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Popular science summary of the thesis  
Cancer is often described as body’s own cells rebelling against itself. Throughout 

our lifetime, millions of our cells acquire the changes it takes to turn a healthy cell 

into a cancerous one. However, both our cells and our bodies are equipped with 

defense systems to counter harmful changes to our organisms. When the damage 

inside the cells becomes too overwhelming for the cell to repair, these damaged, 

transformed cells can start the process of dying themselves, but most of the time, 

they are eliminated by specialized cells of our immune system, known as 

lymphocytes.  

The immune system is made of two complementary immune systems: the innate 

and the adaptive, the former of which is the fastest and more sensitized to identify 

and alert the body of infections and inflammations and the latter of which is more 

adapted to completely clear the pathogenic entities and form a memory in case 

the body is exposed to this particular pathogen again.  

Natural killer (NK) cells are the killer cells of the innate immune system and as such 

they are considered the first line of defense against invading bacteria and viruses, 

as well as stressed cells and cancer cells. NK cells do not need to “learn” what a 

cancer cell looks like before attacking. They constantly patrol the body, scanning 

for signs of stress or abnormality, kill dangerous cells by releasing toxic granules 

and call in other immune cells by producing inflammatory molecules. All of these 

features make NK cells attractive for “off-the-shelf” cell therapies, where carefully 

prepared NK cells are given to patients as living drugs. But to use them well, we 

first need to understand which genes and switches control their behavior.  

In the first part of this thesis work, a large-scale genetic screening method called 

CRISPR was used to systematically switch off thousands of genes one-by-one in 

an NK cell line and see how this affected their ability to kill and to produce 

inflammatory substances. This revealed not only many well-known players, but 

also hundreds of genes and pathways that fine-tune how aggressively NK cells 

attack. An important finding was that NK cells seem to have many internal “brakes” 

that prevent uncontrolled killing, while producing immune signals such as 

interferon-gamma depends on broad support from the cell’s metabolism and 

machinery. These insights highlight concrete targets that could one day be 

adjusted to make NK cell therapies stronger or safer. 



To turn NK cells into precision cancer fighters, sometimes new genes need to be 

added, for example to make them recognize specific tumor markers. However, NK 

cells are naturally very good at sensing and resisting viruses, which makes it hard 

to deliver genetic material into them. The second part of the thesis identifies a 

small molecule that can temporarily lower this antiviral “shield” and allow much 

more efficient delivery of therapeutic genes by modified viruses, not only into NK 

cells but also into T and B cells. Crucially, this boost in gene transfer does not 

measurably harm cell survival or function, making it a promising tool for 

manufacturing future engineered cell therapies. 

The third study focuses on ovarian cancer, a disease where many patients still 

relapse despite surgery and chemotherapy. Here, an NK cell line was equipped 

with a specially designed version of a natural death signal called TRAIL, tuned to 

bind strongly to a receptor named DR5 on tumor cells. These engineered cells 

killed a TRAIL-sensitive ovarian cancer cell line more efficiently than unmodified 

NK cells and released higher levels of toxic enzymes and immune-activating 

molecules. At the same time, another ovarian cancer cell line with high DR5 levels 

remained resistant, showing that the presence of the target receptor alone is not 

enough to guarantee success and that tumors can block death signals from within. 

Finally, the thesis also explores a less obvious side of NK biology: in some tumors, 

NK cells can be reshaped by their environment and start supporting cancer 

growth instead of fighting it. Tumor-exposed NK cells can begin to produce the 

inflammatory molecule interleukin-6, which in turn drives other immune cells, 

called myeloid-derived suppressor cells, to shut down the activity of cancer-killing 

T cells. Blocking this signal in experimental models reduced these suppressive 

cells, strengthened T-cell responses and slowed tumor growth. This shows that 

successful therapies must not only boost the killing side of NK cells but also 

prevent them from being turned into unwitting allies of the tumor. 

Together, these four studies chart the genetic wiring of NK cells, provide tools to 

modify them, demonstrate a targeted NK therapy concept in ovarian cancer, and 

uncover how NK cells can sometimes fuel tumor immune escape. This knowledge 

brings the field closer to designing smarter, safer NK	cell-based treatments for 

cancer patients. 

  



 

 

სამეცნიერო ნაშრომის განმარტება  

კიბოს ხშირად აღწერენ, როგორც საკუთარი ორგანიზმის წინააღმდეგ აჯანყებულ 

უჯრედებს.  სიცოცხლის განმავლობაში ჩვენი ორგანიზმის მილიონობით 

უჯრედები განიცდიან გარკვეულ ცვლილებებს, რის შედეგადაც ზოგ შემთხვევაში 

ჯანმრთელი უჯრედები კიბოს უჯრედებად გადაგვარდებიან, მაგრამ ჩვენი 

სხეული დამცავი სისტემების წყალობით აკონტროლებს ასეთ საზიანო 

ცვლილებებს და უმეტეს შემთხვევაში ეს უჯრედები ან თვითონ იღუპებიან, ან 

იშლებიან იმუნური სისტემის უჯრედების - ლიმფოციტების წყალობით. 

იმუნური სისტემა შედგება ორი კომპლემენტური ნაწილისგან: თანდაყოლილი და 

შეძენილი იმუნიტეტისგან. თანდაყოლილი შედარებით სწრაფი და მგრძნობიარეა 

ორგანიზმში არსებული ანთებითი პროცესებისა და ინფექციების მიმართ. ხოლო 

შეძენილი იმუნიტეტი უფრო მეტად არის მორგებული პათოგენების საბოლოო 

განეიტრალებასა და უჯრედული მესხიერების შექმნაზე, რომლითაც ორგანიზმი 

ხელმეორედ შემოჭრისთანავე ამოიცნობს კონკრეტულ პათოგენს. 

ნატურალური მკვლელი (Natural killer, NK) უჯრედები თანდაყოლილი იმუნური 

სისტემის ფუნქციურ ერთეულად ითვლებიან და შესაბამისად მიიჩნევა, რომ ისინი 

ორგანიზმის წამყვან დაცვის ხაზს წარმოადგენენ შემოჭრილ პათოგენებთან 

(ბაქტერიები, ვირუსები) ერთად, კიბოსა და გარემო ფაქტორების სტრესის ქვეშ 

მყოფი უჯრედების წინააღმდეგ. სხვა იმუნური უჯრედებისგან განსხვავებით, NK-

უჯრედებს არ სჭირდებათ „სწავლის“ ეტაპი, სანამ კიბოს უჯრედების ამოცნობას 

და მათზე შეტევას შეძლებენ. ისინი მუდმივად აკონტროლებენ ორგანიზმში 

მიმდინარე ცვლილებებს და აფიქსირებენ  სტრესსა და პათოლოგიურ ნიშნებს. 

საფრთხის შემცველ უჯრედებს ანადგურებენ ტოქსიკური გრანულების მეშვეობით 

და ამავდროულად, ანთებითი მოლეკულების საშუალებით სხვა იმუნურ 

უჯრედებსაც ააქტიურებენ მიმდინარე ცვლილებებთან გასამკლავებლად. ეს 

პროცესები NK-უჯრედებს საინტერესოს ხდის უჯრედული თერაპიებისთვის, 

სადაც ფრთხილად შერჩეული და დამუშავებული NK-უჯრედები პაციენტს 

ცოცხალი წამლის სახით მიეწოდება; თუმცა, მათი ოპტიმალური გამოყენებისთვის 

პირველ რიგში ძირფესვიანად შესასწავლია რომელი გენებითა და გამშვები 

მექანიზმებით კონტროლდება მათი ფუნქციები. 

 

 



ამ დისერტაციის პირველი ნაწილი იყენებს ფართომასშტაბიან გენეტიკური 

სკრინინგის მეთოდს, რომელსაც CRISPR ეწოდება. ამ მეთოდის საშუალებით 

შემთხვევითი შერჩევის საფუძველზე გაითიშა ათასობით გენი NK-უჯრედების 

ხაზში, რამაც თვალსაჩინო გახადა თუ როგორ მოქმედებს ეს მათ ლიკვიდირების 

უნარსა და იმუნომასტიმულირებელი სიგნალების გამომუშავებაზე. ამ ცდამ 

გამოავლინა არა მხოლოდ მრავალი კარგად ცნობილი გენეტიკური ფაქტორი, 

არამედ ასობით ახალი გენი და გზაც, რომლებიც ზუსტად არეგულირებენ თუ 

რამდენად აგრესიულად ამოქმედდებიან NK-უჯრედები. მნიშვნელოვანი აღმოჩენა 

იყო ის, რომ NK-უჯრედებს აქვთ მრავალი „მუხრუჭი“ რომლებიც ზღუდავენ 

უკონტროლო ციტოტოქსიკურობას, მაშინ როდესაც ინტერფერონ-გამას მსგავსი 

იმუნური სიგნალების წარმოება დიდწილად დამოკიდებულია უჯრედის 

მეტაბოლიზმსა და შიდა მექანიზმების მხარდაჭერაზე. ამ დაკვირვებამ გამოკვეთა 

კონკრეტული საკითხები, რომელთა მოდულირებაც სამომავლოდ 

უზრუნლევყოფს NK-თერაპიების გაძლიერებას  და უსაფრთხოებას. 

იმისთვის, რომ NK უჯრედები გამიზნულ კიბოსმკვლელებად ვაქციოთ, ხანდახან 

საჭიროა ახალი გენების დამატებაც – მაგალითად, ისეთი გენების, რომლებიც მათ 

კონკრეტული სიმსივნური მარკერების ამოცნობის საშუალებას მისცემს, თუმცა NK 

უჯრედების ბუნებრივად მაღალი მგრძნობელობა და წინააღდეგობა ვირუსების 

მიმართ, მათში გენეტიკური მასალის შეყვანას საკმაოდ ართულებს. დისერტაციის 

მეორე ნაწილში იდენტიფიცირებულია მცირე მოლეკულა, რომელსაც დროებით 

შეუძლია შეასუსტოს ეს ანტივირუსული „ფარი“ და მნიშვნელოვნად 

გააუმჯობესოს თერაპიული გენების მიწოდება გარდაქმნილი ვირუსებით – არა 

მხოლოდ NK, არამედ T- და B-უჯრედებშიც. არსებითია, რომ ასეთი გენეტიკური 

მოდიფიკაციის გაძლიერება არც უჯრედების გადარჩენის უნარს და არც მათ 

ფუნქციას არ ასუსტებს, რაც მას მომავალი ინჟინერული უჯრედული თერაპიების 

წარმოებისთვის მიმზიდველ ინსტრუმენტად აქცევს. 

მესამე კვლევა ფოკუსირებულია საკვერცხის კიბოზე – დაავადებაზე, რომლის 

დროსაც მიუხედავად ქირურგიული და  და ქიმიოთერაპიული ჩარევისა 

პაციენტების უმრავლესობა მაინც განიცდის რეციდივს. ამ კვლევაში NK 

უჯრედების ხაზი აღიჭურვა ბუნებრივი „სიკვდილის სიგნალის“, TRAIL-ის, 

სპეციალურად შექმნილი ვარიანტით, რომელიც განსაკუთრებით ძლიერად 

უკავშირდება DR5-ის სახელწოდების რეცეპტორს სიმსივნურ უჯრედებზე. ასეთმა 

ინჟინირებულმა უჯრედებმა TRAIL-ზე მგრძნობიარე საკვერცხის კიბოს 

უჯრედული ხაზი შედარებით ეფექტურად გაანადგურეს, ვიდრე 

არამოდიფიცირებულმა NK უჯრედებმა და გამოიმუშავეს ტოქსიკური ენზიმები 



 

 

და იმუნური სისტემის გამააქტიურებელი მოლეკულების მაღალი კონცეტრაცია. 

ამავე დროს, სხვა საკვერცხის კიბოს ხაზმა, მაღალი DR5  მაჩვენებლით, მაინც 

შეინარჩუნა რეზისტენტობა, რაც იმის მაჩვენებელია, რომ მხოლოდ მიზნობრივი 

რეცეპტორის არსებობა თავისთავად წარმატების გარანტია არ არის და სიმსივნის 

უჯრედებს  შეუძლიათ სიკვდილის სიგნალების დაბლოკვა. 

საბოლოოდ, დისერტაცია ასევე მოიცავს NK ბიოლოგიის ნაკლებად ცნობილ 

მხარეს: ზოგიერთ სიმსივნურ წარმონაქმნში NK-უჯრედები, გარემო ფაქტორების 

გავლენით გარდაიქმნება ამ სიმსივნის ზრდის ხელშემწყობ ფაქტორად და არა 

სიმსივნური უჯრედების გამანადგურებლად. სიმსივნურ უჯრედებთან 

კონტაქტში მყოფმა NK-უჯრედებმა შეიძლება დაიწყონ ანთებითი მოლეკულის 

ინტერლეუკინ-6-ის წარმოება, რომელიც თავის მხრივ ააქტიურებს სხვა იმუნურ 

უჯრედებს – ე.წ. მიელოიდური წარმოშობის დამთრგუნველ უჯრედებს – და 

აიძულებეს მათ გაანეიტრალონ T-უჯრედების კიბოს საწინააღმდეგო აქტივობა. ამ 

სიგნალის ბლოკირებამ ექსპერიმენტულ მოდელებში შეამცირა დამთრგუნველი 

უჯრედების რაოდენობა, გააძლიერა T-უჯრედების საპასუხო რეაქცია და შეანელა 

სიმსივნის ზრდა. ეს გვიჩვენებს, რომ წარმატებული თერაპიები უნდა 

ისწრაფოდნენ არა მარტო NK-უჯრედების გამანადგურებელი თვისებების 

გაძლიერებისკენ, არამედ მათი კონტროლისკენაც, რათა ისინი უნებურად 

სიმსივნის ხელშემწყობ ფაქტორებად არ იქცნენ. 

საბოლოოდ, ეს ოთხი კვლევა ასახავს NK უჯრედების გენეტიკურ ქსელს, გვაძლევს 

მათი მოდიფიკაციის ინსტრუმენტებს, განიხილავს მიზნობრივ NK-თერაპიის 

კონცეფციას საკვერცხის კიბოს შემთხვევაში და ცხადყოფს, თუ როგორ შეიძლება 

NK უჯრედებმა ზოგჯერ ხელი შეუწყონ სიმსივნური უჯრედების არა 

განადგურებას, არამედ ზრდას. ეს ცოდნა გვაახლოვებს იმ მომავლთან, სადაც 

NK-უჯრედების მართვა გამარტივდება და კიბოთი დაავადებული 

პაციენტებისთვის  უფრო ეფექტური და უსაფრთხო NK-უჯრედული  მკურნალობა 

შეიქმნება. 



  



 

 

Abstract 
Natural killer (NK) cells have emerged as potent cytotoxic lymphocytes in cellular 

immunotherapies in the recent decades. 50 years of extensive research into their 

multidimensional nature have led to their substantial characterization, however, 

the genetic circuits governing their cytotoxic and cytokine programs, and the 

constraints limiting their therapeutic engineering and in-tumor function, remain 

incompletely defined. This thesis combines genome-wide functional genomics, 

small	molecule–assisted gene delivery, and translational NK	cell engineering to 

dissect and therapeutically exploit NK-cell biology in cancer.   

In Study I, a genome-wide loss-of-function CRISPR–Cas9 screen in NK-92 cells 

simultaneously interrogated degranulation and interferon-gamma (IFNγ) 

production. The results mapped 914 regulators of NK effector functions, 

recovering known genes in cytotoxic granule trafficking and primary 

immunodeficiencies, and revealing a predominance of negative regulators limiting 

degranulation versus extensive positive regulators sustaining IFNγ production. 

Pathway-level analyses highlighted vesicle trafficking, mitochondrial metabolism, 

translational control, and signaling modules downstream of activating receptors, 

and an updated NK cell cytotoxicity gene set was curated to better align 

CRISPR-based functional data with existing transcriptomic resources. 

To overcome innate antiviral barriers that limit NK-cell engineering, RIG-I–pathway 

inhibitor, 5Z-7-oxozeaenol, was identified as a transient, low-toxicity enhancer of 

lentiviral gene delivery in Study II.  Short-term exposure to 5Z-7-oxozeaenol 

increased transduction efficiencies up to eight-fold in NK cell lines and up to 

four-fold in primary NK and T cells across multiple multiplicities of infection, 

without impairing viability, degranulation, or IFNγ responses, and with activity 

extending to B and T cell lines in an envelope-dependent manner.  

Study III explored the translational potential of engineered NK cells in ovarian 

cancer models using KHYG-1 cells modified with a DR5-selective TRAIL variant 

(TRAILv-KHYG-1). TRAILv-KHYG-1 cells exhibited enhanced apoptosis induction and 

reduced viability in TRAIL-sensitive OVCAR-3 cells compared to parental KHYG-1, 
associated with increased granzyme and IFNγ secretion and elevated soluble 

TRAIL, whereas both NK cell products showed minimal cytotoxicity against 

TRAIL-resistant SKOV-3 cells despite higher DR5 surface expression, indicating 

that DR5 abundance alone is insufficient to overcome intrinsic TRAIL resistance. 



Finally, in Study IV, the thesis outlines a regulatory role of NKs, whereby 

tumor-associated NK cells promote myeloid-derived suppressor cell (MDSC)–

mediated immune tolerance through IL-6/STAT3 signaling. Tumor-experienced 

human NK cells acquired a CD69⁺perforin- phenotype and reprogrammed 

monocytes and neutrophils toward suppressive, MDSC-like states characterized 

by defective antigen presentation, up-regulation of PD-L1 and ER-stress markers, 

and enhanced suppression of CD8⁺ T cells. In patient tumors and multiple murine 

models, NK	cell–derived IL-6 correlated with MDSC accumulation in an MHC class 

I–dependent manner. Genetic or siRNA-mediated IL-6 ablation in NK cells, or 

pharmacologic blockade of the IL-6/STAT3 axis, reduced MDSC-associated 

suppression, limited metastatic lesions, and improved T-cell activity in xenograft 

and zebrafish models. 

To conclude, these studies provide a systemwide map of NK effector functions, 

introduce a strategy to enhance NK genetic modification, demonstrate the 

opportunities and limits of death receptor–targeted NK cell therapy in solid 

tumors, and uncover a role of NK cells in actively shaping tumor-associated 

immune suppression that can be therapeutically overcome. 
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1 Background  

1.1 Natural Killer Cells 

1.1.1 Introduction to NK Cells 

Natural killer (NK) cells are cytotoxic innate lymphocytes that play a pivotal role in 

immune surveillance and homeostasis. They comprise approximately 5–25% of 

peripheral blood mononuclear cells (PBMCs) and are also widely distributed as 

tissue-resident populations in organs such as the liver, lungs, gastrointestinal tract, 

and uterus. Like other immune cells, NK cells secrete a broad array of cytokines, 

chemokines, and growth factors that contribute to intercellular signaling, 

angiogenesis, and apoptosis. Their secretory profile is highly dynamic, varying in 

response to environmental cues and tissue-specific contexts. 

NK cells were initially discovered at Karolinska Institutet as a distinct lymphocyte 

population capable of spontaneous tumor cell lysis in 1975 by Rolf Kiessling, along 

with Hans Wigzell and Eva Klein (1). Their novel observations of mouse 

lymphocytes, that could exert spontaneous cytotoxicity towards cancer cells 

without prior sensitization, would significantly contribute to the understanding of 

the immune landscape as well as revolutionize cell-based immunotherapies in the 

coming 50 years. 

A central function of NK cells is the recognition and elimination of physiologically 

aberrant or stressed cells, including virally infected and transformed cells, thereby 

contributing to maintenance of immune homeostasis (1, 2). Traditionally, NK cells 

have been classified based on surface receptor expression into two major 

subsets: CD56brightCD16dim and CD56dimCD16bright. The former, which constitute 

about 10% of circulating NK cells, are primarily immunoregulatory, whereas the 

latter, comprising the remaining 90%, are highly cytotoxic. Beyond these canonical 

subsets, additional populations such as tissue-resident NK cells, tumor-infiltrating 

NK cells, tumor-associated NK cells and adaptive NK cells have been identified (3, 

4). Adaptive NK cells, which emerge following human cytomegalovirus (HCMV) 

infection, exhibit distinct phenotypic and epigenetic profiles compared to their 

canonical subsets and possess enhanced cytotoxic potential. Notably, they can 

expand upon re-exposure to the same or related viral antigens, demonstrating 

memory-like behavior (5, 6). 
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NK cell cytotoxicity is orchestrated through a complex interplay of activating, 

inhibitory, and co-stimulatory receptors expressed on their surface (Fig. 1) (3, 7). 

Engagement of activating receptors triggers degranulation and the release of 

perforin and granzymes at the immune synapse, leading to target cell lysis. In 

contrast, inhibitory receptor binding transmits signals that suppress cytotoxic 

responses, typically indicating that the target cell is healthy and part of “self”.  The 

balance between activating and inhibitory signals determines NK cell 

responsiveness, with the strength and number of receptor-ligand interactions 

influencing the outcome. This finely tuned mechanism underlies NK cell self-

tolerance and prevents unintended damage to healthy tissues.  

A key aspect of NK cell self-recognition involves the detection of major 

histocompatibility complex (MHC) class I molecules via inhibitory receptors such 

as NKG2A and killer cell immunoglobulin-like receptors (KIRs).  These receptors 

recognize the complex of self-peptides presented by MHC class I and inhibit 

cytotoxic activity. Conversely, the absence or downregulation of MHC class I, 

which is a hallmark of stressed or transformed cells, can trigger NK cell activation, 

a concept known as the “missing-self” hypothesis, first proposed by Klas Kärre in 

his doctoral thesis in 1981 (8), and later refined by Ljunggren and Kärre (8-10). 

However, MHC class I loss alone is insufficient to induce cytotoxicity; additional 

stress-induced ligands, such as MHC class I-chain related protein A and B 

(MICA/B), are typically required to fully activate NK cells (11). 

In short, NK cells are vital components of the immune system with a wide set of 

functions that bridge the gap between the innate and adaptive immunity. Their 

ability to eliminate target cells without prior sensitization, coupled with their high 

off the shelf potential make them an attractive candidate for cancer 

immunotherapies, which is addressed in more detail in this kappa, focused on 

human NK cells. However, to understand the full picture it is important to delve 

deeper in their biology.  

 

1.1.2  Mechanisms of NK Cell Activation and Inhibition 

NK cell cytotoxicity relies heavily on its germline-encoded activating and 

inhibitory receptors. These receptors, which are structurally diverse, are present 

on the cell surface and are capable of binding their respective ligands. The 

receptor expression profile of NK cells is influenced by the environment, 

abundance of the cognate ligand and gene loci methylation patterns (12-14). 
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Environmental cues such as oxygen concentration, pH, metabolites, and access to 

cytokines like interleukin 2, 7, 12, 15, 18, and 21 (IL-2, IL-7, IL-12, IL-15, IL-18, and IL-21) 

also play in this process (15, 16).  

NK cell receptors can be homo- or heterodimers, where ligand binding-mediated 

dimerization is a key process in their activation (7, 17). Structurally, they typically 

have an extracellular ligand-binding domain, an anchoring transmembrane 

domain, and an intracellular signaling domain. Additionally, most receptors utilize 

intracellular DNAX-activating protein 10 (DAP10) or 12 (DAP12), CD247 (CD3ζ) or Fc 

epsilon receptor subunit gamma (FCεRIγ) for downstream signaling (7). 

 

Figure 1: Schematic overview of the NK cell surface receptor repertoire. The illustration depicts major 
activating and inhibitory receptors, adhesion molecules, cytokine receptors, and the Fc receptor CD16 that 
mediates potent antibody-dependent cellular cytotoxicity (ADCC). It also shows membrane-bound death 
ligands and their receptors involved in apoptosis induction. Selected tumor-associated ligands (for example 
MICA, B7-H6, CD155 and HLA-E) and soluble mediators (such as IL-2, IL-15 and IFNγ) are indicated to highlight 
key receptor–ligand interactions shaping NK cell activation and effector function.   

NK cell activating receptor repertoire is diverse, including, but not limited to, the 

highly potent CD16, activating killer cell immunoglobulin-like receptors (KIRs) and 

natural cytotoxicity receptors (NCRs) such as NKp30, NKp44 and NKp46. 

Activating intracellular signaling cascades vary according to the engaged receptor 

and involve different adaptor and effector proteins which is discussed in more 

detail in this thesis. Moreover, uninhibited activating signaling culminates in the 
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reorganization of the cytoskeleton to enable degranulation by the polarized 

release of perforin and granzyme towards the target cell (18, 19).  

In addition to activating receptors, NK cells also express inhibitory receptors, 

which are vital for the interplay between self-tolerance and cytotoxicity. These 

receptors are structurally diverse, with the largest group being the highly 

polymorphic inhibitory KIRs (20). Other inhibitory receptors include NKG2A, 

Siglec-7/9, T-cell Ig and ITIM domain (TIGIT) and programmed cell death protein 1 

(PD-1), latter of which features variable distribution across different NK cell 

subsets.   

In addition to inhibitory and activating receptors, NK cells also feature membrane-

bound cytokine, chemokine and co-stimulatory receptors, as well as membrane 

bound death ligands such as TRAIL and FASL, all working in synergy for optimal NK 

cell functions, be it cytotoxic or aimed towards tolerance.  

The formation of an immune synapse by receptor/ligand interactions between NK 

and target cells is the initial step towards the outcome. For the scope of this thesis, 

only some mechanisms of activation and inhibition are detailed below.  

 

1.1.3 Natural Cytotoxicity Receptors (NKp30, NKp44, NKp46) 

Natural cytotoxicity receptors (NCRs) represent some of the most potent 

activating receptors on NK cells. Upon engagement with their cognate ligands on 

target cells, a robust cytotoxic response is initiated through NKp30, NKp44, and 

NKp46. These receptors are key components of the non-MHC-restricted 

recognition system and are primarily responsible for detecting stress-induced 

ligands on tumor or virally infected cells (7, 21, 22). NKp30 and NKp46 are 

constitutively expressed on resting NK cells, while NKp44 is upregulated upon 

activation (22, 23). In terms of their ligands, they all recognize various viral 

hemagglutinins as well as multiple other ligands (7). Experimentally it has been 

reported that NKp30 recognizes B7-H6, a ligand selectively expressed by tumors 

such as melanoma and carcinoma and BAG family molecular chaperone regulator 

6 (BAG6, previously known as BAT3), which acts as a stress-induced, tumor-

associated ligand. As well as this, it has been proposed that NKp30 also recognizes 

certain heparan sulphate molecules and the cytomegalovirus tegument protein 

pp65 (7, 22). NKp44 binds to both activating as well as inhibitory ligands. Namely, 

its activating ligand, mixed-lineage leukemia-5 (MLL5) is enriched in transformed 
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cells and not in healthy tissues. The primary proposed inhibitory ligand of NKp44 

is proliferating cell nuclear antigen (PCNA), a protein overexpressed in many 

cancer cells (22). Co-expression of PCNA and human leukocyte antigen (HLA) 

class I molecules on cancer cells play a large part in immune evasion (24). On the 

other hand, NKp46 recognizes mostly activating ligands, with a heavy emphasis on 

viral hemagglutinins, heparan sulfate proteoglycans and ecto-calreticulin, 

particularly the ones from influenza and zika virus as well as vimentin expressed 

by mycobacterium tuberculosis-infected cells (22-24). This receptor is vital in 

antiviral immunity. Research into the ligands for NCRs has only gained traction in 

the last few years, and while some of them have now been elucidated, more are 

likely to be discovered in the 

future due to the promiscuity of 

these receptors.  

Upon ligand binding, NKp30 and 

NKp46 associate with ITAM-

bearing adaptors CD3ζ and 

FceRIγ. NKp44, in contrast, 

signals through DAP12, another 

ITAM-bearing adaptor. 

Engagement of these receptors 

leads to ITAM phosphorylation 

by Src family kinases (e.g., Lck, 

Fyn), which subsequently recruit 

and activate Syk or ZAP-70 

kinases. These kinases initiate 

downstream signaling cascades 

involving PLCγ1/2, resulting in the 

generation of second 

messengers: inositol 

triphosphate (IP3) and 

diacylglycerol (DAG), which 

mobilize intracellular calcium 

and activate protein kinase C (PKC) (7, 25). Concurrently, activation of Vav1, a 

guanine nucleotide exchange factor, leads to the activation of Rho family GTPases 

such as Rac1 and Cdc42 (25). These molecules orchestrate the reorganization of 

the actin cytoskeleton through effectors like WASp and Arp2/3 complex, 

facilitating the formation of the immune synapse (26). This reorganization is 

Figure 2: NKp30 downstream activating signaling. Ligand 
binding leads to association of NKp30 with adaptors CD3ζ 
and FcεRIγ. Phosphorylation of FcεRIγ by Src family kinases 
leads to activation of ZAP70/SYK. Signals diverge from this 
point and can go though many intermediates, converging at 
the end where they culminate in granule polarization, Ca2+ 
flux, degranulation and killing of the target cell and cytokine 
production. Adapted from Chen, et al., 2024 (7).  
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critical for the polarization of the microtubule-organizing center (MTOC) and the 

directed movement of lytic granules toward the synapse, setting the stage for 

targeted degranulation and cytotoxicity. 

Additionally, NCRs play pivotal roles in cytokine and chemokine production as well 

as modulating chemokine receptor expression and the subsequent migratory 

properties of NK cell subsets. NCR binding induces rapid secretion of chemokines 

such as MIP-1a, MIP-1b and RANTES promotes the recruitment of myeloid and 

lymphoid effector cells to sites of infection and tumorigenesis (27, 28). These 

chemokines are produced earlier and in greater abundance than classical 

proinflammatory cytokines such as IFNγ and TNF, whose release requires stronger 

receptor engagement or more stringent co-stimulation frequently including 

synergy between multiple NCRs or accessory receptors (22, 28).  

 

1.1.4 CD16 (FcγRIIIa) 

CD16, also known as FcγRIIIa, is a high-affinity receptor for the Fc region of 

immunoglobulin G (IgG) antibodies and is expressed on the mature CD56dim 

subset of NK cells. This receptor plays a pivotal role in antibody-dependent 

cellular cytotoxicity (ADCC), a mechanism by which NK cells recognize and kill 

antibody-coated target cells. Upon binding to IgG, CD16 signals through multiple 

ITAM-bearing CD3ζ and FcRγ, utilizing pathways similar to those of NKp30 and 

NKp46. However, CD16 engagement delivers strong activating signals to NK cells 

since it is directly coupled to potent ITAMs and does not have to associate to 

them upon activation (29). Unlike NCRs, it does not have to rely on co-stimulation 

for a full functional activation.  

The downstream signaling cascade involves Src family kinases, Syk or ZAP-70, and 

PLCγ1/2, leading to IP3 and DAG production, calcium mobilization, and PKC 

activation. Vav1 activation and subsequent engagement of Rac1 and Cdc42 drive 

actin cytoskeletal rearrangement, immune synapse formation, and lytic granule 

polarization - culminating in effective target cell lysis. 

The strength and independence of CD16 signaling likely evolved to ensure that NK 

cells can swiftly recognize and kill opsonized cells even if other activating receptor 

ligands are missing or suboptimal. Regulatory mechanisms in this pathway, such 

as ADAM17-mediated cleavage of CD16 after the cytotoxic event, act to dampen 

the response and prevent autoreactive tissue damage, which further underscores 
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the potency of CD16-mediated cytotoxicity. Another safeguard of this process 

includes the production of antibodies for opsonization which is under strict 

control of the adaptive immune system. 

 

1.1.5 Other activating and co-stimulatory receptors 

Apart from the NCRs and the highly potent CD16, NK cells feature other activating 

receptors on the cell surface, some of which are discussed below.  

NKG2D is a prominent activating receptor that recognizes stress-induced ligands 

such as MICA, MICB, and ULBP proteins on target cells (7, 30). Unlike ITAM-

associated receptors, NKG2D signals through the adaptor protein DAP10, which 

contains a YINM motif instead of ITAMs (30). This motif recruits the p85 subunit 

of PI3K and the adaptor protein Grb2, initiating the PI3K-Akt signaling pathway. 

Grb2 also recruits Vav1, linking NKG2D activation to the same cytoskeletal 

remodeling machinery—Rac1, Cdc42, WASp, and Arp2/3—that facilitates 

formation of the immune synapse and granule polarization. Thus, although the 

upstream signaling differs, the terminal cytotoxic machinery converges with that 

of ITAM-dependent pathways. 

Killer cell immunoglobulin-like receptors (KIRs) are a diverse family involved in 

both NK cell activation and self-tolerance. While inhibitory KIRs recognize self-

MHC class I molecules to counter self-reactivity, activating KIRs such as KIR2DS1, 

KIR2DS2, and KIR3DS1 bind to HLA class I molecules, with KIR2DS1 binding HLA-C2, 

KI2DS2 to HLA-C1 and KIR3DS1 to HLA-Bw4 (31, 32).  These activating KIRs 

associate with DAP12, an ITAM-bearing adaptor, and initiate signaling cascades 

that mirror those of NCRs and CD16. 

Co-stimulatory receptors add to the complexity of NK cell activation network. 

Unlike primary activating receptors, which initiate activation events 

independently, co-stimulatory receptors function synergistically to fine-tune the 

magnitude and quality of the immune response. Key co-stimulatory receptors 

include CD2, signaling lymphocytic activation molecule family (SLAMF) members 

(2B4 (CD244), CRACC, NTB-A, etc.) and the DNAX accessory molecule-1 (DNAM-

1) all of which interact with ligands associated with stressed, infected or aberrant 

cells (7, 33). For instance, 2B4 binds to CD48, while DNAM-1 interacts with CD112 

and CD155 – ligands often dysregulated in tumor and virally infected cells (7). 

Ligand engagement activates downstream pathways that involve adaptor 
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proteins such as SAP (SLAM-associated protein) and Fyn kinase, leading to an 

enhancement in actin remodelling, granule polarization and degranulation. Co-

stimulatory signaling also promotes the production of pro-inflammatory 

cytokines such as IFNy and TNF, which reinforces both the innate and the following 

adaptive responses. Importantly, the functional outcome of co-stimulatory 

receptor engagement is context-dependent and can be modulated by the 

presence of inhibitory signals or immune checkpoints. Due to this, these receptors 

now present as promising targets for immunotherapeutic strategies aimed at 

boosting NK cell activity in cancers via agonistic antibodies (34-36).  

 

1.1.6 Downstream events in activating signaling  

Activated Cdc42 forms a complex with WASp and ARP2/3, which nucleates new 

actin filaments, promoting the formation of branched actin networks that are 

critical for immune synapse architecture (37). Additionally, adaptor proteins such 

as Grb2 help localize and stabilize these interactions at the synapse. Cdc42 also 

activates p21-activated kinases (PAKs), which modulate actin dynamics by 

phosphorylating LIM kinase, leading to the inactivation of cofilin and stabilization 

of actin filaments (37, 38). Cdc42 coordinates the polarization of the microtubule 

organizing center and the migration of secretory lysosomes towards the lytic 

synapse, culminating in granule docking and fusion at the immune synapse. 

Delivery of a successful cytotoxic signal to the target cell is the cue for NK 

detachment, however the exact mechanism of this sensing of target cell death is 

unknown and needs to be researched further.   

 

1.1.7 Inhibitory receptors and immune checkpoints 

NK cells rely on a finely tuned balance between activating and inhibitory signals to 

discriminate between healthy and abnormal cells (7, 18, 39). Central to this 

regulation is the engagement of inhibitory receptors, which recognize self-

molecules such as MHC class I. Upon ligand binding, these receptors initiate 

intracellular signaling cascades that suppress NK cell activation and cytotoxicity. 

Given the diversity of inhibitory receptors expressed by NK cells, this thesis will 

only provide a small overview to briefly illustrate their roles in maintaining immune 

tolerance and preventing self-reactivity.  
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In addition to classical inhibitory receptors, NK cells also express immune 

checkpoint molecules such as programmed cell death protein 1 (PD-1), T cell 

immunoreceptor with Ig and ITIM domains (TIGIT), lymphocyte activation gene-3 

(LAG-3), and T cell immunoglobulin and mucin domain containing-3 (TIM-3), 

which are upregulated in chronic infection and tumor microenvironments. 

Understanding the interplay between inhibitory receptors and immune 

checkpoints is essential for elucidating NK cell regulation and for developing 

strategies to enhance their function in immunotherapy. 

 

1.1.8 Inhibitory receptors and downstream signaling 

Inhibitory KIRs represent the largest cluster of inhibitory receptors on NK cells, 

playing critical roles in self-tolerance and immune regulation (20).  This inhibitory 

family consists of seven members: KIR2DL1, KIR2DL2/3, KIR2DL4, KIR2DL5, KIR3DL1, 

KIR3DL2 and KIR3DL3 which are acquired by naïve NK cells during maturation (20, 

40). In mice, the expression dynamics of their functional analogs, Ly49 receptors, 

are refined through a process known as education or “licensing”, a complex area 

of study which can loosely be defined as the exposure of immature NK cells to a 

plethora of self-ligands in the bone marrow milieu with the aim of tuning their 

tolerance and cytotoxic responses (41). However, in humans, KIR expression 

dynamics are independent of presence of cognate self-ligand (42). These 

receptors have the capacity to recognize specific allotypes of HLA class I 

molecules, specifically HLA-A, HLA-B, HLA-C and HLA-G, and transmit inhibitory 

signals upon ligand engagement (20, 40). In contrast to their activating 

counterparts, their cytoplasmic tails contain immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs), which have the ability to recruit “master negative 

regulator” phosphatases SHP-1 and SHP-2 to dephosphorylate key signaling 

intermediates, thereby attenuating NK activation (43, 44). KIR expression is 

variegated and stochastic, resulting in a diverse NK cell repertoire capable of 

responding to a wide range of target cells while maintaining self-tolerance (42).  

The main targets of SHP-1 and SHP-2 are the key adaptor proteins described in 

activating signaling cascades and include Vav1, SLP-76, PLCγ and ZAP70/Syk 

complex (44). Their dephosphorylation dampens the NK activating signal, 

effectively inhibiting cytotoxic granule release and cytokine production, thereby 

maintaining immune homeostasis. 
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SHP-1 and -2 can also be activated by other inhibitory receptor-ligand 

interactions, with another example being CD94/NKG2A binding of its cognate 

non-classical MHC class I molecule, HLA-E (44, 45). HLA-E presents peptides from 

highly conserved leader sequences of other MHC class I molecules, serving as a 

signal of “self” integrity (45, 46). Upon healthy cell interaction, binding and 

heterodimerization of CD94/NKG2A on the NK cell leads to ITIM phosphorylation 

by the Src family kinases. Following ITIM activation, the signaling cascade 

continues in the same pattern as that of inhibitory KIRs with ITIM-dependent SHP-

1 and -2 activation. 

 

1.1.9 Immune checkpoint receptors 

Immune checkpoint receptors are a specialized subset within the inhibitory 

umbrella, that play pivotal roles in regulation of NK cell activity, particularly under 

conditions of sustained immune stimulation. These receptors, including, but not 

limited to, PD-1, TIGIT, LAG-3 and TIM-3, are normally upregulated in response to 

chronic antigen exposure, persistent inflammation and within immunosuppressive 

environments such as tumor microenvironments (7, 17, 47). Their expression is 

often induced by cytokines such as IL-10, TGF-β, and type I interferons, which are 

abundant in the tumor microenvironment (TME) and sites of chronic infection (47). 

Notably, these checkpoint receptors are not restricted to NK cells, but are also 

expressed by other immune cell populations, including T cells and myeloid cells, 

where they similarly modulate effector function (48).   

Upon engagement with their cognate ligands they initiate inhibitory signaling 

cascades as described above, leading to suppression of cytotoxicity, reduced 

pro-inflammatory cytokine production (e.g., IFNγ, TNF) and impaired proliferation 

(17, 47). This regulatory mechanism is essential for maintaining immune 

homeostasis and preventing tissue damage during prolonged immune responses.  

However, this same mechanism is exploited by tumors and chronic pathogens on 

the immune evasion axis. Both hematological and solid tumors have been shown 

to upregulate checkpoint ligands such as PD-L1 and CD155 or induce their 

expression on tumor-associated macrophages or fibroblasts, effectively 

disarming NK cells and creating an immunosuppressive niche that supports tumor 

progression (49-57). Conversely, immune checkpoint receptors have emerged as 

potent targets in cancer immunotherapy, with checkpoint blockade strategies 
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such as anti PD-1/PD-L1 antibodies or chimeric receptors showing promise in 

restoring NK cell function and enhancing anti-tumor immunity (58-62).  

 

1.2 Functional Responses of NK cells  

The earliest cells expressing a CD94-like receptor evolved to detect and eliminate 

cells lacking polymorphic histocompatibility factors, which were likely precursors 

of self-MHC class I molecules, thereby enabling discrimination between self and 

non-self as observed by Khalturin, et al., 2003 (63). This mechanism allowed 

organisms as early in evolution as urochordates to defend against intracellular 

pathogens and transformed cells without the need for antigen-specific receptors, 

characteristic of adaptive immunity (63). While NK-like predecessors rise 

relatively early in evolution, actual NK cells first appear in jawed vertebrates (fish, 

reptiles, amphibians, mammals), which has been studied in depth by Parham, et al 

in countless studies (4, 64-67).  

 

Figure 3: The two faces of NK cells. NK cells recognize and eliminate aberrant target cells by releasing 
cytotoxic granules, this is coupled with the release of pro-inflammatory cytokines that contribute to 
inflammation and recruitment of other immune cells. In contrast, their immunoregulatory roles involve the 
secretion of immunoregulatory cytokines that shape T cell responses, maturation of dendritic cells and help 
restore immune homeostasis. 
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In addition to cytotoxicity, ancestral NK cells likely played a role in modulating 

inflammation and tissue remodeling, functions that are conserved in modern NK 

cells (67, 68). The natural killer gene complex which encodes many NK receptors, 

shows significant variation across species, which is reflective of adaptation-

directed evolution in response to different pathogen pressure across species and 

the need for immune diversity (68, 69). 

Thus, while initially NK cells likely originated as cells to control fusion, they 

proceeded to evolve as innate killers capable of rapid, non-specific responses to 

cellular stress and over time evolved further to integrate more complex regulatory 

roles, which are now central to their functions. These include interactions with 

adaptive immune cells, cytokine production and memory-like responses in 

context of re-exposure to certain pathogens.  

 

1.2.1 Cytotoxic response and machinery 

Degranulation is a hallmark of NK cell-mediated cytotoxicity, denoting the terminal 

step in their recognition and elimination of target cells. Upon previously discussed 

activating signaling and the formation of immune synapse, NK cells initiate the 

release of cytotoxic or lytic granules toward the target cells. This interplay involves 

many effector and adaptor proteins to facilitate successful delivery of cytotoxic 

load to the target cell (7, 26).  

Cytotoxic granules are typically pre-formed and stored within the cytoplasm 

containing key effector enzymes such as perforin and granzymes, with the inner 

membrane coated with CD107a (LAMP-1), however their trafficking and docking is 

orchestrated by a complex network of cytoskeletal and vesicular transport 

proteins (37, 70, 71).  

The first step in this process is the reorienting of the MTOC towards the immune 

synapse, facilitated by previously described Cdc42 and Cdc42-interacting 

protein-4 (CIP4), and Coronin-1A (CORO1A), latter two of which link the actin and 

microtubule networks (70, 72). CORO1A regulates actin remodeling through F-

actin disassembly at the immune synapse (73). It also interacts with Arp2/3 

complex and PLCγ1 to facilitate cytoskeletal rearrangement and calcium signaling 

(73). Meanwhile, activated CIP4 has been shown to localize to the MTOC and the 

actin-rich immunological synapse, where it interacts with WASp to promote actin 
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polarization towards the immune synapse, a prerequisite for directed trafficking 

of lytic granules (70, 72, 74).  

Following the reorientation of the MTOC, cytotoxic granules are trafficked along 

the microtubules in a coordinated manner, facilitated by dynein and kinesin (72). 

Once in proximity to the synapse, the granules undergo a docking process, 

regulated by a small GTPase Rab27a (75). Rab27a, which in turn is regulated by 

MAP kinase activating death domain (MADD), recruits effector proteins such as 

Slp1 and Munc13-4 (75-78). These proteins work to tether the granules to the 

plasma membrane and prime them for fusion.  

The final step in this process involves the SNARE complex composed of proteins 

such as syntaxin-11, VAMP7 and SNAP23 (70, 79). These mediate membrane fusion 

and exocytosis of granule contents, leading to eventual apoptosis of the target 

cell. 

This targeted release ensures selective elimination of the target cell while 

preserving surrounding tissue integrity.  

 

1.2.2 Cytotoxic granules 

Cytotoxic granules are essentially specialized secretory lysosomes that serve as 

primary effector organelles for target cell elimination. These granules are pre-

formed during NK cell maturation and stored in the cytoplasm, poised for rapid 

deployment at immune synapse (37).  

The biogenesis of these granules involves the endosomal-lysosomal pathway, 

where early endosomes mature into multivesicular bodies followed by transition 

into dense-core granules enriched with cytotoxic proteins (37, 70). Key 

components of these granules include perforin and granzymes, along with other 

peptides (70).  

 

1.2.2.1 Perforin 

Perforin is a pore-forming protein that is responsible for delivery of granule 

content inside the target cell (80). Upon granule extravasation, perforin is released 

from granules and transitions from a soluble monomer to a membrane-inserted 

oligomer. This process is facilitated by the C2 domain of perforin, which binds to 
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phospholipids in the target cell membrane in presence of extracellular calcium 

(70, 81). Once anchored, perforin monomers undergo a conformational change and 

begin oligomerization into a ring-like structure on the membrane surface (37, 70). 

This oligomerization is driven by interactions within the MACPF (membrane attack 

complex/perforin) domain, a conserved structural motif shared with complement 

proteins such as C9 (37, 82). As the monomers assemble, they insert β-hairpin 

structures in the lipid bilayer, forming a transmembrane β-barrel pore (83). These 

pores are large enough to allow passive diffusion of granzymes into the cytosol of 

the target cell. The formation of these pores is tightly regulated to ensure 

directional release and to prevent damage to the NK cell itself (37, 84).  

 

1.2.2.2 Granzymes and granulysin 

Granzymes, a family of serine proteases, can induce apoptosis in both caspase-

dependent and -independent ways (37, 70, 85). In humans, five granzymes have 

been identified: granzyme A, B, H, K and M, each with distinct substrate 

specificities and biological functions (70). Granzyme B is the most extensively 

studied and is known for its ability to cleave and activate caspases, particularly 

caspase-3, leading to rapid apoptotic cell death (37, 86). Granzyme A, in contrast, 

induces caspase-independent form of cell death characterized by loss of 

mitochondrial function, DNA damage and pro-inflammatory signaling (85). While 

granzyme A and B dominate the literature, granzymes H and M are particularly 

enriched in NK cells and are thought to contribute to antiviral immunity and early 

immune responses, respectively (70, 87). Granzyme H has been shown to degrade 

viral proteins and may act in synergy with granzyme B, whereas granzyme M can 

induce cell death through mechanisms yet to be elucidated (87). Granzyme K is 

the least well characterized, however it is expressed in NK cells and may have 

overlapping functions with granzyme A (70, 85, 88).  

In addition to these core enzymes, granules also contain granulysin, a molecule 

with potent antimicrobial and pro-inflammatory properties, with the ability to 

disrupt microbial membranes and participate in pathogen clearance (37, 70). The 

structural integrity and packaging of these granule contents are maintained by 

serglycin, a proteoglycan that binds and stabilizes granzymes and other cationic 

proteins within the granule matrix (37).  
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1.2.2.3 CD107a 

The membrane of the cytotoxic granules is coated by the lysosomal-associated 

membrane protein 1 (LAMP-1/CD107a). CD107a is a multifunctional protein integral 

to both cytotoxic function and cellular protection. Primarily localized on the 

membranes of cytotoxic granules, CD107a is rapidly shuttled to the cell surface 

following NK cell activation and degranulation, making its transient cell surface 

expression a widely used functional marker for measuring NK cell cytotoxicity. 

Functionally CD107a is crucial for efficient trafficking of perforin and granzymes to 

lytic granules and for granule exocytosis (37, 89). Silencing or knocking down 

CD107a impairs NK cell-mediated killing by disrupting perforin movement and 

granule dynamics, thereby reducing the delivery of granzymes to the target cells 

and decreasing cytotoxic activity by up to 70% (89). 

In addition to its role in granule exocytosis and target cell killing, CD107a provides 

a protective mechanism for NK cells themselves. It’s transient appearance on the 

plasma membrane after degranulation helps shield NK cells from self-inflicted 

lysis or the so-called degranulation-associated suicide, by preventing perforin-

mediated damage to the NK cell membrane, exact mechanism of which has not 

yet been elucidated (84) . Loss of CD107a heightens NK cell susceptibility to 

apoptosis after cell-mediated killing events, impairs granule motility and 

substantially diminishes target killing. Thus, CD107a is not simply a surrogate 

degranulation marker, but an active participant in lytic granule trafficking, 

functional cytotoxicity and the preservation of NK cell integrity during immune 

responses.  

 

1.2.3 Death-receptor mediated killing 

An alternative NK cell cytotoxic mechanism involves FAS-FASL signaling and 

TRAIL-TRAILR signaling (90, 91).  

Membrane-bound TRAIL provides a degranulation-independent, death-receptor–

mediated pathway to kill susceptible targets, complementing granule-dependent 

cytotoxicity. On activated NK cells, TRAIL is expressed as a transmembrane ligand 

that is concentrated at the immunological synapse upon engagement of a TRAIL-

sensitive target (90, 92). Cytokines such as type I interferons and IL-15, as well as 

pathogen- or tumor-derived signals, upregulate surface TRAIL and thereby 

potentiate NK cell TRAIL-dependent killing of targets (93). 
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In cytotoxic conjugates, membrane-bound TRAIL on NK cells engages DR4 

(TRAIL-R1) and DR5 (TRAIL-R2) on the opposing cell, whereas decoy receptors 

(DcR1, DcR2) on the target can limit productive signaling and thus determine TRAIL 

sensitivity. Blocking antibodies that selectively mask membrane TRAIL reduce 

supplementary NK cell cytotoxicity against TRAIL-sensitive cells, demonstrating 

that synaptic, membrane-bound TRAIL is responsible for this killing modality 

rather than soluble TRAIL (92). 

Upon ligation by trimeric TRAIL, DR4/DR5 cluster within the target cell membrane 

and expose their cytoplasmic death domains. These death domains recruit the 

adaptor FADD, which in turn binds procaspase-8 (and/or procaspase-10) to 

assemble the death-inducing signaling complex (DISC) in the target cell (91, 94). 

Procaspase-8 is then converted to active caspase-8 due to dimerization and 

autocatalytic cleavage mechanisms, which activates further downstream 

caspases and initiates the apoptotic cascade (94, 95).  

Many solid malignancies, such as breast, colorectal and ovarian cancers have 

marked upregulation in TRAILDR4 and/or TRAILDR5, which sensitizes them to killing 

through this pathway. Since targeting of solid tumors has been a long-standing 

issue in the field, TRAIL-directed killing avenue has also been explored in different 

ways, including TRAIL engineering to increase affinity towards DR4/DR5 and 

reduce it to the decoy receptors (96-98). Furthermore, research has also shown 

that clinical proteasome inhibitors currently employed in cancer treatment, such 

as bortezomib, increase DR4 and DR5 expression in target cells, sensitizing targets 

to NK cell bound TRAIL-mediated killing (99).  

It is important to note that while TRAIL-mediated killing is slower than 

degranulation, NK cells show plasticity also in their approach to target killing. 

Prager, et al., showed that serial killer NK cells can actually switch from 

degranulation to TRAIL-mediated killing during repeated tumor challenge when 

repeated contacts reduce perforin and granzyme levels in the effector cell (100).  

 

1.2.4 Cytokine and chemokine production  

Cytokine and chemokine production is a central feature of NK cell 

immunoregulatory function, to complement their cytotoxic nature. Upon 

activation through receptors and/or cytokine stimulation, NK cells initiate a tightly 

regulated transcriptional and translational program that culminates in the 
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secretion of a diverse array of immunomodulatory factors (28, 101). These include 

pro-inflammatory cytokines such as IFNγ and TNF as well as chemokines such as 

CCL3, CCL4, CCL5 and XCL1, which coordinate the recruitment of other immune 

cells at the site of interest (28, 102). 

 

1.2.4.1 IFNγ 

IFNg is a hallmark cytokine produced by NK cells, enabling their immunoregulatory 

function (103, 104). Due to the importance of this cytokine signaling, IFNg pre-

mRNA transcripts are available at steady state in the NK cell (105). Upon activation, 

these pre-existing transcripts are rapidly processed and translated into protein, 

enabling swift IFNγ secretion. However, its transcription in response to external 

stimuli is also quite rapid (105, 106).  

Production of this cytokine is orchestrated through a complex interplay of 

receptor-mediated signaling, transcriptional activation and post-translational 

regulation (103, 107, 108). IFNg production can be initiated upon NK cell stimulation 

by cytokines such as IL-2, IL-12, IL-15 and IL-18, or engagement of activating 

receptors via intracellular signaling cascades involving adaptor proteins such as 

PLCγ, mTOR, TYK2, JAK2, and MyD88 (109). In addition to having the capacity to 

initiate IFNg production when activated singly, these pathways can also combine 

and synergize to have a more potent effect on NK cells, therefore triggering a 

stronger pro-inflammatory response through more IFNg production (109, 110).  

In the activating signaling pathway, the binding of a cognate ligand on an activating 

receptor leads to the activation of Src family of kinases. Phosphorylation of 

Syk/Zap70 by the Src family leads to the activation of Ras. Ras in turn 

phosphorylates and activated PLCγ, which is central in mediating further 

downstream signals that eventually activate NF-κB and lead to its translocation to 

the nucleus where it initiates transcription (103, 109).  

The secreted IFNg has many functions, including, but not limited to, activating 

macrophages, enhancing antigen presentation by upregulation of MHC class I and 

class II molecules in APCs and promoting Th1 polarization to CD4+ T cells (111, 112). 

While not being cytotoxic in nature, it is critical in shaping long-term immune 

responses and maintaining immune surveillance.  
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1.2.4.2 TNF, GM-CSF and chemokines 

Along with IFNg, Tumor necrosis factor (TNF), also known as TNF-alpha, is one of 

the most rapidly produced cytokines by NK cells upon activation (113). TNF 

production is also regulated by the NF-κB/MAPK signaling pathways, in pathways 

that are very similar to that of IFNg (114). In comparison to IFNg which is more 

immunomodulatory, TNF can have a dual role upon secretion: it can directly give 

an apoptotic signal by binding to its cognate receptor and also activate 

endothelial cells and recruit other immune cell subsets to the site of infection or 

tissue damage with the aim of amplifying local inflammation (114, 115).   

GM-CSF is another cytokine readily produced by NK cells. While IFNg primarily 

modulates immune responses and TNF can directly induce apoptosis or amplify 

inflammation, GM-CSF plays a more supportive and regulatory role in shaping the 

innate immune environment (115, 116).  

Chemokines are a specialized subset of cytokines that primarily affect direct cell 

migration, also known as chemotaxis. Their function entails the guidance of 

difference immune cells at the site of infection, injury or inflammation. NK cells 

produce a wide array of chemokines, however they are the biggest producers of 

CCL3 (MIP1a), CCL4 (MIP1b), CCL5 (RANTES), XCL1 (lymphotactin) and CXCL10 (IP-

10) (117).   

 

1.2.5 Immunoregulation 

One of the most important roles of NK cells in mammals is immunoregulation. As 

previously discussed, their extensive receptor repertoire, coupled with their ability 

for direct cytotoxicity and cytokine production places them at the crossroads of 

innate and adaptive immunity, dictating the definition of tolerance.  

NK cells influence the activation, recruitment and even differentiation of other 

immune cell subsets (7, 118). These regulatory abilities allow them to fine-tune 

immune responses, promote tissue repair and maintain immune homeostasis.  

The best example of this immunoregulatory role is their involvement in early 

pregnancy, where a specialized subset of NK cells, termed decidual NK cells, 

accumulates in the uterine lining (119, 120). Unlike their peripheral counterparts, 

these cells exhibit low cytotoxicity in healthy pregnancies, however they grow 

highly cytotoxic in response to infections that could disrupt the pregnancy, such 
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as listeria monocytogenes (120, 121). In addition, they also have a unique secretion 

profile of cytokines such as IFNg vascular endothelial growth factor (VEGF), IL-8 

and GM-CSF to support trophoblast invasion, vascular remodeling and placental 

development (121).  

 

1.2.6 Immunoregulation in cancer 

In contrast to their beneficial immunoregulatory roles in pregnancy, these 

functions of NK cells can also contribute to cancer development and progression 

through supporting an immunosuppressive TME.  

Within tumors, NK cells are often numerically reduced, poorly infiltrative and 

functionally impaired, correlating with worse prognosis in several solid cancers 

(122). Since NK cells exhibit plasticity and can retune to available signals, this 

chronic exposure to tumor-derived ligands, hypoxia and suppressive cytokines 

manifests as exhaustion, characterized by reduced cytotoxicity, reduced IFNγ 

production, downregulation of activating receptors such as CD16 and NKG2D and 

upregulation of inhibitory receptors such as TIGIT, PD-1 and TIM-3 (122-124). 

Moreover, in this immunosuppressive niche, the produced IFNγ can contribute to 

immune escape in some settings by increasing PD-L1 and MHC class I on cancer 

cells, increasing the inhibitory receptor engagement and immune escape (125). 

IFNγ and other inflammatory cues also support the expansion and activation of 

myeloid-derived suppressor cells (MDSC), which release IL-10, TGF-β and 

arginine-depleting enzymes to inhibit NK and CD8⁺ T-cell responses and reinforce 

a type-2, tumor-permissive milieu (126, 127). 

In this immunosuppressive cycle, MDSC and tumor-associated macrophages 

interact closely with NK cells in the TME, where MDSC-derived cytokines are major 

“master regulators” that blunt NK cytotoxicity and induce immunotolerance (127, 

128). 

Conclusively, NK cells can also behave as active players in the induction and 

maintenance of a pro-immune escape, immunosuppressive environment that 

favors cancer development, which highlights their context-dependent nature. 
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1.3 NK cell deficiencies and functional abnormalities 

NK cell deficiencies (NKDs) encompass a spectrum of rare primary 

immunodeficiencies characterized by either a quantitative reduction in total NK 

cells or qualitative impairments in their cytotoxic function (19, 129). These 

deficiencies are broadly categorized into classical or functional NKDs, both 

clinically manifesting as heightened susceptibility to herpesviruses, 

papillomavirus-induced malignancies and certain bacterial infections (130). 

Recent advancements in genomics and proteomics have deepened our 

understanding of NK cell biology, revealing novel therapeutic targets and 

diagnostic markers for NK cell-related pathologies (129, 131-134).  

 

1.3.1 Classical NKDs 

Classical NKDs are a subset of primary immunodeficiencies (PIDs) characterized 

by profound reduction or complete absence of NK cells, often due to mutations 

that disrupt NK cell development (130). Among the most well-characterized 

genetic drivers is GATA2, a transcription factor essential for hematopoietic stem 

cell maintenance and NK cell lineage commitment (19, 130, 135). Mutations in 

GATA2 manifest as NK cell deficiency in conjunction with monocytopenia, 

susceptibility to mycobacterial infections and myelodysplasia (135). These 

mutations often result in haploinsufficiency, impairing the development of the 

CD56bright NK cell subset which have more pronounced roles in cytokine 

production and immune regulation.  

Other genes implicated in classical NKDs include MCM4, which is involved in DNA 

replication licensing, where mutations lead to impaired NK cell proliferation and 

increased susceptibility to viral infections (136, 137); and FCGR3A mutations, 

affecting the CD16 receptor that can disrupt ADCC (138). These genetic insights 

not only elucidate the molecular basis of NK cell ontogeny but also inform 

diagnostic strategies and potential gene-targeted therapies for affected 

individuals.  

 

1.3.2 Functional NKDs 

Functional NK cell deficiencies are characterized by the presence of 

phenotypically normal NK cells featuring impaired cytotoxic activity or cytokine 
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production. Unlike classical NKDs, which typically involve developmental arrest, 

functional NKDs often stem from defects in intracellular signaling pathways, 

cytotoxic granule release machinery or faulty or inadequate receptor/ligand 

interactions (19, 130). Notable molecular disruptions include abnormalities in 

perforin (PRF) (139, 140), Munc13-4 (UNC13D) (133) and SAP (SH2D1A) (141, 142), 

which make up the essential components of NK cell immune synapse formation 

and granule-mediated cytotoxicity. 

Mutations in PRF gene lead to either absent or significantly reduced perforin 

expression, rendering NK cells incapable of executing cytotoxic responses (143). 

This inability to kill increases NK cell conjugation time with the target cell, which in 

turn leads to increased NK stimulation and a spike in the production of interferons, 

leading to uncontrolled immune activation (81, 143). The result can be life-

threatening hyperinflammation with symptoms of persistent fever, 

hepatosplenomegaly and cytopenias, hallmarks of a disease termed familial 

hemophagocytic lymphohistiocytosis (fHLH) type 2.  

Under normal development, the function of MUNC13-4 is to interact with Rab27a, 

a small GTPase that recruits lytic granules to the plasma membrane. This complex 

is essential for the final steps of granule fusion. Disruption of this complex by 

mutations in either MUNC13-4 or Rab27a prevents granule priming, leading to a 

functional NKD phenotype even in presence of morphologically intact NK cells 

(133, 144).  

Thorough investigations into these pathways have not only clarified the molecular 

basis for NKDs but also paved the way for diagnostic assay development and 

therapeutic strategies, which includes hematopoietic stem cell transplantation 

(HSCT) as a rescue mechanism for the observed clinical immunodeficiency. 

 

1.4  NK cells as immunotherapy 

1.4.1 An overview of NK cell-based immunotherapies 

The clinical application of NK cells in cancer therapy traces back to 1980s, when 

early trials explored the use of lymphokine-activated killer (LAK) cells, which was 

largely a heterogenous population of T and NK cells expanded ex vivo with high 

dose IL-2 (145). While LAK cells showed cytotoxicity in vitro, their clinical efficacy 

was limited, largely due to inhibitory receptor engagement with self-MHC 

molecules and poor persistence in vivo (145, 146). These initial setbacks 
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highlighted the need for strategies that could overcome NK cell inhibition and 

enhance their anti-tumor potential.  

A pivotal moment came in 2002, when Ruggeri, et al. demonstrated that 

alloreactive NK cells from HLA mismatched donors could reduce the risk of relapse 

and graft rejection in acute myeloid leukemia (AML) patients undergoing 

hematopoietic stem cell transplantation without inducing graft-versus-host 

disease (GvHD) (147). This finding led to a wave of clinical interest in adoptive NK 

cell therapies, particularly those using haploidentical or allogeneic donors to 

overcome self-inhibition mediated by KIRs.  

Subsequent studies, namely those by Miller et al., showed that infusions of 

haploidentical NK cells preactivated by IL-2 and administered following 

lymphodepletion could induce complete remission in AML patients featuring poor 

prognosis (5, 148-150). These results established the safety and feasibility of NK 

cell transfer and laid the groundwork for broader clinical trials targeting both 

hematological and solid malignancies.  

Over the last two decades, NK cell-based therapeutic approaches have diversified 

into several platforms including: 

• Unmodified autologous NK cell infusions 
• Unmodified allogeneic NK cell infusions 
• NK cell lines 
• NK cell engagers  
• Cytokine-based platforms 
• Checkpoint blockade combinations 
• Genetically modified NK cells 

Autologous NK cell infusions demonstrated that large numbers of activated 
patient-derived NK cells can be generated and safely reinfused, but also revealed 
modest efficacy, particularly in solid tumors, due to limited in vivo expansion, 
suppressive tumor microenvironments and regulatory T cell outgrowth under IL-2 
support (151, 152). However in a recent trial of consolidation therapy with ex vivo 
activated and expanded autologous NK cells after HSCT in multiple myeloma, Nahi 
et al., report feasibility, safety, tolerance and in vivo persistence, with treated 
patients featuring extended minimal residual disease (153).  

Allogeneic NK cell infusions from healthy donors subsequently showed more 
robust antitumor activity and scalability compared to autologous approaches, 
with encouraging responses in high-risk hematologic malignancies and some solid 
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tumors. While these studies reported favorable safety profiles and highlighted the 
importance of donor selection, conditioning and cytokine support to optimize 
engraftment and persistence, they also emphasized the heavy implications of 
graft versus host disease (GVHD) on treatment outcomes (5, 147, 148, 150, 154). In 
parallel, NK cell lines such as NK-92 have emerged as off-the-shelf effector 
platforms that combine strong cytotoxicity, genetic tractability and reliable 
manufacturing, albeit with limited in vivo persistence due to mandatory irradiation 
(155, 156). Monoclonal antibody (mAb) therapies targeting tumor-specific and 
tumor-associated antigens (TSAs, TAAs respectively) harness NK cell-mediated 
ADCC through CD16 engagement, leading to targeted killing of opsonized tumor 
cells (157). This mechanism not only augments the efficacy of therapeutic 
antibodies but also provides a rational basis for combining them with NK cell 
infusions and engagers to amplify antitumor activity. 

More recently, modular immune cell engagers, such as bispecific (BiKEs), 
trispecific (TriKEs) and the experimental tetraspecific killer cell engager 
constructs have been developed. These moieties, that often incorporate IL-15 
components to sustain proliferation and function in immunosuppressive settings, 
physically link specific immune cells, including NKs, to tumor targets and other 
immune cells and co-stimulate them via receptors such as CD16, NKp46 or NKG2D 
(158-160). Complementary cytokine-based platforms, including engineered IL-2 
and IL-15 agonists and next-generation delivery systems, aim to selectively expand 
NK and CD8⁺ T cells while minimizing toxicity, and are increasingly integrated with 
NK cell products and other immunotherapies (161, 162). Finally, checkpoint 
blockade combinations that target inhibitory receptors expressed on NK cells (for 
example NKG2A and TIGIT) are being explored alongside NK infusions, engagers 
and cytokine support, with early data suggesting that relieving these inhibitory 
pathways can synergize with NK-directed approaches to overcome intratumoral 
immunosuppression and improve the durability of clinical responses (163-165). 

 

1.4.2 Challenges in NK cell-based immunotherapies 

Although NK cell–based immunotherapies have shown considerable promise in 

cancer treatment, substantial biological and technical barriers still need to be 

overcome before their full therapeutic potential can be realized. 

Challenges in these immunotherapies arise at the levels of product generation, in 

vivo behavior and interaction with the tumor microenvironment (7, 166). Efficient, 

reproducible expansion of highly cytotoxic NK cells remains technically 

demanding, particularly in heavily pretreated patients, and current manufacturing 
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pipelines are labor-intensive and costly, limiting scalability of individualized 

products (167, 168). Even when sufficient cell numbers are obtained, many NK 

products show poor in vivo persistence and limited tissue homing, especially in 

solid tumors, necessitating repeated infusions and limiting durable antitumor 

effects (157, 167). The immunosuppressive TME further impairs NK function 

through a combination of soluble factors,	metabolic stress and upregulation of 

inhibitory ligands, all of which promote exhaustion, downregulate activating 

receptors and reduce cytotoxic granule release (169). Additional barriers include 

antigen heterogeneity that limits the effectiveness of chimeric antigen receptor 

(CAR)-expressing NK cells or engagers. On the engineering side, NK cells are 

intrinsically resistant to many viral and non-viral gene-delivery approaches due to 

robust nucleic acid sensing, making the generation of uniformly modified NK 

products challenging and further complicating editing strategies (170, 171). Finally, 

combining NK cell therapies with cytokines, checkpoint blockade or other 

immunomodulators requires careful balancing of potency and toxicity, as 

excessive systemic stimulation can drive off-target inflammation or expand 

regulatory populations that can even suppress NK effector function (172-174).  

Collectively, these challenges help explain why NK cell–based therapies have so 

far achieved their most consistent success in hematologic malignancies and 

underscore the need for next-generation strategies that improve manufacturing 

robustness, enhance trafficking and persistence, and actively reprogram the TME 

in favor of sustained NK cell activity. 

 

1.5 Genetic engineering of NK cells  

1.5.1 An overview of genetic engineering in immunology 

The success of immune cell therapies can partially be attributed to the 

transformative power of genetic engineering, which encompasses a series of 
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techniques that allow customized modification of immune cell properties for 

research and clinical applications.  

 

Figure 4: Genetic engineering strategies to enhance NK-cell anti-tumor activity. (1) Tumor homing enhanced 
by high-affinity or re-engineered chemokine receptors. (2) Checkpoint blockade or monoclonal antibodies 
targeting inhibitory ligand–expressing tumor cells to boost ADCC. (3) CRISPR-Cas9 knockout of 
tumor-associated antigens on NK cells to limit fratricide and improve targeting. (4) Expression of CARs and 
affinity-optimized cytotoxicity receptors to increase tumor recognition and killing. (5) Gene circuits 
encoding pro-inflammatory cytokines to promote immune infiltration of the tumor microenvironment. (6) 
Constructs encoding bispecific or trispecific NK cell engagers (BiKEs, TriKEs) to improve tumor targeting 
and recruit additional immune cells. 

The ability to introduce customized gene circuits into cell of choice accelerates 

basic immunology research by allowing improvements in cancer targeting by the 

use of CARs, homing and infiltration by the use of CXCR receptors, enhanced 

cytokine synthesis by the introduction of cytokine genes under strong promoters, 

reducing fratricide by deletion of certain receptors such as CD38 and resistance 

to the TME by the expression of different enzymes to counter oxidative stress and 

low pH (175-180).  

Apart from genetic engineering driving the therapies in the clinic, their applications 

extend beyond introduction of external expression cassettes. Immune cell 

research has been unconditionally accelerated by global unhindered views inside 
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cells by the means of functional genomic screens, unbiased mapping of immune 

responses and identification of drug targets (181-186).  

Although at the start of genetic engineering, delivery platforms were limited to 

naked DNA supply to cells, now there are a plethora of methods available, ranging 

from viral systems to an array of non-viral ones, most of which are discussed 

below.  

 

1.5.2 Viral systems for genetic engineering 

Viral vector systems are foundational to modern genetic engineering, offering 

powerful strategies for delivering therapeutic genes into cells for both research 

and clinical immunotherapy. Engineered viruses have enabled efficient and 

versatile transfer of genes into human cells, providing both stable and transient 

expression depending on clinical need. These recombinant vectors are stripped 

of pathogenic genetic sequences and designed to carry specific transgenes that 

modify cellular functions (187, 188). Their profound impact in medicine is evident 

in the number of gene and cell therapies that have transitioned from research to 

approved clinical products, spanning diseases such as cancer, hemophilia, 

muscular dystrophy and genetic immunodeficiencies (189). Over twenty clinical 

therapies now utilize viral vectors, establishing them as indispensable tools in 

modern gene therapy and immunotherapy (190, 191).   

Among the most prominent viral platforms are retroviral, lentiviral and adeno-

associated virus (AAV) systems, each with distinctive biological characteristics 

and therapeutic profiles (190). Retroviral vectors are derived from RNA viruses that 

integrate their genetic material into the genomes of dividing cells, enabling long-

term gene expression (192). Lentiviral vectors, a subset of retroviruses expand the 

capabilities by infecting both dividing and non-dividing cells, and exhibit improved 

integration site predictability, markedly reducing the risk of oncogenesis (189). 

This has made lentiviruses the preferred choice for clinical cellular 

immunotherapies, with several regulatory approvals highlighting their safety and 

efficacy. Nevertheless, their propensity for integrating into highly transcriptionally 

active genomic regions have raised concerns regarding insertional mutagenesis, 

which is the inadvertent activation or disruption of cellular gene circuits, a 

challenge addressed through stringent vector design and careful patient 

monitoring (191, 193). 
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AAVs in contrast offer predominantly episomal gene delivery, where genetic 

information is maintained outside the host chromosomes (190, 191). This reduces 

risks for insertional mutagenesis but may limit long-term stability of gene 

expression in highly proliferative tissues. Additionally, their low immunogenicity 

profile has underpinned their success in treating inherited disorders and 

expanding applications in immunotherapy. Recently they have been also adapted 

for genomic integration when combined with Cas9 ribonucleoproteins (RNPs) 

(194, 195).  

In immunotherapy, the choice of viral vector is determined by the therapeutic 

goal, whether persistent gene expression, transient activation or targeted 

modulation of immune cells is required (196). Research accounts for cargo size, 

integration propensity, tropism, immunogenicity and safety in selecting the 

optimal system. Clinical investigations have led to refinements such as self-

inactivating vectors or the incorporation of triggerable suicide genes within the 

packed constructs, delivering cargo while holding premise for system-wide 

destruction of the edited cells in case of malignant transformation (197, 198).  

To conclude, viral vectors hold the current state of the art, however other delivery 

methods are also slowly revolutionizing the genetic engineering field towards 

precision, scalability and safety.  

 

1.5.3 Non-viral systems of genetic engineering 

Non-viral systems for genetic engineering have emerged as robust and versatile 

alternatives to viral vectors, offering distinctive advantages in safety, flexibility and 

cargo capacity (166, 196, 199). Unlike viruses, non-viral delivery platforms rely on 

physical, chemical and nanotechnological mechanisms to introduce genetic 

material into cells, minimizing the risks of immunogenicity and insertional 

mutagenesis commonly associated with viral methods. Over the past two 

decades, advances in non-viral gene delivery have allowed these systems to make 

significant inroads into areas such as gene therapy, vaccine development, genome 

editing and regenerative medicine, with a growing presence in clinical trials 

worldwide (196, 199).  

Physical approaches, such as electroporation, sonoporation, microinjection, 

soluporation and gene gun technology leverage mechanical or electrical forces to 

transiently permeabilize cell membranes, allowing plasmid DNA, RNA or even 
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proteins and ribonucleoproteins to enter the cytoplasm and/or the nucleus (199, 

200). Electroporation, widely used in both laboratory and clinical settings involves 

the application of electrical pulses that induce pore formation in cell membranes, 

resulting in efficient gene delivery especially in hard-to-transfect cell types. 

Microinjections offer precise delivery to individual cells or tissues but are best 

suited for localized applications of experimental models. Sonoporation uses 

ultrasound waves, often with microbubbles to enhance cell permeability and 

facilitate the uptake of genetic material while magnetoporation harnesses 

magnetic fields and magnetic nanoparticles to improve nucleic acid transport into 

the target cells (200).  

Chemical non-viral vectors encompass liposomes, lipid nanoparticles (LNPs), 

virus-like particles (VLPs) and polymer-based carriers (201, 202). Liposomes are 

spherical vesicles composed of phospholipid bilayers that encapsulate and 

protect genetic cargo, enhancing cell uptake via endocytosis. LNPs that have been 

pivotal in mRNA vaccine development during the pandemic have revolutionized 

nucleic acid delivery with high efficiency and low toxicity profiles, overcoming key 

obstacles faced by earlier chemical methods (203). Polymeric vectors, formed 

primarily from cationic polymers such as polyethyleneimine (PEI) or natural 

polymers like chitosan and hyaluronic acid, condense and shield DNA or RNA, 

facilitating cellular internalization (201).  

Nanoparticle-mediated delivery is a rapidly expanding area, utilizing diverse 

materials such as polymers, lipids, peptides and inorganic compounds to form 

gene-carrying complexes at the nanoscale (202). Nanocarriers exploit unique 

physicochemical properties to optimize gene encapsulation, protection from 

degradation and intracellular trafficking. Nanoparticles also overcome the size 

limitations seen in viral vectors, enabling delivery of larger or more complex 

genetic constructs and facilitating multiplexed genome editing of gene 

replacement applications (201, 204).  

As research continues to unlock further enhancements, non-viral vectors are 

poised to play an increasingly prominent role in the future of genetic engineering 

and personalized medicine.  
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1.5.4 Transposon/transposase-based systems 

Transposon-based systems have emerged as powerful non-viral platforms for 

stable genome engineering, offering high cargo flexibility and scalable 

manufacturing without the need for viral particles (205). Unlike episomal plasmids, 

DNA transposons mediate genomic integration through a cut-and-paste reaction 

catalyzed by a dedicated transposase enzyme, enabling long-term expression of 

therapeutic or experimental transgenes in a wide array of cell types (205, 206). 

Because both the transposon and transposase can be delivered as plasmid DNA, 

mRNA or protein using standardized non-viral methods, these systems integrate 

well with existing electroporation and nanoparticle-based workflows in research 

and clinical manufacturing.  

Engineered DNA transposons used for gene transfer are typically organized as 

bipartite systems comprising a transposon cassette flanked by terminal inverted 

repeats (TIRs) and a separate source of transposase provided in cis or in trans. 

Two-component systems are most commonly used, with the transposase 

delivered either as a plasmid or as an mRNA transcript. Because transposons are 

‘jumping genes’, mRNA electroporation is generally safer with respect to 

insertional mutagenesis. When the transposase is supplied on a plasmid, there is 

a higher risk of stable genomic integration of both the transposon and the 

transposase, potentially driving constitutive transposase expression and ongoing 

cut-and-paste events at new genomic sites, thereby increasing the likelihood of 

insertional mutagenesis (206, 207). In all cases, the transposase recognizes the 

TIRs, excises the transposon from the donor backbone and inserts it into genomic 

DNA at preferred sequence motifs, with integration patterns and cargo capacities 

varying between platforms (206).  

Among the most widely used systems in mammalian cells are Sleeping Beauty 

(SB), piggyBac (PB) and Tol2, each featuring distinct properties relevant to 

experimental design and clinical translation (205). SB which was reconstructed 

from Tc1/mariner elements in fish for activity in vertebrates integrates primarily in 

TA dinucleotides, displaying a bias towards transcriptionally active regions, a 

feature considered advantageous from therapeutic safety standpoint (208, 209). 

Increased interest in this system has led to engineered hyperactive SB 

transposases and streamlined transposon backbones with increased and more 

favorable integration efficiencies (210).  
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By comparison, PB prefers TTAA sites for integration, supports very large cargos 

and excises without leaving a trace, a feature best suited for complex or multigenic 

constructs (211, 212). Tol2 by contrast has been most valuable for zebrafish and 

murine models where it supports broad tissue expression (205, 213).   

Transposon-transposase systems are now used extensively in adoptive cell 

therapies, including generation of genetically engineered T and NK cells (208, 214, 

215). Compared to viral methods, these systems can reduce costs and simplify 

manufacturing while avoiding both technical and ethical constraints of viral 

genetic modification. Despite these advantages, integration remains random and 

concerns about insertional mutagenesis persist, especially in long-lived cell 

products. Given the refinements in transposase engineering and non-viral delivery 

continue, these systems have high potential to take the stage in gene engineering 

technologies.  

 

1.6 Challenges in NK cell genetic modification 

At the core of NK cell genetic modification lie challenges in overcoming their 

natural resistance to foreign genetic material, a product of robust antiviral defense 

mechanisms and sensitivity to cell stress, which collectively limit the efficiency 

and stability of gene delivery (216, 217). NK cells express high of pattern recognition 

receptors (PRRs) such as Toll-like Receptors (TLRs) and RIG-I, which sense viral 

components (RNA, DNA or proteins) introduced during genetic engineering, 

triggering signaling events that lead to apoptosis or inhibition of cell proliferation 

(216, 218-220). This natural aversion to viral infection complicated the use the 

conventionally available vectors, namely retro and lentiviruses, resulting in 

significantly diminished transduction efficiencies in NK cells when compared to 

their adaptive cytotoxic counterparts (166, 217).  

To overcome these barriers, a multitude of strategies have been devised. 

Advances in vector design with specific focus on pseudotyping, have markedly 

improved transduction rates (221-223). Baboon envelope glycoprotein-

pseudotyped lentiviruses (BaEV) and Koala retrovirus envelope glycoprotein-

pseudotyped lentiviruses (KoRV) are reported to use the solute carriers ASCT1 

and ASCT2 to gain entry into the cell (221, 222, 224). Since these receptors are 

abundant on the NK cell surface, they are able to reach transduction efficiencies 

of up to 90%, which is a stark contrast with the average of 30% observed with 
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vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviruses using 

the LDL receptor for entry (222, 224). However, despite the strides made in 

pseudotyping, further research is needed in the effects of BaEV-pseudotyped 

viruses. It is interesting to mention that the BaEV envelope glycoprotein features 

an immunosuppressive peptide sequence, p15E, that has been reported to inhibit 

lymphocyte blastogenesis, production of proinflammatory cytokines, cytoskeletal 

rearrangement, enhancement of production of IL-10 (225, 226).  

Transduction enhancers, including polybrene, protamine sulphate, retronectin and 

nanoparticles such as dextran further support viral entry by facilitating vector 

binding and fusion (217, 227). The use of chemical inhibitors to block innate 

immune sensors (TBK1/IKKe) has also mitigated apoptosis during gene transfer, 

resulting in higher transduction efficiencies and viability (171).  

Non-viral techniques such as lipid nanoparticles, lipofection and DNA transposons 

have gained traction, achieving up to 60% efficiency while minimizing genomic 

integration risks and reducing immunogenicity in some instances (228, 229). 

Innovations such as stimuli-responsive nanocarriers and electroporation of pre-

assembled RNPs permit transient and targeted gene-editing, further expanding 

the toolkit for NK cell modification.  

Recent research shows that combining multiple approaches such as refined 

vector engineering, transduction enhancers, immunosuppressive inhibitors and 

meticulous culture optimization can yield modified NK cells with high viability, 

stable gene expression and enhanced therapeutic potential (165, 166, 171, 217, 222, 

224). However, translating these protocols to clinical-grade manufacturing 

remains a complex task, requiring continuous assessment of safety, 

reproducibility and long-term genomic integrity. As technology advances, 

iterative improvement and harmonization of genetic engineering methodologies 

will be central to unlocking the full potential of NK cells as next-generation 

immunotherapeutic agents.  

 

1.7 Genome-wide NK cell screening strategies 

With the significant improvements in genetic cargo delivery into NK cells, there 

has been an emergence of genome-wide studies identifying NK functional and 

regulatory circuits by the means of CRISPR-Cas9 technologies.  



 

 32 

Previously, genome-wide CRISPR screens have been extensively leveraged in both 

T cell lines and primary T cells to map the genetic circuits that control activation, 

cytokine production, exhaustion and persistence, thereby providing a blueprint 

for engineering more effective adoptive T cell therapies (230-232).  

However, from NK perspective, due to the inability to achieve sufficient 

transduction efficiencies, majority of CRISPR screens had been applied from the 

target cell perspective, essentially measuring sensitivity or resistance of target 

cells with single knockouts against NK cell-mediated killing (181, 182, 233-237). 

These target-centric screens consistently show that disruption of antigen 

presentation and IFNγ response pathways (JAK–STAT components, HLA class 

I/processing machinery) renders tumor cells less sensitive to NK surveillance, while 

intact signaling promotes susceptibility (181, 182). They also implicate death 

receptor/apoptosis pathways and adhesion or cytoskeletal regulators such as 

CHMP2A as key determinants of how efficiently NK cells form synapses and 

induce target-cell death (181, 182, 233, 234). Complementary CRISPR- based 

activation (CRISPRa) and single-cell studies reveal that up-regulation of 

glycoproteins and checkpoint-like ligands, namely MUC21, CEACAM1 and HLA-G, 

can actively dampen NK cytotoxicity, defining a tumor-intrinsic “NK sensitivity 

axis” that provides candidate biomarkers and engineering targets for NK-based 

therapies (235). 

In 2025, CRISPR-Cas9 screening methods were explored directly in NK cells in 

pioneering studies, three of which explored NK-92, one cord-blood derived pNK 

cells and one that was carried out in vivo in murine models (183-186, 238). Peng, 

et al. used an in vivo AAV–Sleeping Beauty pooled CRISPR platform in 

tumor-infiltrating NK cells in mice and then read out sgRNA enrichment under 

solid-tumor challenge. This screen identified CALHM2 as a key intrinsic regulator 

whose loss enhances NK cytotoxicity, degranulation, cytokine production and 

tumor infiltration, and CALHM2-deficient CAR-NK cells showed superior control of 

otherwise resistant solid tumors (238). 

Rezvani group applied a two-step approach to their genome-wide CRISPR 

screening in cord	blood–derived pNK cells, combining retroviral sgRNA delivery 

with Cas9 electroporation and functional selection under repeated tumor 

challenge and immunosuppressive stress. Their screens pinpointed CISH, PRDM1, 

PTEN, MED12, ARIH2 and CCNC as central regulators of NK fitness and dysfunction, 

and showed that targeted knockout of these genes augments CAR-NK 
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proliferation, metabolic fitness, cytokine release and antitumor activity in both 

hematologic and solid tumor models (183). 

Last two publications came from the Huntington group. The first publication by 

Nikolic, et al. details the performed genome-wide CRISPR knockout screen in NK-

92 cells stimulated with IL-15, using pooled libraries and functional readouts of 

survival and expansion to decode IL-15 receptor signaling. Here, they describe 

previously understudied ubiquitin-dependent regulatory layer controlling IL-15R 

signaling, identifying E3 ligases and associated factors whose deletion markedly 

boosts IL-15–driven proliferation and antitumor immunity of NK cells (185). In a 

follow up to this study, Sudholz, et al., show that FUT8, a core fucosyltransferase, 

one of the top hits from the same CRISPR screen, is essential for NK cell IL-15 

responsiveness. Loss of FUT8 led to reduction in IL-2 receptor complex surface 

expression, proliferation of NK cells, cytotoxicity, tumor control and antiviral 

immunity (186). 

Finally, Kalinichenko, et al. used an optimized Cas9 RNP-based genome-editing and 

screening platform in NK-92 cells, relying on high-efficiency nucleofection to 

interrogate multiplex knockouts and targeted knock-ins in this line. Their work 

focused on latter events in the mechanism of granule exocytosis, given their use 

of strong and highly toxic chemical stimulation with Phorbol 12-myristate 13-

acetate (PMA) and ionomycin, that completely bypasses receptor physiology. 

They found that protein palmitoylation and sphingolipid metabolism form a 

central network controlling SNAP23 palmitoylation, targeting of cytotoxic granules 

to GM1-rich lipid rafts, and thus NK cytotoxic function, revealing lipid metabolism 

and protein lipidation as previously underappreciated checkpoints of regulated 

exocytosis in cytotoxic lymphocytes (184).  

To conclude, while NK cells have now started to be explored from the genome-

wide perspective, there is still a vast number of unanswered questions pertaining 

to their biology, functionality and regulatory networks, leaving room for curiosity 

and exploration. 
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2 Research aims 
In this thesis, we address gaps in the understanding of NK cell functionality by 

examining their cytotoxicity, cytokine production, antiviral defense mechanisms, 

and roles within the tumor immunosuppressive milieu, to gain a more 

comprehensive view of NK cell biology.  

Specific aims are described as such: 

Paper I: Decades of NK cell research have uncovered numerous mediators of their 

cytokine production and degranulation; however, a genome-wide overview of 

these functions had not yet been performed. In this work, we perform a genome-

wide CRISPR-Cas9 screen in NK cell line NK-92, to simultaneously examine NK cell 

degranulation and IFNγ production allowing us to identify genes that selectively 

control each function as well as those that coordinately regulate both. 

Paper II: The current wave of targeted cellular immunotherapies is heavily focused 

on genetically modified cytotoxic cells of the immune system, however due to 

their inherent nature to be the defense against invading pathogens, these cells are 

notoriously difficult to genetically manipulate. In this study we explore a novel 

compound, 5Z-7-Oxozeaenol to introduce temporary disruptions in antiviral 

defense and enhance NK cell genetic modification. 

Paper III: Many solid malignancies, including ovarian cancer, feature increased 

death receptor expression which confers them with increased sensitivity to 

membrane-bound TRAIL-mediated death. In this study, we generate an NK cell 

line KHYG-1 to express a high-affinity TRAIL variant targeting the TRAIL-DR5 

receptor on the target cells and investigate the potency of this signal on TRAIL-

sensitive and resistant ovarian cancer cell lines. 

Paper IV: Immunosuppressive NK cell interactions with MDSCs have been 

extensively reported in research, however the mechanisms of these interactions 

have not been elucidated. In this study we explore the mechanism behind 

intratumoral NK cell-mediated immunomodulation via the IL-6/STAT3 axis that 

drives MDSC development.
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3 Results and discussion 

3.1 Paper I: Genome-wide CRISPR screen in NK92 

In this study, we established a genome-wide loss-of-function CRISPR-Cas9 screen 

in NK-92 cells to map regulators of degranulation and IFNγ production in response 

to K562 stimulation. We first generated a stable Cas9-expressing NK-92 line and 

optimized lentiviral delivery of the genome-wide Brunello library by redesigning 

the transfer vector which allowed low-MOI transduction without antibiotic 

selection while preserving NK-92 effector function. We then stimulated 

library-transduced NK-92 cells with K562 and sorted them into four populations 

based on CD107a and IFNγ expression, enabling simultaneous interrogation of 

cytotoxic and cytokine responses. This platform not only enabled the current 

screen but also addressed a longstanding barrier to unbiased genetic 

perturbation directly in NK cells.  

 

Figure 5: Graphical abstract of the genome-wide CRISPR-Cas9 screen in NK-92 cells. The Brunello sgRNA 
library was cloned into an optimized lentiviral backbone and packaged into virus. NK-92 cells were 
transduced at low MOI, expanded, and stimulated with K562 cells for 4 hours before staining for viability, 
CD107a and intracellular IFNγ. Cells were fixed, permeabilized and 4-way sorted into functional quadrants 
based on CD107a and IFNγ expression. Genomic DNA was recovered from sorted pellets, sgRNA barcodes 
were amplified by PCR and subjected to high-throughput sequencing. MAGeCK analysis of barcode 
enrichment and depletion yielded hit lists that confirmed known regulators and highlighted novel candidate 
targets for NK cell effector functions. 

An important feature of this screen is that it interrogates degranulation and IFNγ 

production in parallel, while still allowing these outputs to be analyzed 

independently. Degranulation measures the immediate cytotoxic capacity of NK 

cells, whereas IFNγ secretion influences immune cell recruitment, antigen 

presentation, T-cell activation and myeloid cell function, shaping the broader 
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immune response over longer time scales, a function particularly important in the 

treatment of solid malignancies. Assessing both readouts within the same 

experimental framework makes it possible to identify shared regulators of NK cell 

activation, as well as genes that preferentially modulate cytotoxicity, cytokine 

production, or their balance. This dual-axis design therefore provides a more 

nuanced view of NK cell effector programming than degranulation-only screens 

and is directly relevant for therapeutic engineering, where enhancing killing 

without excess cytokine release, or vice versa, may be more beneficial. 

The CRISPR screen recovered canonical NK cell genes central to degranulation and 

IFNγ production, including IFNG and its transcriptional regulator TBX21 (T-Bet), the 

degranulation marker LAMP1, and the primary activating receptor NCR3 engaged 

by K562 together with the adhesion and co-stimulatory receptor CD2 (239).  Core 

lytic granule trafficking components such as RAB27A, MADD and STXBP2 that are 

essential for granule fusion were also top hits from analysis, well-characterized 

mutations in which underly fHLH syndromes and related PIDs (70, 73, 75-78, 133). 

In addition, we identified multiple proximal signaling and adhesion molecules with 

well-established roles in NK cell activation, including GRB2, CD247, PLCG2, FYB, 

STAT5A, ITGAL and ITGB2, whose loss in our screen reduced both degranulation 

and IFNγ, consistent with their requirement for integrin-dependent synapse 

formation and receptor-proximal signal transduction in cytotoxic lymphocytes (7, 

18, 19, 26, 181). Conversely, STAT4 loss primarily impaired IFNγ production with only 

a minor effect on degranulation, in line with its described function as a key 

transcriptional mediator of IL-12–driven IFNγ expression in NK cells (110). Finally, 

ZAP70, SH2D1A (SAP) and SH2D1B (EAT-2), which couple activating receptors to 

downstream calcium and ERK signaling to promote granule polarization and 

exocytosis, emerged as negative regulators whose disruption enhanced both 

CD107a and IFNγ readouts in our setting (44, 109, 141, 142). This further underscored 

that the screen faithfully captured known NK signaling architecture while revealing 

context-dependent effects on effector outputs. 

In contrast to recently published NK cell CRISPR screens by Biederstädt, et al. and 

Kalinichenko, et al. focused on degranulation, our screen recovered a broad panel 

of “positive control” genes on the degranulation axis, including canonical lytic 

granule trafficking and exocytosis regulators such as LAMP1, UNC13D, CORO1A, 

RAB27A and AP3/VPS family members (183, 184). These genes are indispensable 

for lytic granule maturation, docking and fusion at the immunological synapse, and 

their loss causes well-described NK cell degranulation defects, therefore their 
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robust detection was essential to establish the reliability and dynamic range of 

the screen (37, 70, 73).  

This difference likely stems from several features of our experimental design. 

Firstly, we relied on direct sorting of NK-92 cells into functional quadrants based 

on CD107a and IFNγ, rather than applying antibiotic selection, thereby preserving 

library complexity and avoiding cell death-associated biases that could skew 

representation. Secondly, we used K562 cells as a biologically relevant stimulus 

that engages NCR3 and CD2 and recapitulates integrated receptor signaling, in 

contrast to chemical stimulation with PMA/Ionomycin, which bypass proximal 

signaling and may underrepresent genes involved in receptor coupling, synapse 

formation and vesicle trafficking. Finally, our focus on a single, relatively brief K562 

challenge, as opposed to repeated rechallenge, addresses early activation and 

exocytic events rather than long-term persistence or exhaustion, addressing a 

distinct but complementary biological question about NK-92 effector 

programming. 

Together, these factors may explain why our dataset is particularly rich in 

previously reported degranulation hits, whereas other recent screens, while highly 

informative for exhaustion, persistence and metabolic fitness, place more 

emphasis on regulatory checkpoints and transcriptional programs than on the 

degranulation machinery itself. This indicates that our approach captures core NK 

biology and provides confidence that novel hits reflect genuine regulatory circuits 

rather than technical artefacts. Furthermore, by mapping these hits onto curated 

NK cytotoxicity pathways, we could also identify gaps and biases in existing gene 

sets, which we later addressed by constructing an updated NK cell cytotoxicity 

gene set.  

We observed that genes involved in vesicle trafficking, endosomal recycling and 

adaptor-mediated signaling (e.g. AP3 and VPS complexes, GRB2, CD247, LAT) were 

central to both degranulation and IFNγ production. This emphasizes that NK 

effector functions rely on integrated control of highly interconnected pathways 

such as membrane trafficking and signal transduction. The overall architecture 

differed between effector outputs. The IFNγ axis was dominated by positive 

regulators, defined by gene or genes whose loss manifests as less functionality on 

the observed axis. However, the degranulation axis contained more negative 

regulators, or genes, the loss of which led to observed increase in the functional 

response, i.e. degranulation. This asymmetry supports the idea that cytotoxicity is 
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under tighter inhibitory control than cytokine production, which is in line with 

evolutionary bias towards survival and consistent with the need to prevent 

unnecessary tissue damage while still allowing inflammatory signaling. 

We next focused on quadrant-specific hits to distinguish genes preferentially 

affecting degranulation, cytokine production, or both functions. Using 

over-representation analysis, we found that genes involved in Golgi–ER trafficking 

and regulation of the secretory pathway skewed responses toward IFNγ 

production in the relative absence of robust degranulation, indicating partial 

uncoupling of these effector programs downstream of shared receptor signals. 

This key finding implies that engineering NK cells for therapy could selectively 

enhance one arm of the response (for example cytotoxicity) without inevitably 

amplifying all inflammatory outputs. 

From the extensive novel hit list, we prioritized druggable candidates and 

identified leucyl and cystinyl aminopeptidase (LNPEP, protein IRAP) and C-Src 

kinase (CSK) as genes whose loss enhanced degranulation without compromising 

IFNγ production. We validated these candidates by generating targeted 

knockouts and showed that CSK loss consistently increased both degranulation 

and IFNγ, whereas IRAP loss produced more modest, guide-dependent effects. 

These findings highlight CSK as an intrinsic “brake” on NK-92 activation and 

suggest that pharmacologic modulation of its pathway could be a strategy to 

boost the activity of NK-92-based therapeutic products. 

However, we did not observe substantial changes in CD107a or IFNγ responses 

following IRAP or CSK deletion in primary human NK cells, pointing to the presence 

of compensatory networks in primary NK cells that are absent or dysfunctional in 

NK-92. This discrepancy underlines a key conceptual point of the thesis: 

immortalized NK cell lines are powerful discovery tools and clinical platforms in 

their own right, but their regulatory wiring does not fully mirror that of highly 

complex primary NK cells.  

To conclude, this paper provided a genome-wide map of NK effector regulation, 

refined NK-specific gene sets for future studies, and, importantly, revealed the 

redundancy and robustness that characterize NK cell functional circuits, features 

that must be considered in both mechanistic work and therapeutic engineering. 
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3.2 Paper II: 5Z-7-Oxozeaenol as a transduction enhancer 

In this work, we aimed to overcome intrinsic antiviral defenses that limit lentiviral 

engineering of NK cells and other lymphocytes. These defenses are mediated by 

nucleic acid–sensing pathways such as RIG-I- and STING-dependent signaling, 

which activate TBK1/IKKε, induce type I interferons and restriction factors, and 

ultimately suppress viral entry, reverse transcription and integration. Such 

mechanisms have evolved for protection from viral infections and are particularly 

prominent in NK cells, which act as early sentinels during viral challenge and 

therefore maintain high basal antiviral surveillance and rapid interferon responses. 

We built on previous observations that TBK1/IKKε inhibition enhances lentiviral 

transduction, identified 5Z-7-oxozeaenol (Oxo) as a candidate to improve gene 

delivery while maintaining viability and systematically characterized its dose 

response, kinetics and functional impact.  

 

Figure 6: Graphical abstract illustrating Oxo-mediated relief of RIG-I–dependent antiviral restriction. Left: 
Viral single-stranded RNA (ssRNA) is sensed by RIG-I and MDA5, leading to MAVS activation, TBK1/IKKε 
signaling, IRF3 phosphorylation, nuclear translocation, and induction of a type I interferon response that 
restricts lentiviral gene delivery. Right: In the presence of 5Z-7-oxozeaenol (Oxo), TBK1/IKKε activation and 
IRF3 phosphorylation are blocked, dampening type I interferon signaling and transiently lowering antiviral 
barriers, thereby facilitating more efficient lentiviral transduction.  

We showed that Oxo increased lentiviral transduction in NK-92 cells in a 

concentration- and MOI-dependent manner, with a plateau at around 6–7 µM and 

viability consistently above 90–95%. These data revealed that antiviral sensing 
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can be temporarily disrupted without obvious toxicity, which is particularly 

important for clinical manufacturing where cell fitness translates directly into 

product quality. The fact that enhancement was observed for both GFP and 

clinically relevant CAR construct suggests that this approach is broadly applicable 

across different cargo. 

By varying the timing of Oxo exposure relative to viral supernatant, we found that 

co-exposure produced the strongest enhancement, whereas pre-treatment or 

delayed addition yielded more modest effects, and repeated supplementation 

did not confer additional benefit. This kinetic profile indicates that Oxo acts 

primarily during early stages of viral entry or post-entry sensing, rather than 

inducing a durable transcriptional state. Mechanistically, these observations fit 

with transient inhibition of RIG-I/TBK1-dependent signaling, although further work 

such as combining CRISPR-based target deconvolution with transcriptomics, 

would be needed to define direct molecular targets more precisely. 

We then asked whether Oxo treatment compromised NK effector functions, 

properties that are vital in clinical translation. After allowing NK-92 cells to rest 

post-transduction, we showed that Oxo-treated cells retained degranulation and 

IFNγ responses with K562 and PMA/ionomycin stimulation that were comparable 

to DMSO-treated controls. This preservation of function supports the notion that 

short-term Oxo exposure can be integrated into clinical applications without 

compromising NK-92 cells in a detrimental way. 

To explore applicability, we extended our analysis to other NK cell lines as well as 

B and T cell lines and observed enhanced transduction in most settings, with the 

strongest effects for VSV-G-pseudotyped vectors and more variable or even 

negative effects for BaEV, GALV and Rabies-G envelopes. This could be attributed 

to the fact that VSV-G uses broadly expressed entry pathways and triggers 

well-characterized sensing mechanisms that are efficiently dampened by Oxo, 

whereas alternative envelopes engage other receptors and trafficking routes that 

may rely on different, less Oxo-sensitive antiviral checkpoints. Moreover, some of 

these alternative pseudotypes contain immunosuppressive peptide motifs in 

their envelope proteins, which may dampen antiviral signaling through distinct 

pathways independent of Oxo. These findings underscore that transduction 

enhancement is not solely a property of the small molecule but emerges from the 

interplay between cell type, envelope tropism and innate sensing pathways. In 

particular, the reduced transduction with some pseudotypes in specific NK lines 
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cautions against assuming uniform benefit and highlights the need for 

optimization for each vector–cell combination. 

We finally tested Oxo in primary NK and T cells from healthy donors and found 

that it improved transduction with preserved viability, although the magnitude of 

enhancement was more modest and donor-dependent in both cell types. This 

pattern suggests that baseline activation of antiviral pathways differs between 

individuals, raising the possibility that patient-specific factors could influence the 

optimal Oxo dose in a clinical setting.  

Collectively, this work does not only present Oxo as a tool to boost lentiviral gene 

delivery, but also illustrates how carefully timed, transient pathway inhibition can 

be used for genetic engineering while preserving downstream immune function.  

 

3.3 Paper III:  DR5-targeting TRAILv-KHYG-1 in ovarian cancer 

In this study, we investigated whether equipping NK cell line with the DR5-specific 

TRAIL could improve cytotoxicity against ovarian cancer cell lines with differential 

TRAIL sensitivity. We used the Sleeping Beauty transposon system to engineer 

KHYG-1 cells with a DR5-specific TRAIL variant (TRAILv, E195R/D269H) and 

generated a TRAILv-KHYG-1 line that stably expressed GFP and showed increased 

intracellular TRAIL without evidence of fratricide. This non-viral engineering 

strategy is conceptually aligned with efforts in the thesis to diversify gene-delivery 

modalities beyond lentiviral approaches. 

When we paired TRAILv-KHYG-1 against parental KHYG-1 cells in coculture with 

OVCAR-3 (TRAIL-sensitive) cells, we found that both NK cell types significantly 

reduced tumor viability in a time- and effector-to-target (E:T) -dependent manner, 

but that TRAILv-KHYG-1 consistently produced greater reductions in viability. At 

an E:T ratio of 1:1, TRAILv-KHYG-1 lowered OVCAR-3 viability by more than 50% after 

16 hours. These data indicate that selectively boosting DR5 engagement on target 

cells can increase NK cell potency, supporting DR5 as a viable engineering target 

in ovarian cancer. 

To better understand the underlying effector mechanisms, we quantified 

granzyme A, granzyme B, IFNγ and soluble TRAIL in coculture supernatants. We 

observed that TRAILv-KHYG-1 secreted higher levels of granzymes and IFNγ against 

OVCAR-3 than parental KHYG-1 at matched E:T ratios, and that soluble TRAIL levels 
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increased particularly at high ratios. These findings suggest that TRAILv-KHYG-1 
cells do not simply deliver a stronger death-receptor signal but also engage 

classical granule-mediated and cytokine-mediated cytotoxic pathways more 

robustly, offering a multifunctional mechanism of tumor cell killing that could be 

advantageous in heterogeneous tumors.  

 

Figure 7: Graphical abstract of TRAILv-KHYG-1 generation and function. KHYG-1 NK cells were 
electroporated with the Sleeping Beauty transposon cargo pT3-DR5v-EF1α-GFP encoding a DR5-selective 
TRAIL variant (DR5v-TRAIL) linked to GFP, together with SB100X transposase mRNA, to mediate stable 
genomic integration. After recovery and expansion, GFP⁺ cells were sorted using FACS to obtain a 
TRAILv-KHYG-1 line. Modified NK cells display increased TRAIL expression and, upon engagement of DR5 on 
ovarian cancer target cells efficiently induce apoptosis via death-receptor pathways. 

In contrast, when we tested SKOV-3, a TRAIL-resistant ovarian cancer line, we 

found that neither parental nor TRAILv-KHYG-1 cells achieved significant 

reductions in overall viability, even at higher E:T ratios and longer coculture times. 

Although we observed some increases in late apoptosis and necrosis at extreme 

conditions, the effect size was modest and more inferior to what we saw in 

OVCAR-3. Interestingly, we measured higher DR5 surface expression on SKOV-3 

than on OVCAR-3 and similar levels of DR4 and DcR1, showing that receptor 

abundance alone could not account for resistance. This observation points to the 

involvement of downstream anti-apoptotic machinery as determinants of TRAIL 

sensitivity, in line with published literature. 

Taken together, our data supports DR5-focused TRAIL engineering to enhance NK 

cell therapy in TRAIL-sensitive ovarian cancer, but it also shows that this strategy 
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alone is insufficient to overcome intrinsic TRAIL resistance in some tumors. The 

observation that TRAILv-KHYG-1 cells mount strong granzyme and IFNγ responses 

even against SKOV-3, yet fail to fully overcome resistance, suggests that 

combining DR5-targeted NK cells with inhibitors of key anti-apoptotic molecules 

may be necessary for best outcomes. From the perspective of the thesis, this 

work serves as a concrete example of how receptor-level engineering of NK cells, 

through the perspective of understanding the tumor death	receptor pathways, 

can produce more potent cell products while at the same time unmasking 

non-receptor mechanisms that limit clinical efficacy. 

 

3.4 Paper IV: NK cells drive MDSC-mediated tolerance via IL6-
STAT3 axis 

In the final paper, we explored how tumor-associated NK cells shape myeloid cell 

function and contribute to immune tolerance in solid tumors. By integrating bulk 

transcriptomic data from multiple cohorts receiving PD-1/PD-L1 blockade, we 

identified an inflammatory gene signature that positively correlated with NK cell 

signatures specifically in non-responders or patients with progressive disease. 

This observation suggested that NK-associated inflammation can be a hallmark of 

immune resistance rather than effective anti-tumor immunity. 

Using publicly available single-cell datasets from breast cancer, we refined this 

association by identifying NK cell subsets and myeloid clusters and found that 

CD69+perforin- NK cells correlated with S100A8/A9+ myeloid populations in 

tumors lacking T-cell expansion after checkpoint blockade. We then modeled this 

interaction in vitro by coculturing NK cells with tumor cells to generate 

“tumor-experienced” NK cells and showed that these cells adopted a CD69+, 

functionally reprogrammed phenotype with upregulated inflammatory cytokines, 

including IL-6. This phenotype fits within an emerging view of NK plasticity, where 

chronic exposure to tumor signals can shift NK cells from purely cytotoxic 

effectors toward regulatory cells that modulate the tumor microenvironment. 

When we cocultured tumor-experienced NK cells with monocytes, we observed 

down-regulation of HLA-DR and up-regulation of PD-L1, ARG1 and CD73, 

accompanied by the appearance of HLA-DRlow monocytes that suppressed CD8 

T-cell proliferation and impaired antigen presentation to tumor-infiltrating 

lymphocytes. Parallel experiments with neutrophils showed that 
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tumor-experienced NK cells enhanced neutrophil survival, ER-stress marker sXBP-1 
expression, Ki-67 and ARG1, and promoted neutrophil-mediated suppression of 

CD8 T-cell activation, particularly under conditions of pharmacologically induced 

ER stress. Functionally, these findings demonstrate that NK cells can drive the 

differentiation and maintenance of both monocytic and granulocytic MDSCs, 

thereby indirectly suppressing adaptive immunity. 

We then confirmed the clinical relevance of this axis by phenotyping 

tumor-infiltrating NK cells and myeloid cells in sarcoma and breast cancer 

resections and showed that NK-derived IL-6 correlated with S100A8/A9 and 

arginase-1 expression in MDSCs, while T cells contributed less to IL-6 production 

in these samples. Across multiple murine models in which we manipulated tumor 

MHC class I via β2m deletion and depleted NK cells, we found that MHC I–

competent tumors harbored more IL-6–producing NK cells and higher frequencies 

of M-MDSCs and PMN-MDSCs than MHC I–deficient tumors, and that NK cell 

depletion reduced M-MDSC accumulation. These results suggest that the NK cells 

recognizing MHC I+ targets can promote myeloid-mediated immune suppression 

rather than direct cytotoxic clearance. 

To directly implicate IL-6/STAT3 signaling, we cultured myeloid cells with NK cells 

from IL-6–deficient mice and observed reduced induction of iNOS, PD-L1 and 

arginase compared with myeloid cells exposed to wild-type NK cells. In xenograft 

experiments, we treated mice with IL-6/STAT3-blocking antibodies and showed 

reduced tumor growth and metastasis, decreased STAT3 activation and 

suppressive marker expression in myeloid cells, and partial restoration of CD8 

T-cell responses. Together, these data establish NK-derived IL-6 as a critical driver 

of MDSC-mediated tolerance and position the IL-6/STAT3 axis as a promising 

target to uncouple NK-associated inflammation from immune suppression.  

Within the framework of the thesis, this work broadens the conventional view of 

NK cells by demonstrating that, depending on tumor context and MHC I 

expression, NK cells can act as upstream orchestrators of immunosuppressive 

myeloid programs. This insight has two key implications for NK-based therapies: 

first, simply increasing NK cell numbers or activation may not always be beneficial 

in solid tumors if regulatory NK phenotypes are favored; and second, engineering 

NK cells or combining them with IL-6/STAT3-targeted interventions may be 

necessary to ensure that their activity supports, rather than undermines, effective 

T-cell–mediated tumor control.
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4 Conclusions 
This thesis examined NK cell biology from multiple angles, including cytotoxicity, 

cytokine production, antiviral defense, and their contribution to the 

tumor-associated immunosuppressive milieu to achieve a more comprehensive 

understanding of their multidimensional functions.  

Through the four original research works presented here, we have drawn specific 

conclusions as followed: 

Paper I:  

• Established a dual-axis genome-wide CRISPR-Cas9 screening platform in 
NK-92 that simultaneously profiled regulators of degranulation and IFNγ 
production 

• Revealed distinct regulatory architectures for degranulation and cytokine 

production, with degranulation enriched for negative regulators and IFNγ for 

positive regulators. 

• Uncovered 914 significant regulators of NK-92 functions, comprising of 579 

genes linked to CD107a, 532 to IFNγ, and 197 shared between both readouts. 

• Identified and validated druggable candidates such as CSK and LNPEP 

whose loss enhances NK-92 degranulation. 

• Demonstrated that analogous knockouts in primary NK cells had minimal 

impact on CD107a and IFNγ responses, indicating the presence of 

compensatory networks in primary NK cells. 

• Generated a genome wide functional dataset that can serve as a resource 

for future chemical inhibition studies, rational engineering of NK cell 

products, and systems level analyses of transcription factor networks and 

pathway wiring in cytotoxic lymphocytes. 

Paper II:  

• Identified 5Z-7-oxozeaenol (Oxo) as a small molecule that transiently 

enhances lentiviral transduction in NK-92 cells in a dose-dependent 

manner while maintaining high viability. 

• Showed that Oxo acts most effectively when present during co-exposure 

to viral supernatant, indicating an effect on the initial stages of viral entry.  

• Demonstrated that Oxo-treated NK-92 cells preserve effector functions. 

• Confirmed Oxo-mediated enhancement of lentiviral transduction in 

additional NK cell lines and in primary NK and T cells, with increased 
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transduction across donors and cell types but variable magnitude and clear 

pseudotype dependence. 

Paper III:  

• Generated a KHYG-1 NK cell line expressing a high affinity DR5-specific 

TRAIL variant (TRAILv-KHYG-1) using a non-viral Sleeping Beauty system, 

achieving stable expression without evident fratricide. 

• Showed that TRAILv-KHYG-1 cells kill TRAIL sensitive OVCAR-3 ovarian 

cancer cells more efficiently than parental KHYG-1, with stronger reductions 

in viability and increased granzyme and IFNγ secretion. 

• Demonstrated that DR5high SKOV-3 cells remain largely resistant despite 

TRAILv-KHYG-1 activity, indicating that downstream anti-apoptotic 

mechanisms, rather than DR5 abundance, determine TRAIL resistance. 

Paper IV:  

• Identified a tumor-experienced CD69⁺perforin- NK cell subset that 

acquires a regulatory phenotype and correlates with inflammatory gene 

signatures and myeloid cell enrichment in non-responders to checkpoint 

blockade. 

• Demonstrated that these tumor-experienced NK cells drive the 

differentiation of suppressive monocytes and neutrophils into MDSC-like 

populations via IL-6–dependent STAT3 activation, leading to impaired 

antigen presentation and CD8 T-cell suppression. 

• Showed in patient samples and mouse tumor models that NK-derived IL-6, 

particularly in MHC I–competent tumors, promotes MDSC accumulation 

and tumor progression, and that IL-6/STAT3 blockade can alleviate this 

NK-driven immunosuppression. 
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5 Points of perspective 
NK cell-based immunotherapy is currently at a stage where both mechanistic 

insight and engineering tools can be combined to design more rational, next-

generation interventions.  

Across the four studies in this thesis, there are several directions emerging for 

future work, such as deepening the functional map of NK cell effector regulation, 

integrating small-molecule and genetic engineering strategies to overcome 

manufacturing and resistance bottlenecks, and re-programming NK cell–myeloid 

crosstalk in the tumor microenvironment to improve clinical responses.  

The genome-wide loss-of-function screen in NK-92 provides an initial wiring 

diagram of genes that support degranulation and IFNγ production, but the 

absence of strong phenotypes for IRAP and CSK in primary NK cells highlights the 

degree of redundancy and compensation in physiological systems. Future work 

should therefore move from single-gene to combinatorial perturbations in 

expanded pNK cells, ideally under tumor-like conditions to reveal synthetic 

vulnerabilities that are invisible in transformed cell lines and to define effector 

modules that are most relevant for clinical products. In parallel, the updated NK 

cytotoxicity gene set generated here could be applied to existing single-cell and 

bulk transcriptomic datasets from patient samples to link specific NK cell 

functional networks with clinical outcomes.  

A second major theme is the manipulation of NK cell biology to allow genetic 

modification. The identification of 5Z-7-oxozeaenol (Oxo) as a transient, 

low-toxicity enhancer of lentiviral transduction across NK, T and B cells offers a 

practical option to improve manufacturing, but its precise molecular mechanism 

remains incompletely defined. Transcriptomic profiling of Oxo-treated NK cells, 

combined with CRISPR perturbation of candidate RIG-I/TBK1/IKKε pathway 

components, will be important to clarify how far innate antiviral sensing can be 

modulated without compromising long-term function or safety. On the 

translational side, Oxo now needs to be moved into process-development studies 

to define clinically acceptable exposure windows, further investigate long-term 

phenotypic and epigenetic stability, and test whether similar pathway modulation 

can also improve non-viral platforms such as transposon systems, CRISPR-Cas9-

mediated knockout generation or mRNA delivery in NK cells. 
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The DR5-targeted TRAILv-KHYG-1 model illustrates the potential and limitations of 

leveraging death-receptor pathways in solid tumors. Enhanced killing of 

TRAIL-sensitive OVCAR-3 cells, but persistent resistance of SKOV-3 despite higher 

DR5 expression, argues that receptor density is an insufficient biomarker and that 

intracellular resistance mediators such as c-FLIP, IAPs and ER-stress–linked 

survival must be considered. Future work could combine DR5-engineered NK cells 

with targeted inhibitors of these pathways or with chemotherapy-induced stress 

to test whether TRAIL resistance can be safely reversed and to define rational 

treatment sequencing in ovarian cancer. Importantly, the proof-of-concept in 

KHYG-1 needs to be extended to primary NK cells and evaluated potentially in 

animal models to better capture trafficking, tumor penetration and the 

immunosuppressive peritoneal environment.   

Finally, the demonstration that tumor-associated NK cells can drive 

MDSC-mediated immune tolerance through IL-6–STAT3 signaling reframes NK 

cells as potential amplifiers of immune escape in certain contexts. The association 

of IL-6–producing CD69⁺perforin- NK cells with suppressive monocytes and 

neutrophils in human tumors and mouse models suggests that simply increasing 

NK cell numbers is not necessarily beneficial. Future studies should therefore 

dissect the cues, such as MHC class I expression patterns, chronic stimulation or 

stromal factors, that promote this regulatory NK phenotype, and test strategies to 

block IL-6/STAT3 signaling specifically in NK cells or in their myeloid targets. Gene 

editing to remove IL6 or key upstream regulators in therapeutic NK products or 

combining NK-based therapies with IL-6/STAT3 inhibitors or MDSC-depleting 

approaches, could help convert “inflamed but ineffective” microenvironments into 

settings where both NK cells and T cells can mount antitumor responses.  

To conclude, taken together, the work in this thesis positions NK cells not only as 

cytotoxic effectors to be armed, but as central nodes in antiviral sensing, vesicle 

trafficking, death-receptor signaling and TME-driven immune regulation that can 

be systematically mapped and re-engineered in future studies.
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was full. Anders Norman, every time you go on holidays in some new, exotic 

location, I just can’t wait till you’re back, so we hear all about your insane 

adventures! As much of a risk-magnet as you are on vacation, these things cannot 

be said about your work, I have never seen a more meticulous worker and 

documenter. Your patience and tenacity to scrutinize 4 screens at the same time 
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wild dreams, quirky humor and ability to poke fun at even the most depressing of 
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consistent friendship, willingness to help, reliability and caring nature has really 

stuck with me, I am lucky to call you my friend. This all extends to Natasha and 
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7 Declaration about the use of generative AI 
AI tools were used in the “Background” section of this thesis to enhance clarity of 

sentence structures, improve cohesiveness of text, referencing, correct spelling 

and grammar. All AI suggestions were personally reviewed in detail. 

Tools used were as followed: 

• Microsoft 365 CoPilot version 2.20260108.46.0 

• Perplexity Pro 

I confirm that use of these AI tools does not infringe on the authenticity of this 

work and I take full responsibility of the contents of this thesis.  
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