypes of HLA class |
molecules, specifically HLA-A, HLA-B, HLA-C and HLA-G, and transmit inhibitory
signals upon ligand engagement (20, 40). In contrast to their activating
counterparts, their cytoplasmic tails contain immunoreceptor tyrosine-based
inhibitory motifs (ITIMs), which have the ability to recruit “master negative
regulator” phosphatases SHP-1 and SHP-2 to dephosphorylate key signaling
intermediates, thereby attenuating NK activation (43, 44). KIR expression is
variegated and stochastic, resulting in a diverse NK cell repertoire capable of
responding to a wide range of target cells while maintaining self-tolerance (42).

The main targets of SHP-1 and SHP-2 are the key adaptor proteins described in
activating signaling cascades and include Vavl, SLP-76, PLCy and ZAP70/Syk
complex (44). Their dephosphorylation dampens the NK activating signal,
effectively inhibiting cytotoxic granule release and cytokine production, thereby
maintaining immune homeostasis.



SHP-1 and -2 can also be activated by other inhibitory receptor-ligand
interactions, with another example being CD94/NKG2A binding of its cognate
non-classical MHC class | molecule, HLA-E (44, 45). HLA-E presents peptides from
highly conserved leader sequences of other MHC class | molecules, serving as a
signal of “self” integrity (45, 46). Upon healthy cell interaction, binding and
heterodimerization of CD94/NKG2A on the NK cell leads to ITIM phosphorylation
by the Src family kinases. Following ITIM activation, the signaling cascade
continues in the same pattern as that of inhibitory KIRs with ITIM-dependent SHP-

1and -2 activation.

1.1.9 Immune checkpoint receptors

Immune checkpoint receptors are a specialized subset within the inhibitory
umbrella, that play pivotal roles in regulation of NK cell activity, particularly under
conditions of sustained immune stimulation. These receptors, including, but not
limited to, PD-1, TIGIT, LAG-3 and TIM-3, are normally upregulated in response to
chronic antigen exposure, persistent inflammation and within immunosuppressive
environments such as tumor microenvironments (7, 17, 47). Their expression is
often induced by cytokines such as IL-10, TGF-f, and type | interferons, which are
abundant in the tumor microenvironment (TME) and sites of chronic infection (47).
Notably, these checkpoint receptors are not restricted to NK cells, but are also
expressed by other immune cell populations, including T cells and myeloid cells,

where they similarly modulate effector function (48).

Upon engagement with their cognate ligands they initiate inhibitory signaling
cascades as described above, leading to suppression of cytotoxicity, reduced
pro-inflammatory cytokine production (e.g. IFNy, TNF) and impaired proliferation
(17, 47). This regulatory mechanism is essential for maintaining immune

homeostasis and preventing tissue damage during prolonged immune responses.

However, this same mechanism is exploited by tumors and chronic pathogens on
the immune evasion axis. Both hematological and solid tumors have been shown
to upregulate checkpoint ligands such as PD-L1 and CD155 or induce their
expression on tumor-associated macrophages or fibroblasts, effectively
disarming NK cells and creating an immunosuppressive niche that supports tumor
progression (49-57). Conversely, immune checkpoint receptors have emerged as
potent targets in cancer immunotherapy, with checkpoint blockade strategies



such as anti PD-1/PD-L1 antibodies or chimeric receptors showing promise in

restoring NK cell function and enhancing anti-tumor immunity (58-62).

1.2 Functional Responses of NK cells

The earliest cells expressing a CD94-like receptor evolved to detect and eliminate
cells lacking polymorphic histocompatibility factors, which were likely precursors
of self-MHC class | molecules, thereby enabling discrimination between self and
non-self as observed by Khalturin, et al, 2003 (63). This mechanism allowed
organisms as early in evolution as urochordates to defend against intracellular
pathogens and transformed cells without the need for antigen-specific receptors,
characteristic of adaptive immunity (63). While NK-like predecessors rise
relatively early in evolution, actual NK cells first appear in jawed vertebrates (fish,
reptiles, amphibians, mammals), which has been studied in depth by Parham, et al
in countless studies (4, 64-67).
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Figure 3: The two faces of NK cells. NK cells recognize and eliminate aberrant target cells by releasing
cytotoxic granules, this is coupled with the release of pro-inflammatory cytokines that contribute to
inflammation and recruitment of other immune cells. In contrast, their immunoregulatory roles involve the
secretion of immunoregulatory cytokines that shape T cell responses, maturation of dendritic cells and help
restore immune homeostasis.

|l



In addition to cytotoxicity, ancestral NK cells likely played a role in modulating
inflammation and tissue remodeling, functions that are conserved in modern NK
cells (67, 68). The natural killer gene complex which encodes many NK receptors,
shows significant variation across species, which is reflective of adaptation-
directed evolution in response to different pathogen pressure across species and
the need for immune diversity (68, 69).

Thus, while initially NK cells likely originated as cells to control fusion, they
proceeded to evolve as innate killers capable of rapid, non-specific responses to
cellular stress and over time evolved further to integrate more complex regulatory
roles, which are now central to their functions. These include interactions with
adaptive immune cells, cytokine production and memory-like responses in

context of re-exposure to certain pathogens.

1.2.1 Cytotoxic response and machinery

Degranulation is a hallmark of NK cell-mediated cytotoxicity, denoting the terminal
step in their recognition and elimination of target cells. Upon previously discussed
activating signaling and the formation of immune synapse, NK cells initiate the
release of cytotoxic or lytic granules toward the target cells. This interplay involves
many effector and adaptor proteins to facilitate successful delivery of cytotoxic
load to the target cell (7, 26).

Cytotoxic granules are typically pre-formed and stored within the cytoplasm
containing key effector enzymes such as perforin and granzymes, with the inner
membrane coated with CD107a (LAMP-1), however their trafficking and docking is
orchestrated by a complex network of cytoskeletal and vesicular transport
proteins (37, 70, 71).

The first step in this process is the reorienting of the MTOC towards the immune
synapse, facilitated by previously described Cdc42 and Cdc42-interacting
protein-4 (CIP4), and Coronin-1A (CORQIA), latter two of which link the actin and
microtubule networks (70, 72). COROIA regulates actin remodeling through F-
actin disassembly at the immune synapse (73). It also interacts with Arp2/3
complex and PLCy1 to facilitate cytoskeletal rearrangement and calcium signaling
(73). Meanwhile, activated CIP4 has been shown to localize to the MTOC and the
actin-rich immunological synapse, where it interacts with WASp to promote actin



polarization towards the immune synapse, a prerequisite for directed trafficking
of lytic granules (70, 72, 74).

Following the reorientation of the MTOC, cytotoxic granules are trafficked along
the microtubules in a coordinated manner, facilitated by dynein and kinesin (72).
Once in proximity to the synapse, the granules undergo a docking process,
regulated by a small GTPase Rab27a (75). Rab27a, which in turn is regulated by
MAP kinase activating death domain (MADD), recruits effector proteins such as
Slp1 and Muncl13-4 (75-78). These proteins work to tether the granules to the
plasma membrane and prime them for fusion.

The final step in this process involves the SNARE complex composed of proteins
such as syntaxin-11, VAMP7 and SNAP23 (70, 79). These mediate membrane fusion
and exocytosis of granule contents, leading to eventual apoptosis of the target

cell.

This targeted release ensures selective elimination of the target cell while

preserving surrounding tissue integrity.

1.2.2 Cytotoxic granules

Cytotoxic granules are essentially specialized secretory lysosomes that serve as
primary effector organelles for target cell elimination. These granules are pre-
formed during NK cell maturation and stored in the cytoplasm, poised for rapid

deployment at immune synapse (37).

The biogenesis of these granules involves the endosomal-lysosomal pathway,
where early endosomes mature into multivesicular bodies followed by transition
into dense-core granules enriched with cytotoxic proteins (37, 70). Key
components of these granules include perforin and granzymes, along with other
peptides (70).

1.2.2.1Perforin

Perforin is a pore-forming protein that is responsible for delivery of granule
content inside the target cell (80). Upon granule extravasation, perforin is released
from granules and transitions from a soluble monomer to a membrane-inserted

oligomer. This process is facilitated by the C2 domain of perforin, which binds to



phospholipids in the target cell membrane in presence of extracellular calcium
(70, 81). Once anchored, perforin monomers undergo a conformational change and
begin oligomerization into a ring-like structure on the membrane surface (37, 70).
This oligomerization is driven by interactions within the MACPF (membrane attack
complex/perforin) domain, a conserved structural motif shared with complement
proteins such as C9 (37, 82). As the monomers assemble, they insert B-hairpin
structures in the lipid bilayer, forming a transmembrane B-barrel pore (83). These
pores are large enough to allow passive diffusion of granzymes into the cytosol of
the target cell. The formation of these pores is tightly regulated to ensure

directional release and to prevent damage to the NK cell itself (37, 84).

1.2.2.2 Granzymes and granulysin

Granzymes, a family of serine proteases, can induce apoptosis in both caspase-
dependent and -independent ways (37, 70, 85). In humans, five granzymes have
been identified: granzyme A, B, H, K and M, each with distinct substrate
specificities and biological functions (70). Granzyme B is the most extensively
studied and is known for its ability to cleave and activate caspases, particularly
caspase-3, leading to rapid apoptotic cell death (37, 86). Granzyme A, in contrast,
induces caspase-independent form of cell death characterized by loss of
mitochondrial function, DNA damage and pro-inflammatory signaling (85). While
granzyme A and B dominate the literature, granzymes H and M are particularly
enriched in NK cells and are thought to contribute to antiviral immunity and early
immune responses, respectively (70, 87). Granzyme H has been shown to degrade
viral proteins and may act in synergy with granzyme B, whereas granzyme M can
induce cell death through mechanisms yet to be elucidated (87). Granzyme K is
the least well characterized, however it is expressed in NK cells and may have
overlapping functions with granzyme A (70, 85, 88).

In addition to these core enzymes, granules also contain granulysin, a molecule
with potent antimicrobial and pro-inflammatory properties, with the ability to
disrupt microbial membranes and participate in pathogen clearance (37, 70). The
structural integrity and packaging of these granule contents are maintained by
serglycin, a proteoglycan that binds and stabilizes granzymes and other cationic

proteins within the granule matrix (37).



1.2.2.3 CD107a

The membrane of the cytotoxic granules is coated by the lysosomal-associated
membrane protein 1(LAMP-1/CD107a). CD107a is a multifunctional protein integral
to both cytotoxic function and cellular protection. Primarily localized on the
membranes of cytotoxic granules, CD107a is rapidly shuttled to the cell surface
following NK cell activation and degranulation, making its transient cell surface
expression a widely used functional marker for measuring NK cell cytotoxicity.
Functionally CD107a is crucial for efficient trafficking of perforin and granzymes to
lytic granules and for granule exocytosis (37, 89). Silencing or knocking down
CD107a impairs NK cell-mediated killing by disrupting perforin movement and
granule dynamics, thereby reducing the delivery of granzymes to the target cells
and decreasing cytotoxic activity by up to 70% (89).

In addition to its role in granule exocytosis and target cell killing, CD107a provides
a protective mechanism for NK cells themselves. It's transient appearance on the
plasma membrane after degranulation helps shield NK cells from self-inflicted
lysis or the so-called degranulation-associated suicide, by preventing perforin-
mediated damage to the NK cell membrane, exact mechanism of which has not
yet been elucidated (84) . Loss of CD107a heightens NK cell susceptibility to
apoptosis after cell-mediated killing events, impairs granule motility and
substantially diminishes target killing. Thus, CD107a is not simply a surrogate
degranulation marker, but an active participant in lytic granule trafficking,
functional cytotoxicity and the preservation of NK cell integrity during immune
responses.

1.2.3 Death-receptor mediated killing

An alternative NK cell cytotoxic mechanism involves FAS-FASL signaling and
TRAIL-TRAILR signaling (90, 91).

Membrane-bound TRAIL provides a degranulation-independent, death-receptor—
mediated pathway to kill susceptible targets, complementing granule-dependent
cytotoxicity. On activated NK cells, TRAIL is expressed as a transmembrane ligand
that is concentrated at the immunological synapse upon engagement of a TRAIL-
sensitive target (90, 92). Cytokines such as type | interferons and IL-15, as well as
pathogen- or tumor-derived signals, upregulate surface TRAIL and thereby
potentiate NK cell TRAIL-dependent killing of targets (93).
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In cytotoxic conjugates, membrane-bound TRAIL on NK cells engages DR4
(TRAIL-R1) and DR5 (TRAIL-R2) on the opposing cell, whereas decoy receptors
(DcR1, DcR2) on the target can limit productive signaling and thus determine TRAIL
sensitivity. Blocking antibodies that selectively mask membrane TRAIL reduce
supplementary NK cell cytotoxicity against TRAIL-sensitive cells, demonstrating
that synaptic, membrane-bound TRAIL is responsible for this kiling modality
rather than soluble TRAIL (92).

Upon ligation by trimeric TRAIL, DR4/DR5 cluster within the target cell membrane
and expose their cytoplasmic death domains. These death domains recruit the
adaptor FADD, which in turn binds procaspase-8 (and/or procaspase-10) to
assemble the death-inducing signaling complex (DISC) in the target cell (91, 94).
Procaspase-8 is then converted to active caspase-8 due to dimerization and
autocatalytic cleavage mechanisms, which activates further downstream

caspases and initiates the apoptotic cascade (94, 95).

Many solid malignancies, such as breast, colorectal and ovarian cancers have
marked upregulation in TRAILDR4 and/or TRAILDRS5, which sensitizes them to killing
through this pathway. Since targeting of solid tumors has been a long-standing
issue in the field, TRAIL-directed killing avenue has also been explored in different
ways, including TRAIL engineering to increase affinity towards DR4/DR5 and
reduce it to the decoy receptors (96-98). Furthermore, research has also shown
that clinical proteasome inhibitors currently employed in cancer treatment, such
as bortezomib, increase DR4 and DR5 expression in target cells, sensitizing targets
to NK cell bound TRAIL-mediated killing (99).

It is important to note that while TRAIL-mediated killing is slower than
degranulation, NK cells show plasticity also in their approach to target killing.
Prager, et al, showed that serial killer NK cells can actually switch from
degranulation to TRAIL-mediated killing during repeated tumor challenge when

repeated contacts reduce perforin and granzyme levels in the effector cell (100).

1.2.4 Cytokine and chemokine production

Cytokine and chemokine production is a central feature of NK cell
immunoregulatory function, to complement their cytotoxic nature. Upon
activation through receptors and/or cytokine stimulation, NK cells initiate a tightly

regulated transcriptional and translational program that culminates in the



secretion of a diverse array of immunomodulatory factors (28, 101). These include
pro-inflammatory cytokines such as IFNy and TNF as well as chemokines such as
CCL3, CCL4, CCL5 and XCLI, which coordinate the recruitment of other immune
cells at the site of interest (28, 102).

1.2.4.1IFNy

IFNy is a hallmark cytokine produced by NK cells, enabling their immunoregulatory
function (103, 104). Due to the importance of this cytokine signaling, IFNy pre-
mRNA transcripts are available at steady state in the NK cell (105). Upon activation,
these pre-existing transcripts are rapidly processed and translated into protein,
enabling swift IFNy secretion. However, its transcription in response to external

stimuli is also quite rapid (105, 106).

Production of this cytokine is orchestrated through a complex interplay of
receptor-mediated signaling, transcriptional activation and post-translational
regulation (103, 107,108). IFNy production can be initiated upon NK cell stimulation
by cytokines such as IL-2, IL-12, IL-15 and IL-18, or engagement of activating
receptors via intracellular signaling cascades involving adaptor proteins such as
PLCy, mTOR, TYK2, JAK2, and MyD88 (109). In addition to having the capacity to
initiate IFNy production when activated singly, these pathways can also combine
and synergize to have a more potent effect on NK cells, therefore triggering a

stronger pro-inflammatory response through more IFNy production (109, 110).

In the activating signaling pathway, the binding of a cognate ligand on an activating
receptor leads to the activation of Src family of kinases. Phosphorylation of
Syk/Zap70 by the Src family leads to the activation of Ras. Ras in turn
phosphorylates and activated PLCy, which is central in mediating further
downstream signals that eventually activate NF-xB and lead to its translocation to

the nucleus where it initiates transcription (103, 109).

The secreted IFNy has many functions, including, but not limited to, activating
macrophages, enhancing antigen presentation by upregulation of MHC class | and
class Il molecules in APCs and promoting Th1 polarization to CD4+ T cells (111, 112).
While not being cytotoxic in nature, it is critical in shaping long-term immune

responses and maintaining immune surveillance.



1.2.4.2 TNF, GM-CSF and chemokines

Along with IFNy, Tumor necrosis factor (TNF), also known as TNF-alpha, is one of
the most rapidly produced cytokines by NK cells upon activation (113). TNF
production is also regulated by the NF-kB/MAPK signaling pathways, in pathways
that are very similar to that of IFNy (114). In comparison to IFNy which is more
immunomodulatory, TNF can have a dual role upon secretion: it can directly give
an apoptotic signal by binding to its cognate receptor and also activate
endothelial cells and recruit other immune cell subsets to the site of infection or

tissue damage with the aim of amplifying local inflammation (114, 115).

GM-CSF is another cytokine readily produced by NK cells. While IFNy primarily
modulates immune responses and TNF can directly induce apoptosis or amplify
inflammation, GM-CSF plays a more supportive and regulatory role in shaping the
innate immune environment (115, 116).

Chemokines are a specialized subset of cytokines that primarily affect direct cell
migration, also known as chemotaxis. Their function entails the guidance of
difference immune cells at the site of infection, injury or inflammation. NK cells
produce a wide array of chemokines, however they are the biggest producers of
CCL3 (MIP1a), CCL4 (MIP1b), CCL5 (RANTES), XCL1 (lymphotactin) and CXCL10 (IP-
10) (7).

1.2.5Immunoregulation

One of the most important roles of NK cells in mammals is immunoregulation. As
previously discussed, their extensive receptor repertoire, coupled with their ability
for direct cytotoxicity and cytokine production places them at the crossroads of

innate and adaptive immunity, dictating the definition of tolerance.

NK cells influence the activation, recruitment and even differentiation of other
immune cell subsets (7, 118). These regulatory abilities allow them to fine-tune

immune responses, promote tissue repair and maintain immune homeostasis.

The best example of this immunoregulatory role is their involvement in early
pregnancy, where a specialized subset of NK cells, termed decidual NK cells,
accumulates in the uterine lining (119, 120). Unlike their peripheral counterparts,
these cells exhibit low cytotoxicity in healthy pregnancies, however they grow

highly cytotoxic in response to infections that could disrupt the pregnancy, such



as listeria monocytogenes (120, 121). In addition, they also have a unique secretion
profile of cytokines such as IFNy vascular endothelial growth factor (VEGF), IL-8
and GM-CSF to support trophoblast invasion, vascular remodeling and placental
development (121).

1.2.6 Immunoregulation in cancer

In contrast to their beneficial immunoregulatory roles in pregnancy, these
functions of NK cells can also contribute to cancer development and progression
through supporting an immunosuppressive TME.

Within tumors, NK cells are often numerically reduced, poorly infiltrative and
functionally impaired, correlating with worse prognosis in several solid cancers
(122). Since NK cells exhibit plasticity and can retune to available signals, this
chronic exposure to tumor-derived ligands, hypoxia and suppressive cytokines
manifests as exhaustion, characterized by reduced cytotoxicity, reduced IFNy
production, downregulation of activating receptors such as CD16 and NKG2D and
upregulation of inhibitory receptors such as TIGIT, PD-1 and TIM-3 (122-124).
Moreover, in this immunosuppressive niche, the produced IFNy can contribute to
immune escape in some settings by increasing PD-L1 and MHC class | on cancer
cells, increasing the inhibitory receptor engagement and immune escape (125).
IFNy and other inflammatory cues also support the expansion and activation of
myeloid-derived suppressor cells (MDSC), which release IL-10, TGF-B and
arginine-depleting enzymes to inhibit NK and CD8" T-cell responses and reinforce
a type-2, tumor-permissive milieu (126, 127).

In this immunosuppressive cycle, MDSC and tumor-associated macrophages
interact closely with NK cells in the TME, where MDSC-derived cytokines are major
“master regulators” that blunt NK cytotoxicity and induce immunotolerance (127,
128).

Conclusively, NK cells can also behave as active players in the induction and
maintenance of a pro-immune escape, immunosuppressive environment that
favors cancer development, which highlights their context-dependent nature.



1.3 NK cell deficiencies and functional abnormalities

NK cell deficiencies (NKDs) encompass a spectrum of rare primary
immunodeficiencies characterized by either a quantitative reduction in total NK
cells or qualitative impairments in their cytotoxic function (19, 129). These
deficiencies are broadly categorized into classical or functional NKDs, both
clinically manifesting as heightened susceptibility to herpesviruses,
papillomavirus-induced malignancies and certain bacterial infections (130).
Recent advancements in genomics and proteomics have deepened our
understanding of NK cell biology, revealing novel therapeutic targets and
diagnostic markers for NK cell-related pathologies (129, 131-134).

1.3.1 Classical NKDs

Classical NKDs are a subset of primary immunodeficiencies (PIDs) characterized
by profound reduction or complete absence of NK cells, often due to mutations
that disrupt NK cell development (130). Among the most well-characterized
genetic drivers is GATA2, a transcription factor essential for hematopoietic stem
cell maintenance and NK cell lineage commitment (19, 130, 135). Mutations in
GATA2 manifest as NK cell deficiency in conjunction with monocytopenia,
susceptibility to mycobacterial infections and myelodysplasia (135). These
mutations often result in haploinsufficiency, impairing the development of the
CD56 NK cell subset which have more pronounced roles in cytokine

production and immune regulation.

Other genes implicated in classical NKDs include MCM4, which is involved in DNA
replication licensing, where mutations lead to impaired NK cell proliferation and
increased susceptibility to viral infections (136, 137); and FCGR3A mutations,
affecting the CD16 receptor that can disrupt ADCC (138). These genetic insights
not only elucidate the molecular basis of NK cell ontogeny but also inform
diagnostic strategies and potential gene-targeted therapies for affected
individuals.

1.3.2 Functional NKDs

Functional NK cell deficiencies are characterized by the presence of
phenotypically normal NK cells featuring impaired cytotoxic activity or cytokine
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production. Unlike classical NKDs, which typically involve developmental arrest,
functional NKDs often stem from defects in intracellular signaling pathways,
cytotoxic granule release machinery or faulty or inadequate receptor/ligand
interactions (19, 130). Notable molecular disruptions include abnormalities in
perforin (PRF) (139, 140), Munc13-4 (UNC13D) (133) and SAP (SH2D1A) (141, 142),
which make up the essential components of NK cell immune synapse formation

and granule-mediated cytotoxicity.

Mutations in PRF gene lead to either absent or significantly reduced perforin
expression, rendering NK cells incapable of executing cytotoxic responses (143).
This inability to kill increases NK cell conjugation time with the target cell, which in
turn leads to increased NK stimulation and a spike in the production of interferons,
leading to uncontrolled immune activation (81, 143). The result can be life-
threatening  hyperinflammation  with symptoms of persistent fever,
hepatosplenomegaly and cytopenias, hallmarks of a disease termed familial
hemophagocytic lymphohistiocytosis (fHLH) type 2.

Under normal development, the function of MUNC13-4 is to interact with Rab27a,
a small GTPase that recruits lytic granules to the plasma membrane. This complex
is essential for the final steps of granule fusion. Disruption of this complex by
mutations in either MUNCI13-4 or Rab27a prevents granule priming, leading to a
functional NKD phenotype even in presence of morphologically intact NK cells
(133, 144).

Thorough investigations into these pathways have not only clarified the molecular
basis for NKDs but also paved the way for diagnostic assay development and
therapeutic strategies, which includes hematopoietic stem cell transplantation

(HSCT) as a rescue mechanism for the observed clinical immunodeficiency.

1.4 NK cells as immunotherapy

1.4.1 An overview of NK cell-based immunotherapies

The clinical application of NK cells in cancer therapy traces back to 1980s, when
early trials explored the use of lymphokine-activated killer (LAK) cells, which was
largely a heterogenous population of T and NK cells expanded ex vivo with high
dose IL-2 (145). While LAK cells showed cytotoxicity in vitro, their clinical efficacy
was limited, largely due to inhibitory receptor engagement with self-MHC

molecules and poor persistence in vivo (145, 146). These initial setbacks
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highlighted the need for strategies that could overcome NK cell inhibition and

enhance their anti-tumor potential.

A pivotal moment came in 2002, when Ruggeri, et al. demonstrated that
alloreactive NK cells from HLA mismatched donors could reduce the risk of relapse
and graft rejection in acute myeloid leukemia (AML) patients undergoing
hematopoietic stem cell transplantation without inducing graft-versus-host
disease (GvHD) (147). This finding led to a wave of clinical interest in adoptive NK
cell therapies, particularly those using haploidentical or allogeneic donors to
overcome self-inhibition mediated by KiIRs.

Subsequent studies, namely those by Miller et al, showed that infusions of
haploidentical NK cells preactivated by IL-2 and administered following
lymphodepletion could induce complete remission in AML patients featuring poor
prognosis (5, 148-150). These results established the safety and feasibility of NK
cell transfer and laid the groundwork for broader clinical trials targeting both
hematological and solid malignancies.

Over the last two decades, NK cell-based therapeutic approaches have diversified
into several platforms including:

e Unmodified autologous NK cell infusions
¢ Unmodified allogeneic NK cell infusions
e NKcelllines

¢ NKcell engagers

e Cytokine-based platforms

e Checkpoint blockade combinations

¢ Genetically modified NK cells

Autologous NK cell infusions demonstrated that large numbers of activated
patient-derived NK cells can be generated and safely reinfused, but also revealed
modest efficacy, particularly in solid tumors, due to limited in vivo expansion,
suppressive tumor microenvironments and regulatory T cell outgrowth under IL-2
support (151, 152). However in a recent trial of consolidation therapy with ex vivo
activated and expanded autologous NK cells after HSCT in multiple myeloma, Nahi
et al, report feasibility, safety, tolerance and in vivo persistence, with treated
patients featuring extended minimal residual disease (153).

Allogeneic NK cell infusions from healthy donors subsequently showed more
robust antitumor activity and scalability compared to autologous approaches,
with encouraging responses in high-risk hematologic malignancies and some solid
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tumors. While these studies reported favorable safety profiles and highlighted the
importance of donor selection, conditioning and cytokine support to optimize
engraftment and persistence, they also emphasized the heavy implications of
graft versus host disease (GVHD) on treatment outcomes (5, 147, 148,150, 154). In
parallel, NK cell lines such as NK-92 have emerged as off-the-shelf effector
platforms that combine strong cytotoxicity, genetic tractability and reliable
manufacturing, albeit with limited in vivo persistence due to mandatory irradiation
(155, 156). Monoclonal antibody (mAb) therapies targeting tumor-specific and
tumor-associated antigens (TSAs, TAAs respectively) harness NK cell-mediated
ADCC through CD16 engagement, leading to targeted killing of opsonized tumor
cells (157). This mechanism not only augments the efficacy of therapeutic
antibodies but also provides a rational basis for combining them with NK cell
infusions and engagers to amplify antitumor activity.

More recently, modular immune cell engagers, such as bispecific (BiKEs),
trispecific (TriKEs) and the experimental tetraspecific killer cell engager
constructs have been developed. These moieties, that often incorporate IL-15
components to sustain proliferation and function in immunosuppressive settings,
physically link specific immune cells, including NKs, to tumor targets and other
immune cells and co-stimulate them via receptors such as CD16, NKp46 or NKG2D
(158-160). Complementary cytokine-based platforms, including engineered IL-2
and IL-15 agonists and next-generation delivery systems, aim to selectively expand
NK and CD8* T cells while minimizing toxicity, and are increasingly integrated with
NK cell products and other immunotherapies (161, 162). Finally, checkpoint
blockade combinations that target inhibitory receptors expressed on NK cells (for
example NKG2A and TIGIT) are being explored alongside NK infusions, engagers
and cytokine support, with early data suggesting that relieving these inhibitory
pathways can synergize with NK-directed approaches to overcome intratumoral
immunosuppression and improve the durability of clinical responses (163-165).

1.4.2 Challenges in NK cell-based immunotherapies

Although NK cell-based immunotherapies have shown considerable promise in
cancer treatment, substantial biological and technical barriers still need to be

overcome before their full therapeutic potential can be realized.

Challenges in these immunotherapies arise at the levels of product generation, in
vivo behavior and interaction with the tumor microenvironment (7, 166). Efficient,
reproducible expansion of highly cytotoxic NK cells remains technically

demanding, particularly in heavily pretreated patients, and current manufacturing
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pipelines are labor-intensive and costly, limiting scalability of individualized
products (167, 168). Even when sufficient cell numbers are obtained, many NK
products show poor in vivo persistence and limited tissue homing, especially in
solid tumors, necessitating repeated infusions and limiting durable antitumor
effects (157, 167). The immunosuppressive TME further impairs NK function
through a combination of soluble factors, metabolic stress and upregulation of
inhibitory ligands, all of which promote exhaustion, downregulate activating
receptors and reduce cytotoxic granule release (169). Additional barriers include
antigen heterogeneity that limits the effectiveness of chimeric antigen receptor
(CAR)-expressing NK cells or engagers. On the engineering side, NK cells are
intrinsically resistant to many viral and non-viral gene-delivery approaches due to
robust nucleic acid sensing, making the generation of uniformly modified NK
products challenging and further complicating editing strategies (170, 171). Finally,
combining NK cell therapies with cytokines, checkpoint blockade or other
immunomodulators requires careful balancing of potency and toxicity, as
excessive systemic stimulation can drive off-target inflammation or expand
regulatory populations that can even suppress NK effector function (172-174).

Collectively, these challenges help explain why NK cell-based therapies have so
far achieved their most consistent success in hematologic malignancies and
underscore the need for next-generation strategies that improve manufacturing
robustness, enhance trafficking and persistence, and actively reprogram the TME

in favor of sustained NK cell activity.

1.5 Genetic engineering of NK cells

1.56.1 An overview of genetic engineering in immunology

The success of immune cell therapies can partially be attributed to the

transformative power of genetic engineering, which encompasses a series of
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techniques that allow customized modification of immune cell properties for

research and clinical applications.
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Figure 4: Genetic engineering strategies to enhance NK-cell anti-tumor activity. (1) Tumor homing enhanced
by high-affinity or re-engineered chemokine receptors. (2) Checkpoint blockade or monoclonal antibodies
targeting inhibitory ligand—expressing tumor cells to boost ADCC. (3) CRISPR-Cas9 knockout of
tumor-associated antigens on NK cells to limit fratricide and improve targeting. (4) Expression of CARs and
affinity-optimized cytotoxicity receptors to increase tumor recognition and killing. (5) Gene circuits
encoding pro-inflammatory cytokines to promote immune infiltration of the tumor microenvironment. (6)
Constructs encoding bispecific or trispecific NK cell engagers (BiKEs, TriKEs) to improve tumor targeting
and recruit additional immune cells.

The ability to introduce customized gene circuits into cell of choice accelerates
basic immunology research by allowing improvements in cancer targeting by the
use of CARs, homing and infiltration by the use of CXCR receptors, enhanced
cytokine synthesis by the introduction of cytokine genes under strong promoters,
reducing fratricide by deletion of certain receptors such as CD38 and resistance
to the TME by the expression of different enzymes to counter oxidative stress and
low pH (175-180).

Apart from genetic engineering driving the therapies in the clinic, their applications
extend beyond introduction of external expression cassettes. Immune cell
research has been unconditionally accelerated by global unhindered views inside
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cells by the means of functional genomic screens, unbiased mapping of immune

responses and identification of drug targets (181-186).

Although at the start of genetic engineering, delivery platforms were limited to
naked DNA supply to cells, now there are a plethora of methods available, ranging
from viral systems to an array of non-viral ones, most of which are discussed

below.

1.6.2Viral systems for genetic engineering

Viral vector systems are foundational to modern genetic engineering, offering
powerful strategies for delivering therapeutic genes into cells for both research
and clinical immunotherapy. Engineered viruses have enabled efficient and
versatile transfer of genes into human cells, providing both stable and transient
expression depending on clinical need. These recombinant vectors are stripped
of pathogenic genetic sequences and designed to carry specific transgenes that
modify cellular functions (187, 188). Their profound impact in medicine is evident
in the number of gene and cell therapies that have transitioned from research to
approved clinical products, spanning diseases such as cancer, hemophilia,
muscular dystrophy and genetic immunodeficiencies (189). Over twenty clinical
therapies now utilize viral vectors, establishing them as indispensable tools in
modern gene therapy and immunotherapy (190, 191).

Among the most prominent viral platforms are retroviral, lentiviral and adeno-
associated virus (AAV) systems, each with distinctive biological characteristics
and therapeutic profiles (190). Retroviral vectors are derived from RNA viruses that
integrate their genetic material into the genomes of dividing cells, enabling long-
term gene expression (192). Lentiviral vectors, a subset of retroviruses expand the
capabilities by infecting both dividing and non-dividing cells, and exhibit improved
integration site predictability, markedly reducing the risk of oncogenesis (189).
This has made lentiviruses the preferred choice for clinical cellular
immunotherapies, with several regulatory approvals highlighting their safety and
efficacy. Nevertheless, their propensity for integrating into highly transcriptionally
active genomic regions have raised concerns regarding insertional mutagenesis,
which is the inadvertent activation or disruption of cellular gene circuits, a
challenge addressed through stringent vector design and careful patient
monitoring (191, 193).
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AAVs in contrast offer predominantly episomal gene delivery, where genetic
information is maintained outside the host chromosomes (190, 191). This reduces
risks for insertional mutagenesis but may limit long-term stability of gene
expression in highly proliferative tissues. Additionally, their low immunogenicity
profile has underpinned their success in treating inherited disorders and
expanding applications in immunotherapy. Recently they have been also adapted
for genomic integration when combined with Cas9 ribonucleoproteins (RNPs)
(194,195).

In immunotherapy, the choice of viral vector is determined by the therapeutic
goal, whether persistent gene expression, transient activation or targeted
modulation of immune cells is required (196). Research accounts for cargo size,
integration propensity, tropism, immunogenicity and safety in selecting the
optimal system. Clinical investigations have led to refinements such as self-
inactivating vectors or the incorporation of triggerable suicide genes within the
packed constructs, delivering cargo while holding premise for system-wide

destruction of the edited cells in case of malignant transformation (197, 198).

To conclude, viral vectors hold the current state of the art, however other delivery
methods are also slowly revolutionizing the genetic engineering field towards
precision, scalability and safety.

1.56.3Non-viral systems of genetic engineering

Non-viral systems for genetic engineering have emerged as robust and versatile
alternatives to viral vectors, offering distinctive advantages in safety, flexibility and
cargo capacity (166, 196, 199). Unlike viruses, non-viral delivery platforms rely on
physical, chemical and nanotechnological mechanisms to introduce genetic
material into cells, minimizing the risks of immunogenicity and insertional
mutagenesis commonly associated with viral methods. Over the past two
decades, advances in non-viral gene delivery have allowed these systems to make
significant inroads into areas such as gene therapy, vaccine development, genome
editing and regenerative medicine, with a growing presence in clinical trials
worldwide (196, 199).

Physical approaches, such as electroporation, sonoporation, microinjection,
soluporation and gene gun technology leverage mechanical or electrical forces to

transiently permeabilize cell membranes, allowing plasmid DNA, RNA or even
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proteins and ribonucleoproteins to enter the cytoplasm and/or the nucleus (199,
200). Electroporation, widely used in both laboratory and clinical settings involves
the application of electrical pulses that induce pore formation in cell membranes,
resulting in efficient gene delivery especially in hard-to-transfect cell types.
Microinjections offer precise delivery to individual cells or tissues but are best
suited for localized applications of experimental models. Sonoporation uses
ultrasound waves, often with microbubbles to enhance cell permeability and
facilitate the uptake of genetic material while magnetoporation harnesses
magnetic fields and magnetic nanoparticles to improve nucleic acid transport into
the target cells (200).

Chemical non-viral vectors encompass liposomes, lipid nanoparticles (LNPs),
virus-like particles (VLPs) and polymer-based carriers (201, 202). Liposomes are
spherical vesicles composed of phospholipid bilayers that encapsulate and
protect genetic cargo, enhancing cell uptake via endocytosis. LNPs that have been
pivotal in mRNA vaccine development during the pandemic have revolutionized
nucleic acid delivery with high efficiency and low toxicity profiles, overcoming key
obstacles faced by earlier chemical methods (203). Polymeric vectors, formed
primarily from cationic polymers such as polyethyleneimine (PEI) or natural
polymers like chitosan and hyaluronic acid, condense and shield DNA or RNA,
facilitating cellular internalization (201).

Nanoparticle-mediated delivery is a rapidly expanding area, utilizing diverse
materials such as polymers, lipids, peptides and inorganic compounds to form
gene-carrying complexes at the nanoscale (202). Nanocarriers exploit unique
physicochemical properties to optimize gene encapsulation, protection from
degradation and intracellular trafficking. Nanoparticles also overcome the size
limitations seen in viral vectors, enabling delivery of larger or more complex
genetic constructs and facilitating multiplexed genome editing of gene

replacement applications (201, 204).

As research continues to unlock further enhancements, non-viral vectors are
poised to play an increasingly prominent role in the future of genetic engineering

and personalized medicine.
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1.5.4Transposon/transposase-based systems

Transposon-based systems have emerged as powerful non-viral platforms for
stable genome engineering, offering high cargo flexibility and scalable
manufacturing without the need for viral particles (205). Unlike episomal plasmids,
DNA transposons mediate genomic integration through a cut-and-paste reaction
catalyzed by a dedicated transposase enzyme, enabling long-term expression of
therapeutic or experimental transgenes in a wide array of cell types (205, 206).
Because both the transposon and transposase can be delivered as plasmid DNA,
mMRNA or protein using standardized non-viral methods, these systems integrate
well with existing electroporation and nanoparticle-based workflows in research

and clinical manufacturing.

Engineered DNA transposons used for gene transfer are typically organized as
bipartite systems comprising a transposon cassette flanked by terminal inverted
repeats (TIRs) and a separate source of transposase provided in cis or in trans.
Two-component systems are most commonly used, with the transposase
delivered either as a plasmid or as an mRNA transcript. Because transposons are
‘jumping genes’, MRNA electroporation is generally safer with respect to
insertional mutagenesis. When the transposase is supplied on a plasmid, there is
a higher risk of stable genomic integration of both the transposon and the
transposase, potentially driving constitutive transposase expression and ongoing
cut-and-paste events at new genomic sites, thereby increasing the likelihood of
insertional mutagenesis (206, 207). In all cases, the transposase recognizes the
TIRs, excises the transposon from the donor backbone and inserts it into genomic
DNA at preferred sequence motifs, with integration patterns and cargo capacities

varying between platforms (206).

Among the most widely used systems in mammalian cells are Sleeping Beauty
(SB), piggyBac (PB) and Tol2, each featuring distinct properties relevant to
experimental design and clinical translation (205). SB which was reconstructed
from Tcl/mariner elements in fish for activity in vertebrates integrates primarily in
TA dinucleotides, displaying a bias towards transcriptionally active regions, a
feature considered advantageous from therapeutic safety standpoint (208, 209).
Increased interest in this system has led to engineered hyperactive SB
transposases and streamlined transposon backbones with increased and more

favorable integration efficiencies (210).
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By comparison, PB prefers TTAA sites for integration, supports very large cargos
and excises without leaving a trace, a feature best suited for complex or multigenic
constructs (211, 212). Tol2 by contrast has been most valuable for zebrafish and

murine models where it supports broad tissue expression (205, 213).

Transposon-transposase systems are now used extensively in adoptive cell
therapies, including generation of genetically engineered T and NK cells (208, 214,
215). Compared to viral methods, these systems can reduce costs and simplify
manufacturing while avoiding both technical and ethical constraints of viral
genetic modification. Despite these advantages, integration remains random and
concerns about insertional mutagenesis persist, especially in long-lived cell
products. Given the refinements in transposase engineering and non-viral delivery
continue, these systems have high potential to take the stage in gene engineering
technologies.

1.6 Challenges in NK cell genetic modification

At the core of NK cell genetic modification lie challenges in overcoming their
natural resistance to foreign genetic material, a product of robust antiviral defense
mechanisms and sensitivity to cell stress, which collectively limit the efficiency
and stability of gene delivery (216, 217). NK cells express high of pattern recognition
receptors (PRRs) such as Toll-like Receptors (TLRs) and RIG-I, which sense viral
components (RNA, DNA or proteins) introduced during genetic engineering,
triggering signaling events that lead to apoptosis or inhibition of cell proliferation
(216, 218-220). This natural aversion to viral infection complicated the use the
conventionally available vectors, namely retro and lentiviruses, resulting in
significantly diminished transduction efficiencies in NK cells when compared to
their adaptive cytotoxic counterparts (166, 217).

To overcome these barriers, a multitude of strategies have been devised.
Advances in vector design with specific focus on pseudotyping, have markedly
improved transduction rates (221-223). Baboon envelope glycoprotein-
pseudotyped lentiviruses (BaEV) and Koala retrovirus envelope glycoprotein-
pseudotyped lentiviruses (KoRV) are reported to use the solute carriers ASCT1
and ASCT2 to gain entry into the cell (221, 222, 224). Since these receptors are
abundant on the NK cell surface, they are able to reach transduction efficiencies

of up to 90%, which is a stark contrast with the average of 30% observed with
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vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviruses using
the LDL receptor for entry (222, 224). However, despite the strides made in
pseudotyping, further research is needed in the effects of BaEV-pseudotyped
viruses. It is interesting to mention that the BaEV envelope glycoprotein features
an immunosuppressive peptide sequence, p15E, that has been reported to inhibit
lymphocyte blastogenesis, production of proinflammatory cytokines, cytoskeletal

rearrangement, enhancement of production of IL-10 (225, 226).

Transduction enhancers, including polybrene, protamine sulphate, retronectin and
nanoparticles such as dextran further support viral entry by facilitating vector
binding and fusion (217, 227). The use of chemical inhibitors to block innate
immune sensors (TBK1/IKKe) has also mitigated apoptosis during gene transfer,

resulting in higher transduction efficiencies and viability (171).

Non-viral techniques such as lipid nanoparticles, lipofection and DNA transposons
have gained traction, achieving up to 60% efficiency while minimizing genomic
integration risks and reducing immunogenicity in some instances (228, 229).
Innovations such as stimuli-responsive nanocarriers and electroporation of pre-
assembled RNPs permit transient and targeted gene-editing, further expanding
the toolkit for NK cell modification.

Recent research shows that combining multiple approaches such as refined
vector engineering, transduction enhancers, immunosuppressive inhibitors and
meticulous culture optimization can yield modified NK cells with high viability,
stable gene expression and enhanced therapeutic potential (165, 166, 171, 217, 222,
224). However, translating these protocols to clinical-grade manufacturing
remains a complex task, requiring continuous assessment of safety,
reproducibility and long-term genomic integrity. As technology advances,
iterative improvement and harmonization of genetic engineering methodologies
will be central to unlocking the full potential of NK cells as next-generation
immunotherapeutic agents.

1.7 Genome-wide NK cell screening strategies

With the significant improvements in genetic cargo delivery into NK cells, there
has been an emergence of genome-wide studies identifying NK functional and
regulatory circuits by the means of CRISPR-Cas9 technologies.
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Previously, genome-wide CRISPR screens have been extensively leveraged in both
T cell lines and primary T cells to map the genetic circuits that control activation,
cytokine production, exhaustion and persistence, thereby providing a blueprint
for engineering more effective adoptive T cell therapies (230-232).

However, from NK perspective, due to the inability to achieve sufficient
transduction efficiencies, majority of CRISPR screens had been applied from the
target cell perspective, essentially measuring sensitivity or resistance of target
cells with single knockouts against NK cell-mediated killing (181, 182, 233-237).
These target-centric screens consistently show that disruption of antigen
presentation and IFNy response pathways (JAK—STAT components, HLA class
I/processing machinery) renders tumor cells less sensitive to NK surveillance, while
intact signaling promotes susceptibility (181, 182). They also implicate death
receptor/apoptosis pathways and adhesion or cytoskeletal regulators such as
CHMP2A as key determinants of how efficiently NK cells form synapses and
induce target-cell death (181, 182, 233, 234). Complementary CRISPR- based
activation (CRISPRa) and single-cell studies reveal that up-regulation of
glycoproteins and checkpoint-like ligands, namely MUC21, CEACAMI and HLA-G,
can actively dampen NK cytotoxicity, defining a tumor-intrinsic “NK sensitivity
axis” that provides candidate biomarkers and engineering targets for NK-based
therapies (235).

In 2025, CRISPR-Cas9 screening methods were explored directly in NK cells in
pioneering studies, three of which explored NK-92, one cord-blood derived pNK
cells and one that was carried out in vivo in murine models (183-186, 238). Peng,
et al used an in vivo AAV-Sleeping Beauty pooled CRISPR platform in
tumor-infiltrating NK cells in mice and then read out sgRNA enrichment under
solid-tumor challenge. This screen identified CALHM2 as a key intrinsic regulator
whose loss enhances NK cytotoxicity, degranulation, cytokine production and
tumor infiltration, and CALHM2-deficient CAR-NK cells showed superior control of

otherwise resistant solid tumors (238).

Rezvani group applied a two-step approach to their genome-wide CRISPR
screening in cord blood—derived pNK cells, combining retroviral sgRNA delivery
with Cas9 electroporation and functional selection under repeated tumor
challenge and immunosuppressive stress. Their screens pinpointed CISH, PRDM],
PTEN, MED12, ARIH2 and CCNC as central regulators of NK fitness and dysfunction,
and showed that targeted knockout of these genes augments CAR-NK
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proliferation, metabolic fitness, cytokine release and antitumor activity in both

hematologic and solid tumor models (183).

Last two publications came from the Huntington group. The first publication by
Nikolic, et al. details the performed genome-wide CRISPR knockout screen in NK-
92 cells stimulated with IL-15, using pooled libraries and functional readouts of
survival and expansion to decode IL-15 receptor signaling. Here, they describe
previously understudied ubiquitin-dependent regulatory layer controlling IL-15R
signaling, identifying E3 ligases and associated factors whose deletion markedly
boosts IL-15—driven proliferation and antitumor immunity of NK cells (185). In a
follow up to this study, Sudholz, et al, show that FUT8, a core fucosyltransferase,
one of the top hits from the same CRISPR screen, is essential for NK cell IL-15
responsiveness. Loss of FUT8 led to reduction in IL-2 receptor complex surface
expression, proliferation of NK cells, cytotoxicity, tumor control and antiviral

immunity (186).

Finally, Kalinichenko, et al. used an optimized Cas9 RNP-based genome-editing and
screening platform in NK-92 cells, relying on high-efficiency nucleofection to
interrogate multiplex knockouts and targeted knock-ins in this line. Their work
focused on latter events in the mechanism of granule exocytosis, given their use
of strong and highly toxic chemical stimulation with Phorbol 12-myristate 13-
acetate (PMA) and ionomycin, that completely bypasses receptor physiology.
They found that protein palmitoylation and sphingolipid metabolism form a
central network controlling SNAP23 palmitoylation, targeting of cytotoxic granules
to GMI-rich lipid rafts, and thus NK cytotoxic function, revealing lipid metabolism
and protein lipidation as previously underappreciated checkpoints of regulated

exocytosis in cytotoxic lymphocytes (184).

To conclude, while NK cells have now started to be explored from the genome-
wide perspective, there is still a vast number of unanswered questions pertaining
to their biology, functionality and regulatory networks, leaving room for curiosity

and exploration.
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2 Research aims

In this thesis, we address gaps in the understanding of NK cell functionality by
examining their cytotoxicity, cytokine production, antiviral defense mechanisms,
and roles within the tumor immunosuppressive milieu, to gain a more

comprehensive view of NK cell biology.
Specific aims are described as such:

Paper I: Decades of NK cell research have uncovered numerous mediators of their
cytokine production and degranulation; however, a genome-wide overview of
these functions had not yet been performed. In this work, we perform a genome-
wide CRISPR-Cas9 screen in NK cell line NK-92, to simultaneously examine NK cell
degranulation and IFNy production allowing us to identify genes that selectively
control each function as well as those that coordinately regulate both.

Paper lI: The current wave of targeted cellular immunotherapies is heavily focused
on genetically modified cytotoxic cells of the immune system, however due to
their inherent nature to be the defense against invading pathogens, these cells are
notoriously difficult to genetically manipulate. In this study we explore a novel
compound, 5Z-7-Oxozeaenol to introduce temporary disruptions in antiviral
defense and enhance NK cell genetic modification.

Paper lll: Many solid malignancies, including ovarian cancer, feature increased
death receptor expression which confers them with increased sensitivity to
membrane-bound TRAIL-mediated death. In this study, we generate an NK cell
line KHYG-1 to express a high-affinity TRAIL variant targeting the TRAIL-DR5
receptor on the target cells and investigate the potency of this signal on TRAIL-

sensitive and resistant ovarian cancer cell lines.

Paper IV: Immunosuppressive NK cell interactions with MDSCs have been
extensively reported in research, however the mechanisms of these interactions
have not been elucidated. In this study we explore the mechanism behind
intratumoral NK cell-mediated immunomodulation via the IL-6/STAT3 axis that
drives MDSC development.
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3 Results and discussion

3.1 Paper l: Genome-wide CRISPR screen in NK92

In this study, we established a genome-wide loss-of-function CRISPR-Cas9 screen
in NK-92 cells to map regulators of degranulation and IFNy production in response
to K562 stimulation. We first generated a stable Cas9-expressing NK-92 line and
optimized lentiviral delivery of the genome-wide Brunello library by redesigning
the transfer vector which allowed low-MOI transduction without antibiotic
selection while preserving NK-92 effector function. We then stimulated
library-transduced NK-92 cells with K562 and sorted them into four populations
based on CD107a and IFNy expression, enabling simultaneous interrogation of
cytotoxic and cytokine responses. This platform not only enabled the current
screen but also addressed a longstanding barrier to unbiased genetic

perturbation directly in NK cells.
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Figure 5: Graphical abstract of the genome-wide CRISPR-Cas9 screen in NK-92 cells. The Brunello sgRNA
library was cloned into an optimized lentiviral backbone and packaged into virus. NK-92 cells were
transduced at low MO, expanded, and stimulated with K562 cells for 4 hours before staining for viability,
CD107a and intracellular IFNy. Cells were fixed, permeabilized and 4-way sorted into functional quadrants
based on CD107a and IFNy expression. Genomic DNA was recovered from sorted pellets, sgRNA barcodes
were amplified by PCR and subjected to high-throughput sequencing. MAGeCK analysis of barcode
enrichment and depletion yielded hit lists that confirmed known regulators and highlighted novel candidate
targets for NK cell effector functions.

An important feature of this screen is that it interrogates degranulation and IFNy
production in parallel, while still allowing these outputs to be analyzed
independently. Degranulation measures the immediate cytotoxic capacity of NK
cells, whereas IFNy secretion influences immune cell recruitment, antigen

presentation, T-cell activation and myeloid cell function, shaping the broader
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immune response over longer time scales, a function particularly important in the
treatment of solid malignancies. Assessing both readouts within the same
experimental framework makes it possible to identify shared regulators of NK cell
activation, as well as genes that preferentially modulate cytotoxicity, cytokine
production, or their balance. This dual-axis design therefore provides a more
nuanced view of NK cell effector programming than degranulation-only screens
and is directly relevant for therapeutic engineering, where enhancing killing
without excess cytokine release, or vice versa, may be more beneficial.

The CRISPR screen recovered canonical NK cell genes central to degranulation and
IFNy production, including IFNG and its transcriptional regulator TBX21 (T-Bet), the
degranulation marker LAMP1, and the primary activating receptor NCR3 engaged
by K562 together with the adhesion and co-stimulatory receptor CD2 (239). Core
lytic granule trafficking components such as RAB27A, MADD and STXBP2 that are
essential for granule fusion were also top hits from analysis, well-characterized
mutations in which underly fHLH syndromes and related PIDs (70, 73, 75-78, 133).
In addition, we identified multiple proximal signaling and adhesion molecules with
well-established roles in NK cell activation, including GRB2, CD247, PLCG2, FYB,
STAT5A, ITGAL and ITGB2, whose loss in our screen reduced both degranulation
and IFNy, consistent with their requirement for integrin-dependent synapse
formation and receptor-proximal signal transduction in cytotoxic lymphocytes (7,
18,19, 26, 181). Conversely, STAT4 loss primarily impaired IFNy production with only
a minor effect on degranulation, in line with its described function as a key
transcriptional mediator of IL-12—driven IFNy expression in NK cells (110). Finally,
ZAP70, SH2D1A (SAP) and SH2D1B (EAT-2), which couple activating receptors to
downstream calcium and ERK signaling to promote granule polarization and
exocytosis, emerged as negative regulators whose disruption enhanced both
CD107a and IFNy readouts in our setting (44,109, 141,142). This further underscored
that the screen faithfully captured known NK signaling architecture while revealing
context-dependent effects on effector outputs.

In contrast to recently published NK cell CRISPR screens by Biederstadt, et al. and
Kalinichenko, et al. focused on degranulation, our screen recovered a broad panel
of “positive control” genes on the degranulation axis, including canonical lytic
granule trafficking and exocytosis regulators such as LAMPI, UNC13D, COROIA,
RAB27A and AP3/VPS family members (183, 184). These genes are indispensable
for lytic granule maturation, docking and fusion at the immunological synapse, and

their loss causes well-described NK cell degranulation defects, therefore their
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robust detection was essential to establish the reliability and dynamic range of
the screen (37,70, 73).

This difference likely stems from several features of our experimental design.
Firstly, we relied on direct sorting of NK-92 cells into functional quadrants based
on CD107a and IFNy, rather than applying antibiotic selection, thereby preserving
library complexity and avoiding cell death-associated biases that could skew
representation. Secondly, we used K562 cells as a biologically relevant stimulus
that engages NCR3 and CD2 and recapitulates integrated receptor signaling, in
contrast to chemical stimulation with PMA/lonomycin, which bypass proximal
signaling and may underrepresent genes involved in receptor coupling, synapse
formation and vesicle trafficking. Finally, our focus on a single, relatively brief K562
challenge, as opposed to repeated rechallenge, addresses early activation and
exocytic events rather than long-term persistence or exhaustion, addressing a
distinct but complementary biological question about NK-92 effector

programming.

Together, these factors may explain why our dataset is particularly rich in
previously reported degranulation hits, whereas other recent screens, while highly
informative for exhaustion, persistence and metabolic fitness, place more
emphasis on regulatory checkpoints and transcriptional programs than on the
degranulation machinery itself. This indicates that our approach captures core NK
biology and provides confidence that novel hits reflect genuine regulatory circuits
rather than technical artefacts. Furthermore, by mapping these hits onto curated
NK cytotoxicity pathways, we could also identify gaps and biases in existing gene
sets, which we later addressed by constructing an updated NK cell cytotoxicity
gene set.

We observed that genes involved in vesicle trafficking, endosomal recycling and
adaptor-mediated signaling (e.g. AP3 and VPS complexes, GRB2, CD247, LAT) were
central to both degranulation and IFNy production. This emphasizes that NK
effector functions rely on integrated control of highly interconnected pathways
such as membrane trafficking and signal transduction. The overall architecture
differed between effector outputs. The IFNy axis was dominated by positive
regulators, defined by gene or genes whose loss manifests as less functionality on
the observed axis. However, the degranulation axis contained more negative
regulators, or genes, the loss of which led to observed increase in the functional

response, i.e. degranulation. This asymmetry supports the idea that cytotoxicity is
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under tighter inhibitory control than cytokine production, which is in line with
evolutionary bias towards survival and consistent with the need to prevent
unnecessary tissue damage while still allowing inflammatory signaling.

We next focused on quadrant-specific hits to distinguish genes preferentially
affecting degranulation, cytokine production, or both functions. Using
over-representation analysis, we found that genes involved in Golgi—ER trafficking
and regulation of the secretory pathway skewed responses toward IFNy
production in the relative absence of robust degranulation, indicating partial
uncoupling of these effector programs downstream of shared receptor signals.
This key finding implies that engineering NK cells for therapy could selectively
enhance one arm of the response (for example cytotoxicity) without inevitably
amplifying all inflammatory outputs.

From the extensive novel hit list, we prioritized druggable candidates and
identified leucyl and cystinyl aminopeptidase (LNPEP, protein IRAP) and C-Src
kinase (CSK) as genes whose loss enhanced degranulation without compromising
IFNy production. We validated these candidates by generating targeted
knockouts and showed that CSK loss consistently increased both degranulation
and IFNy, whereas IRAP loss produced more modest, guide-dependent effects.
These findings highlight CSK as an intrinsic “brake” on NK-92 activation and
suggest that pharmacologic modulation of its pathway could be a strategy to
boost the activity of NK-92-based therapeutic products.

However, we did not observe substantial changes in CDIO7a or IFNy responses
following IRAP or CSK deletion in primary human NK cells, pointing to the presence
of compensatory networks in primary NK cells that are absent or dysfunctional in
NK-92. This discrepancy underlines a key conceptual point of the thesis:
immortalized NK cell lines are powerful discovery tools and clinical platforms in
their own right, but their regulatory wiring does not fully mirror that of highly
complex primary NK cells.

To conclude, this paper provided a genome-wide map of NK effector regulation,
refined NK-specific gene sets for future studies, and, importantly, revealed the
redundancy and robustness that characterize NK cell functional circuits, features

that must be considered in both mechanistic work and therapeutic engineering.
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3.2 Paper ll: 5Z-7-Oxozeaenol as a transduction enhancer

In this work, we aimed to overcome intrinsic antiviral defenses that limit lentiviral
engineering of NK cells and other lymphocytes. These defenses are mediated by
nucleic acid—sensing pathways such as RIG-I- and STING-dependent signaling,
which activate TBKI1/IKKe, induce type | interferons and restriction factors, and
ultimately suppress viral entry, reverse transcription and integration. Such
mechanisms have evolved for protection from viral infections and are particularly
prominent in NK cells, which act as early sentinels during viral challenge and
therefore maintain high basal antiviral surveillance and rapid interferon responses.
We built on previous observations that TBKI/IKKe inhibition enhances lentiviral
transduction, identified 5Z-7-oxozeaenol (Oxo) as a candidate to improve gene
delivery while maintaining viability and systematically characterized its dose
response, kinetics and functional impact.
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Figure 6: Graphical abstract illustrating Oxo-mediated relief of RIG-I-dependent antiviral restriction. Left:
Viral single-stranded RNA (ssRNA) is sensed by RIG-I and MDA5, leading to MAVS activation, TBK1/IKKe
signaling, IRF3 phosphorylation, nuclear translocation, and induction of a type | interferon response that
restricts lentiviral gene delivery. Right: In the presence of 5Z-7-oxozeaenol (Oxo), TBK1/IKKe activation and
IRF3 phosphorylation are blocked, dampening type | interferon signaling and transiently lowering antiviral
barriers, thereby facilitating more efficient lentiviral transduction.

We showed that Oxo increased lentiviral transduction in NK-92 cells in a
concentration- and MOI-dependent manner, with a plateau at around 6—7 uM and

viability consistently above 90-95%. These data revealed that antiviral sensing
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can be temporarily disrupted without obvious toxicity, which is particularly
important for clinical manufacturing where cell fitness translates directly into
product quality. The fact that enhancement was observed for both GFP and
clinically relevant CAR construct suggests that this approach is broadly applicable

across different cargo.

By varying the timing of Oxo exposure relative to viral supernatant, we found that
co-exposure produced the strongest enhancement, whereas pre-treatment or
delayed addition yielded more modest effects, and repeated supplementation
did not confer additional benefit. This kinetic profile indicates that Oxo acts
primarily during early stages of viral entry or post-entry sensing, rather than
inducing a durable transcriptional state. Mechanistically, these observations fit
with transient inhibition of RIG-I/TBKl-dependent signaling, although further work
such as combining CRISPR-based target deconvolution with transcriptomics,

would be needed to define direct molecular targets more precisely.

We then asked whether Oxo treatment compromised NK effector functions,
properties that are vital in clinical translation. After allowing NK-92 cells to rest
post-transduction, we showed that Oxo-treated cells retained degranulation and
IFNy responses with K562 and PMA/ionomycin stimulation that were comparable
to DMSO-treated controls. This preservation of function supports the notion that
short-term Oxo exposure can be integrated into clinical applications without
compromising NK-92 cells in a detrimental way.

To explore applicability, we extended our analysis to other NK cell lines as well as
B and T cell lines and observed enhanced transduction in most settings, with the
strongest effects for VSV-G-pseudotyped vectors and more variable or even
negative effects for BaEV, GALV and Rabies-G envelopes. This could be attributed
to the fact that VSV-G uses broadly expressed entry pathways and triggers
well-characterized sensing mechanisms that are efficiently dampened by Oxo,
whereas alternative envelopes engage other receptors and trafficking routes that
may rely on different, less Oxo-sensitive antiviral checkpoints. Moreover, some of
these alternative pseudotypes contain immunosuppressive peptide motifs in
their envelope proteins, which may dampen antiviral signaling through distinct
pathways independent of Oxo. These findings underscore that transduction
enhancement is not solely a property of the small molecule but emerges from the
interplay between cell type, envelope tropism and innate sensing pathways. In

particular, the reduced transduction with some pseudotypes in specific NK lines
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cautions against assuming uniform benefit and highlights the need for

optimization for each vector—cell combination.

We finally tested Oxo in primary NK and T cells from healthy donors and found
that it improved transduction with preserved viability, although the magnitude of
enhancement was more modest and donor-dependent in both cell types. This
pattern suggests that baseline activation of antiviral pathways differs between
individuals, raising the possibility that patient-specific factors could influence the

optimal Oxo dose in a clinical setting.

Collectively, this work does not only present Oxo as a tool to boost lentiviral gene
delivery, but also illustrates how carefully timed, transient pathway inhibition can
be used for genetic engineering while preserving downstream immune function.

3.3 Paper lll: DR5-targeting TRAILv-KHYG-1in ovarian cancer

In this study, we investigated whether equipping NK cell line with the DR5-specific
TRAIL could improve cytotoxicity against ovarian cancer cell lines with differential
TRAIL sensitivity. We used the Sleeping Beauty transposon system to engineer
KHYG-1 cells with a DR5-specific TRAIL variant (TRAILv, EI95R/D269H) and
generated a TRAILv-KHYG-1 line that stably expressed GFP and showed increased
intracellular TRAIL without evidence of fratricide. This non-viral engineering
strategy is conceptually aligned with efforts in the thesis to diversify gene-delivery
modalities beyond lentiviral approaches.

When we paired TRAILv-KHYG-1 against parental KHYG-1 cells in coculture with
OVCAR-3 (TRAIL-sensitive) cells, we found that both NK cell types significantly
reduced tumor viability in a time- and effector-to-target (E:T) -dependent manner,
but that TRAILv-KHYG-1 consistently produced greater reductions in viability. At
an E:T ratio of 1.1, TRAILv-KHYG-1lowered OVCAR-3 viability by more than 50% after
16 hours. These data indicate that selectively boosting DR5 engagement on target
cells can increase NK cell potency, supporting DR5 as a viable engineering target

in ovarian cancer.

To better understand the underlying effector mechanisms, we quantified
granzyme A, granzyme B, IFNy and soluble TRAIL in coculture supernatants. We
observed that TRAILv-KHYG-1secreted higher levels of granzymes and IFNy against
OVCAR-3 than parental KHYG-1at matched E:T ratios, and that soluble TRAIL levels
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increased particularly at high ratios. These findings suggest that TRAILv-KHYG-1
cells do not simply deliver a stronger death-receptor signal but also engage
classical granule-mediated and cytokine-mediated cytotoxic pathways more
robustly, offering a multifunctional mechanism of tumor cell killing that could be

advantageous in heterogeneous tumors.
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Figure 7: Graphical abstract of TRAILv-KHYG-1 generation and function. KHYG-1 NK cells were
electroporated with the Sleeping Beauty transposon cargo pT3-DR5v-EFla-GFP encoding a DR5-selective
TRAIL variant (DR5v-TRAIL) linked to GFP, together with SBIOOX transposase mRNA, to mediate stable
genomic integration. After recovery and expansion, GFP* cells were sorted using FACS to obtain a
TRAILv-KHYG-1 line. Modified NK cells display increased TRAIL expression and, upon engagement of DR5 on
ovarian cancer target cells efficiently induce apoptosis via death-receptor pathways.

In contrast, when we tested SKOV-3, a TRAIL-resistant ovarian cancer line, we
found that neither parental nor TRAILv-KHYG-1 cells achieved significant
reductions in overall viability, even at higher E:T ratios and longer coculture times.
Although we observed some increases in late apoptosis and necrosis at extreme
conditions, the effect size was modest and more inferior to what we saw in
OVCAR-3. Interestingly, we measured higher DR5 surface expression on SKOV-3
than on OVCAR-3 and similar levels of DR4 and DcRI, showing that receptor
abundance alone could not account for resistance. This observation points to the
involvement of downstream anti-apoptotic machinery as determinants of TRAIL

sensitivity, in line with published literature.

Taken together, our data supports DR5-focused TRAIL engineering to enhance NK

cell therapy in TRAIL-sensitive ovarian cancer, but it also shows that this strategy
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alone is insufficient to overcome intrinsic TRAIL resistance in some tumors. The
observation that TRAILv-KHYG-1 cells mount strong granzyme and IFNy responses
even against SKOV-3, yet fail to fully overcome resistance, suggests that
combining DR5-targeted NK cells with inhibitors of key anti-apoptotic molecules
may be necessary for best outcomes. From the perspective of the thesis, this
work serves as a concrete example of how receptor-level engineering of NK cells,
through the perspective of understanding the tumor death receptor pathways,
can produce more potent cell products while at the same time unmasking

non-receptor mechanisms that limit clinical efficacy.

3.4 Paper IV: NK cells drive MDSC-mediated tolerance via IL6-
STAT3 axis

In the final paper, we explored how tumor-associated NK cells shape myeloid cell
function and contribute to immune tolerance in solid tumors. By integrating bulk
transcriptomic data from multiple cohorts receiving PD-1/PD-L1 blockade, we
identified an inflammatory gene signature that positively correlated with NK cell
signatures specifically in non-responders or patients with progressive disease.
This observation suggested that NK-associated inflammation can be a hallmark of

immune resistance rather than effective anti-tumor immunity.

Using publicly available single-cell datasets from breast cancer, we refined this
association by identifying NK cell subsets and myeloid clusters and found that
CD69*perforin- NK cells correlated with SIO0A8/A9* myeloid populations in
tumors lacking T-cell expansion after checkpoint blockade. We then modeled this
interaction in vitro by coculturing NK cells with tumor cells to generate
“tumor-experienced” NK cells and showed that these cells adopted a CD69*,
functionally reprogrammed phenotype with upregulated inflammatory cytokines,
including IL-6. This phenotype fits within an emerging view of NK plasticity, where
chronic exposure to tumor signals can shift NK cells from purely cytotoxic
effectors toward regulatory cells that modulate the tumor microenvironment.

When we cocultured tumor-experienced NK cells with monocytes, we observed
down-regulation of HLA-DR and up-regulation of PD-L1, ARG1 and CD73,
accompanied by the appearance of HLA-DR"" monocytes that suppressed CD8
T-cell proliferation and impaired antigen presentation to tumor-infiltrating
lymphocytes.  Parallel  experiments  with  neutrophils showed that

45



tumor-experienced NK cells enhanced neutrophil survival, ER-stress marker sXBP-1
expression, Ki-67 and ARGI, and promoted neutrophil-mediated suppression of
CD8 T-cell activation, particularly under conditions of pharmacologically induced
ER stress. Functionally, these findings demonstrate that NK cells can drive the
differentiation and maintenance of both monocytic and granulocytic MDSCs,
thereby indirectly suppressing adaptive immunity.

We then confirmed the clinical relevance of this axis by phenotyping
tumor-infiltrating NK cells and myeloid cells in sarcoma and breast cancer
resections and showed that NK-derived IL-6 correlated with SIOOA8/A9 and
arginase-1 expression in MDSCs, while T cells contributed less to IL-6 production
in these samples. Across multiple murine models in which we manipulated tumor
MHC class | via B2m deletion and depleted NK cells, we found that MHC I-
competent tumors harbored more IL-6—producing NK cells and higher frequencies
of M-MDSCs and PMN-MDSCs than MHC I-deficient tumors, and that NK cell
depletion reduced M-MDSC accumulation. These results suggest that the NK cells
recognizing MHC I* targets can promote myeloid-mediated immune suppression

rather than direct cytotoxic clearance.

To directly implicate IL-6/STAT3 signaling, we cultured myeloid cells with NK cells
from IL-6—deficient mice and observed reduced induction of iINOS, PD-L1 and
arginase compared with myeloid cells exposed to wild-type NK cells. In xenograft
experiments, we treated mice with IL-6/STAT3-blocking antibodies and showed
reduced tumor growth and metastasis, decreased STAT3 activation and
suppressive marker expression in myeloid cells, and partial restoration of CD8
T-cell responses. Together, these data establish NK-derived IL-6 as a critical driver
of MDSC-mediated tolerance and position the IL-6/STAT3 axis as a promising
target to uncouple NK-associated inflammation from immune suppression.

Within the framework of the thesis, this work broadens the conventional view of
NK cells by demonstrating that, depending on tumor context and MHC |
expression, NK cells can act as upstream orchestrators of immunosuppressive
myeloid programs. This insight has two key implications for NK-based therapies:
first, simply increasing NK cell numbers or activation may not always be beneficial
in solid tumors if regulatory NK phenotypes are favored; and second, engineering
NK cells or combining them with IL-6/STAT3-targeted interventions may be
necessary to ensure that their activity supports, rather than undermines, effective

T-cell-mediated tumor control.
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4 Conclusions

This thesis examined NK cell biology from multiple angles, including cytotoxicity,
cytokine production, antiviral defense, and their contribution to the
tumor-associated immunosuppressive milieu to achieve a more comprehensive
understanding of their multidimensional functions.

Through the four original research works presented here, we have drawn specific
conclusions as followed:

Paper I:

e Established a dual-axis genome-wide CRISPR-Cas9 screening platform in
NK-92 that simultaneously profiled regulators of degranulation and IFNy
production

¢ Revealed distinct regulatory architectures for degranulation and cytokine
production, with degranulation enriched for negative regulators and IFNy for
positive regulators.

¢ Uncovered 914 significant regulators of NK-92 functions, comprising of 579
genes linked to CD107a, 532 to IFNy, and 197 shared between both readouts.

¢ Identified and validated druggable candidates such as CSK and LNPEP
whose loss enhances NK-92 degranulation.

¢ Demonstrated that analogous knockouts in primary NK cells had minimal
impact on CDIO7a and IFNy responses, indicating the presence of
compensatory networks in primary NK cells.

¢ Generated a genome wide functional dataset that can serve as a resource
for future chemical inhibition studies, rational engineering of NK cell
products, and systems level analyses of transcription factor networks and
pathway wiring in cytotoxic lymphocytes.

Paper lI:

o |dentified 5Z-7-oxozeaenol (Oxo) as a small molecule that transiently
enhances lentiviral transduction in NK-92 cells in a dose-dependent
manner while maintaining high viability.

e Showed that Oxo acts most effectively when present during co-exposure
to viral supernatant, indicating an effect on the initial stages of viral entry.

o Demonstrated that Oxo-treated NK-92 cells preserve effector functions.

e Confirmed Oxo-mediated enhancement of lentiviral transduction in

additional NK cell lines and in primary NK and T cells, with increased
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transduction across donors and cell types but variable magnitude and clear

pseudotype dependence.

Paper llI:

Generated a KHYG-1 NK cell line expressing a high affinity DR5-specific
TRAIL variant (TRAILv-KHYG-1) using a non-viral Sleeping Beauty system,
achieving stable expression without evident fratricide.

Showed that TRAILv-KHYG-1 cells kill TRAIL sensitive OVCAR-3 ovarian
cancer cells more efficiently than parental KHYG-1, with stronger reductions
in viability and increased granzyme and IFNy secretion.

Demonstrated that DR5"&" SKOV-3 cells remain largely resistant despite
TRAILv-KHYG-1 activity, indicating that downstream anti-apoptotic
mechanisms, rather than DR5 abundance, determine TRAIL resistance.

Paper IV:
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Identified a tumor-experienced CD69*perforin® NK cell subset that
acquires a regulatory phenotype and correlates with inflammatory gene
signatures and myeloid cell enrichment in non-responders to checkpoint
blockade.

Demonstrated that these tumor-experienced NK cells drive the
differentiation of suppressive monocytes and neutrophils into MDSC-like
populations via IL-6—dependent STAT3 activation, leading to impaired
antigen presentation and CD8 T-cell suppression.

Showed in patient samples and mouse tumor models that NK-derived IL-6,
particularly in MHC I-competent tumors, promotes MDSC accumulation
and tumor progression, and that IL-6/STAT3 blockade can alleviate this

NK-driven immunosuppression.



5 Points of perspective

NK cell-based immunotherapy is currently at a stage where both mechanistic
insight and engineering tools can be combined to design more rational, next-

generation interventions.

Across the four studies in this thesis, there are several directions emerging for
future work, such as deepening the functional map of NK cell effector regulation,
integrating small-molecule and genetic engineering strategies to overcome
manufacturing and resistance bottlenecks, and re-programming NK cell-myeloid
crosstalk in the tumor microenvironment to improve clinical responses.

The genome-wide loss-of-function screen in NK-92 provides an initial wiring
diagram of genes that support degranulation and IFNy production, but the
absence of strong phenotypes for IRAP and CSK in primary NK cells highlights the
degree of redundancy and compensation in physiological systems. Future work
should therefore move from single-gene to combinatorial perturbations in
expanded pNK cells, ideally under tumor-like conditions to reveal synthetic
vulnerabilities that are invisible in transformed cell lines and to define effector
modules that are most relevant for clinical products. In parallel, the updated NK
cytotoxicity gene set generated here could be applied to existing single-cell and
bulk transcriptomic datasets from patient samples to link specific NK cell
functional networks with clinical outcomes.

A second major theme is the manipulation of NK cell biology to allow genetic
modification. The identification of 5Z-7-oxozeaenol (Oxo) as a transient,
low-toxicity enhancer of lentiviral transduction across NK, T and B cells offers a
practical option to improve manufacturing, but its precise molecular mechanism
remains incompletely defined. Transcriptomic profiling of Oxo-treated NK cells,
combined with CRISPR perturbation of candidate RIG-I/TBK1/IKKe pathway
components, will be important to clarify how far innate antiviral sensing can be
modulated without compromising long-term function or safety. On the
translational side, Oxo now needs to be moved into process-development studies
to define clinically acceptable exposure windows, further investigate long-term
phenotypic and epigenetic stability, and test whether similar pathway modulation
can also improve non-viral platforms such as transposon systems, CRISPR-Cas9-

mediated knockout generation or mRNA delivery in NK cells.
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The DR5-targeted TRAILv-KHYG-1 model illustrates the potential and limitations of
leveraging death-receptor pathways in solid tumors. Enhanced Kkilling of
TRAIL-sensitive OVCAR-3 cells, but persistent resistance of SKOV-3 despite higher
DR5 expression, argues that receptor density is an insufficient biomarker and that
intracellular resistance mediators such as c-FLIP, IAPs and ER-stress-linked
survival must be considered. Future work could combine DR5-engineered NK cells
with targeted inhibitors of these pathways or with chemotherapy-induced stress
to test whether TRAIL resistance can be safely reversed and to define rational
treatment sequencing in ovarian cancer. Importantly, the proof-of-concept in
KHYG-1 needs to be extended to primary NK cells and evaluated potentially in
animal models to better capture trafficking, tumor penetration and the

immunosuppressive peritoneal environment.

Finally, the demonstration that tumor-associated NK cells can drive
MDSC-mediated immune tolerance through IL-6-STAT3 signaling reframes NK
cells as potential amplifiers of immune escape in certain contexts. The association
of IL-6—producing CD69*perforin- NK cells with suppressive monocytes and
neutrophils in human tumors and mouse models suggests that simply increasing
NK cell numbers is not necessarily beneficial. Future studies should therefore
dissect the cues, such as MHC class | expression patterns, chronic stimulation or
stromal factors, that promote this regulatory NK phenotype, and test strategies to
block IL-6/STAT3 signaling specifically in NK cells or in their myeloid targets. Gene
editing to remove IL6 or key upstream regulators in therapeutic NK products or
combining NK-based therapies with IL-6/STAT3 inhibitors or MDSC-depleting
approaches, could help convert “inflamed but ineffective” microenvironments into
settings where both NK cells and T cells can mount antitumor responses.

To conclude, taken together, the work in this thesis positions NK cells not only as
cytotoxic effectors to be armed, but as central nodes in antiviral sensing, vesicle
trafficking, death-receptor signaling and TME-driven immune regulation that can

be systematically mapped and re-engineered in future studies.
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7 Declaration about the use of generative Al

Al tools were used in the “Background” section of this thesis to enhance clarity of
sentence structures, improve cohesiveness of text, referencing, correct spelling

and grammar. All Al suggestions were personally reviewed in detail.
Tools used were as followed:

e Microsoft 365 CoPilot version 2.20260108.46.0
e Perplexity Pro

| confirm that use of these Al tools does not infringe on the authenticity of this
work and | take full responsibility of the contents of this thesis.
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